blob: 82f0ee5a5ebc1ea2a76fa291c1c8643359468b7a [file] [log] [blame]
//===-- X86InstComments.cpp - Generate verbose-asm comments for instrs ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This defines functionality used to emit comments about X86 instructions to
// an output stream for -fverbose-asm.
//
//===----------------------------------------------------------------------===//
#include "X86InstComments.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "Utils/X86ShuffleDecode.h"
#include "llvm/MC/MCInst.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static unsigned getVectorRegSize(unsigned RegNo) {
if (X86::ZMM0 <= RegNo && RegNo <= X86::ZMM31)
return 512;
if (X86::YMM0 <= RegNo && RegNo <= X86::YMM31)
return 256;
if (X86::XMM0 <= RegNo && RegNo <= X86::XMM31)
return 128;
if (X86::MM0 <= RegNo && RegNo <= X86::MM7)
return 64;
llvm_unreachable("Unknown vector reg!");
return 0;
}
static MVT getRegOperandVectorVT(const MCInst *MI, const MVT &ScalarVT,
unsigned OperandIndex) {
unsigned OpReg = MI->getOperand(OperandIndex).getReg();
return MVT::getVectorVT(ScalarVT,
getVectorRegSize(OpReg)/ScalarVT.getSizeInBits());
}
/// \brief Extracts the src/dst types for a given zero extension instruction.
/// \note While the number of elements in DstVT type correct, the
/// number in the SrcVT type is expanded to fill the src xmm register and the
/// upper elements may not be included in the dst xmm/ymm register.
static void getZeroExtensionTypes(const MCInst *MI, MVT &SrcVT, MVT &DstVT) {
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unknown zero extension instruction");
// i8 zero extension
case X86::PMOVZXBWrm:
case X86::PMOVZXBWrr:
case X86::VPMOVZXBWrm:
case X86::VPMOVZXBWrr:
SrcVT = MVT::v16i8;
DstVT = MVT::v8i16;
break;
case X86::VPMOVZXBWYrm:
case X86::VPMOVZXBWYrr:
SrcVT = MVT::v16i8;
DstVT = MVT::v16i16;
break;
case X86::PMOVZXBDrm:
case X86::PMOVZXBDrr:
case X86::VPMOVZXBDrm:
case X86::VPMOVZXBDrr:
SrcVT = MVT::v16i8;
DstVT = MVT::v4i32;
break;
case X86::VPMOVZXBDYrm:
case X86::VPMOVZXBDYrr:
SrcVT = MVT::v16i8;
DstVT = MVT::v8i32;
break;
case X86::PMOVZXBQrm:
case X86::PMOVZXBQrr:
case X86::VPMOVZXBQrm:
case X86::VPMOVZXBQrr:
SrcVT = MVT::v16i8;
DstVT = MVT::v2i64;
break;
case X86::VPMOVZXBQYrm:
case X86::VPMOVZXBQYrr:
SrcVT = MVT::v16i8;
DstVT = MVT::v4i64;
break;
// i16 zero extension
case X86::PMOVZXWDrm:
case X86::PMOVZXWDrr:
case X86::VPMOVZXWDrm:
case X86::VPMOVZXWDrr:
SrcVT = MVT::v8i16;
DstVT = MVT::v4i32;
break;
case X86::VPMOVZXWDYrm:
case X86::VPMOVZXWDYrr:
SrcVT = MVT::v8i16;
DstVT = MVT::v8i32;
break;
case X86::PMOVZXWQrm:
case X86::PMOVZXWQrr:
case X86::VPMOVZXWQrm:
case X86::VPMOVZXWQrr:
SrcVT = MVT::v8i16;
DstVT = MVT::v2i64;
break;
case X86::VPMOVZXWQYrm:
case X86::VPMOVZXWQYrr:
SrcVT = MVT::v8i16;
DstVT = MVT::v4i64;
break;
// i32 zero extension
case X86::PMOVZXDQrm:
case X86::PMOVZXDQrr:
case X86::VPMOVZXDQrm:
case X86::VPMOVZXDQrr:
SrcVT = MVT::v4i32;
DstVT = MVT::v2i64;
break;
case X86::VPMOVZXDQYrm:
case X86::VPMOVZXDQYrr:
SrcVT = MVT::v4i32;
DstVT = MVT::v4i64;
break;
}
}
#define CASE_MASK_INS_COMMON(Inst, Suffix, src) \
case X86::V##Inst##Suffix##src: \
case X86::V##Inst##Suffix##src##k: \
case X86::V##Inst##Suffix##src##kz:
#define CASE_SSE_INS_COMMON(Inst, src) \
case X86::Inst##src:
#define CASE_AVX_INS_COMMON(Inst, Suffix, src) \
case X86::V##Inst##Suffix##src:
#define CASE_MOVDUP(Inst, src) \
CASE_MASK_INS_COMMON(Inst, Z, r##src) \
CASE_MASK_INS_COMMON(Inst, Z256, r##src) \
CASE_MASK_INS_COMMON(Inst, Z128, r##src) \
CASE_AVX_INS_COMMON(Inst, , r##src) \
CASE_AVX_INS_COMMON(Inst, Y, r##src) \
CASE_SSE_INS_COMMON(Inst, r##src) \
#define CASE_UNPCK(Inst, src) \
CASE_MASK_INS_COMMON(Inst, Z, r##src) \
CASE_MASK_INS_COMMON(Inst, Z256, r##src) \
CASE_MASK_INS_COMMON(Inst, Z128, r##src) \
CASE_AVX_INS_COMMON(Inst, , r##src) \
CASE_AVX_INS_COMMON(Inst, Y, r##src) \
CASE_SSE_INS_COMMON(Inst, r##src) \
#define CASE_SHUF(Inst, src) \
CASE_MASK_INS_COMMON(Inst, Z, r##src##i) \
CASE_MASK_INS_COMMON(Inst, Z256, r##src##i) \
CASE_MASK_INS_COMMON(Inst, Z128, r##src##i) \
CASE_AVX_INS_COMMON(Inst, , r##src##i) \
CASE_AVX_INS_COMMON(Inst, Y, r##src##i) \
CASE_SSE_INS_COMMON(Inst, r##src##i) \
#define CASE_VPERM(Inst, src) \
CASE_MASK_INS_COMMON(Inst, Z, src##i) \
CASE_MASK_INS_COMMON(Inst, Z256, src##i) \
CASE_MASK_INS_COMMON(Inst, Z128, src##i) \
CASE_AVX_INS_COMMON(Inst, , src##i) \
CASE_AVX_INS_COMMON(Inst, Y, src##i) \
#define CASE_VSHUF(Inst, src) \
CASE_MASK_INS_COMMON(SHUFF##Inst, Z, r##src##i) \
CASE_MASK_INS_COMMON(SHUFI##Inst, Z, r##src##i) \
CASE_MASK_INS_COMMON(SHUFF##Inst, Z256, r##src##i) \
CASE_MASK_INS_COMMON(SHUFI##Inst, Z256, r##src##i) \
/// \brief Extracts the types and if it has memory operand for a given
/// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2) instruction.
static void getVSHUF64x2FamilyInfo(const MCInst *MI, MVT &VT, bool &HasMemOp) {
HasMemOp = false;
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unknown VSHUF64x2 family instructions.");
break;
CASE_VSHUF(64X2, m)
HasMemOp = true; // FALL THROUGH.
CASE_VSHUF(64X2, r)
VT = getRegOperandVectorVT(MI, MVT::i64, 0);
break;
CASE_VSHUF(32X4, m)
HasMemOp = true; // FALL THROUGH.
CASE_VSHUF(32X4, r)
VT = getRegOperandVectorVT(MI, MVT::i32, 0);
break;
}
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
/// EmitAnyX86InstComments - This function decodes x86 instructions and prints
/// newline terminated strings to the specified string if desired. This
/// information is shown in disassembly dumps when verbose assembly is enabled.
bool llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
const char *(*getRegName)(unsigned)) {
// If this is a shuffle operation, the switch should fill in this state.
SmallVector<int, 8> ShuffleMask;
const char *DestName = nullptr, *Src1Name = nullptr, *Src2Name = nullptr;
switch (MI->getOpcode()) {
default:
// Not an instruction for which we can decode comments.
return false;
case X86::BLENDPDrri:
case X86::VBLENDPDrri:
case X86::VBLENDPDYrri:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::BLENDPDrmi:
case X86::VBLENDPDrmi:
case X86::VBLENDPDYrmi:
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodeBLENDMask(getRegOperandVectorVT(MI, MVT::f64, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::BLENDPSrri:
case X86::VBLENDPSrri:
case X86::VBLENDPSYrri:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::BLENDPSrmi:
case X86::VBLENDPSrmi:
case X86::VBLENDPSYrmi:
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodeBLENDMask(getRegOperandVectorVT(MI, MVT::f32, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::PBLENDWrri:
case X86::VPBLENDWrri:
case X86::VPBLENDWYrri:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PBLENDWrmi:
case X86::VPBLENDWrmi:
case X86::VPBLENDWYrmi:
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodeBLENDMask(getRegOperandVectorVT(MI, MVT::i16, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPBLENDDrri:
case X86::VPBLENDDYrri:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VPBLENDDrmi:
case X86::VPBLENDDYrmi:
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodeBLENDMask(getRegOperandVectorVT(MI, MVT::i32, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::INSERTPSrr:
case X86::VINSERTPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::INSERTPSrm:
case X86::VINSERTPSrm:
DestName = getRegName(MI->getOperand(0).getReg());
Src1Name = getRegName(MI->getOperand(1).getReg());
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodeINSERTPSMask(MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
break;
case X86::MOVLHPSrr:
case X86::VMOVLHPSrr:
case X86::VMOVLHPSZrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeMOVLHPSMask(2, ShuffleMask);
break;
case X86::MOVHLPSrr:
case X86::VMOVHLPSrr:
case X86::VMOVHLPSZrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeMOVHLPSMask(2, ShuffleMask);
break;
CASE_MOVDUP(MOVSLDUP, r)
Src1Name = getRegName(MI->getOperand(MI->getNumOperands() - 1).getReg());
// FALL THROUGH.
CASE_MOVDUP(MOVSLDUP, m)
DestName = getRegName(MI->getOperand(0).getReg());
DecodeMOVSLDUPMask(getRegOperandVectorVT(MI, MVT::f32, 0), ShuffleMask);
break;
CASE_MOVDUP(MOVSHDUP, r)
Src1Name = getRegName(MI->getOperand(MI->getNumOperands() - 1).getReg());
// FALL THROUGH.
CASE_MOVDUP(MOVSHDUP, m)
DestName = getRegName(MI->getOperand(0).getReg());
DecodeMOVSHDUPMask(getRegOperandVectorVT(MI, MVT::f32, 0), ShuffleMask);
break;
CASE_MOVDUP(MOVDDUP, r)
Src1Name = getRegName(MI->getOperand(MI->getNumOperands() - 1).getReg());
// FALL THROUGH.
CASE_MOVDUP(MOVDDUP, m)
DestName = getRegName(MI->getOperand(0).getReg());
DecodeMOVDDUPMask(getRegOperandVectorVT(MI, MVT::f64, 0), ShuffleMask);
break;
case X86::PSLLDQri:
case X86::VPSLLDQri:
case X86::VPSLLDQYri:
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodePSLLDQMask(getRegOperandVectorVT(MI, MVT::i8, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
break;
case X86::PSRLDQri:
case X86::VPSRLDQri:
case X86::VPSRLDQYri:
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodePSRLDQMask(getRegOperandVectorVT(MI, MVT::i8, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
break;
case X86::PALIGNR128rr:
case X86::VPALIGNR128rr:
case X86::VPALIGNR256rr:
Src1Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PALIGNR128rm:
case X86::VPALIGNR128rm:
case X86::VPALIGNR256rm:
Src2Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodePALIGNRMask(getRegOperandVectorVT(MI, MVT::i8, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
break;
case X86::PSHUFDri:
case X86::VPSHUFDri:
case X86::VPSHUFDYri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSHUFDmi:
case X86::VPSHUFDmi:
case X86::VPSHUFDYmi:
DestName = getRegName(MI->getOperand(0).getReg());
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodePSHUFMask(getRegOperandVectorVT(MI, MVT::i32, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
break;
case X86::PSHUFHWri:
case X86::VPSHUFHWri:
case X86::VPSHUFHWYri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSHUFHWmi:
case X86::VPSHUFHWmi:
case X86::VPSHUFHWYmi:
DestName = getRegName(MI->getOperand(0).getReg());
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodePSHUFHWMask(getRegOperandVectorVT(MI, MVT::i16, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
break;
case X86::PSHUFLWri:
case X86::VPSHUFLWri:
case X86::VPSHUFLWYri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSHUFLWmi:
case X86::VPSHUFLWmi:
case X86::VPSHUFLWYmi:
DestName = getRegName(MI->getOperand(0).getReg());
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodePSHUFLWMask(getRegOperandVectorVT(MI, MVT::i16, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
break;
case X86::MMX_PSHUFWri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::MMX_PSHUFWmi:
DestName = getRegName(MI->getOperand(0).getReg());
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodePSHUFMask(MVT::v4i16,
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
break;
case X86::PSWAPDrr:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSWAPDrm:
DestName = getRegName(MI->getOperand(0).getReg());
DecodePSWAPMask(MVT::v2i32, ShuffleMask);
break;
CASE_UNPCK(PUNPCKHBW, r)
case X86::MMX_PUNPCKHBWirr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(PUNPCKHBW, m)
case X86::MMX_PUNPCKHBWirm:
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::i8, 0), ShuffleMask);
break;
CASE_UNPCK(PUNPCKHWD, r)
case X86::MMX_PUNPCKHWDirr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(PUNPCKHWD, m)
case X86::MMX_PUNPCKHWDirm:
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::i16, 0), ShuffleMask);
break;
CASE_UNPCK(PUNPCKHDQ, r)
case X86::MMX_PUNPCKHDQirr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(PUNPCKHDQ, m)
case X86::MMX_PUNPCKHDQirm:
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::i32, 0), ShuffleMask);
break;
CASE_UNPCK(PUNPCKHQDQ, r)
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(PUNPCKHQDQ, m)
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::i64, 0), ShuffleMask);
break;
CASE_UNPCK(PUNPCKLBW, r)
case X86::MMX_PUNPCKLBWirr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(PUNPCKLBW, m)
case X86::MMX_PUNPCKLBWirm:
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::i8, 0), ShuffleMask);
break;
CASE_UNPCK(PUNPCKLWD, r)
case X86::MMX_PUNPCKLWDirr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(PUNPCKLWD, m)
case X86::MMX_PUNPCKLWDirm:
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::i16, 0), ShuffleMask);
break;
CASE_UNPCK(PUNPCKLDQ, r)
case X86::MMX_PUNPCKLDQirr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(PUNPCKLDQ, m)
case X86::MMX_PUNPCKLDQirm:
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::i32, 0), ShuffleMask);
break;
CASE_UNPCK(PUNPCKLQDQ, r)
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(PUNPCKLQDQ, m)
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::i64, 0), ShuffleMask);
break;
CASE_SHUF(SHUFPD, r)
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_SHUF(SHUFPD, m)
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodeSHUFPMask(getRegOperandVectorVT(MI, MVT::f64, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
CASE_SHUF(SHUFPS, r)
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_SHUF(SHUFPS, m)
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodeSHUFPMask(getRegOperandVectorVT(MI, MVT::f32, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
CASE_VSHUF(64X2, r)
CASE_VSHUF(64X2, m)
CASE_VSHUF(32X4, r)
CASE_VSHUF(32X4, m) {
MVT VT;
bool HasMemOp;
unsigned NumOp = MI->getNumOperands();
getVSHUF64x2FamilyInfo(MI, VT, HasMemOp);
decodeVSHUF64x2FamilyMask(VT, MI->getOperand(NumOp - 1).getImm(),
ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
if (HasMemOp) {
assert((NumOp >= 8) && "Expected at least 8 operands!");
Src1Name = getRegName(MI->getOperand(NumOp - 7).getReg());
} else {
assert((NumOp >= 4) && "Expected at least 4 operands!");
Src2Name = getRegName(MI->getOperand(NumOp - 2).getReg());
Src1Name = getRegName(MI->getOperand(NumOp - 3).getReg());
}
break;
}
CASE_UNPCK(UNPCKLPD, r)
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(UNPCKLPD, m)
DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::f64, 0), ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
CASE_UNPCK(UNPCKLPS, r)
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(UNPCKLPS, m)
DecodeUNPCKLMask(getRegOperandVectorVT(MI, MVT::f32, 0), ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
CASE_UNPCK(UNPCKHPD, r)
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(UNPCKHPD, m)
DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::f64, 0), ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
CASE_UNPCK(UNPCKHPS, r)
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
CASE_UNPCK(UNPCKHPS, m)
DecodeUNPCKHMask(getRegOperandVectorVT(MI, MVT::f32, 0), ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
CASE_VPERM(PERMILPS, r)
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
CASE_VPERM(PERMILPS, m)
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodePSHUFMask(getRegOperandVectorVT(MI, MVT::f32, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
break;
CASE_VPERM(PERMILPD, r)
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
CASE_VPERM(PERMILPD, m)
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodePSHUFMask(getRegOperandVectorVT(MI, MVT::f64, 0),
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERM2F128rr:
case X86::VPERM2I128rr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VPERM2F128rm:
case X86::VPERM2I128rm:
// For instruction comments purpose, assume the 256-bit vector is v4i64.
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodeVPERM2X128Mask(MVT::v4i64,
MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMQYri:
case X86::VPERMPDYri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::VPERMQYmi:
case X86::VPERMPDYmi:
if (MI->getOperand(MI->getNumOperands() - 1).isImm())
DecodeVPERMMask(MI->getOperand(MI->getNumOperands() - 1).getImm(),
ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::MOVSDrr:
case X86::VMOVSDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::MOVSDrm:
case X86::VMOVSDrm:
DecodeScalarMoveMask(MVT::v2f64, nullptr == Src2Name, ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::MOVSSrr:
case X86::VMOVSSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::MOVSSrm:
case X86::VMOVSSrm:
DecodeScalarMoveMask(MVT::v4f32, nullptr == Src2Name, ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::MOVPQI2QIrr:
case X86::MOVZPQILo2PQIrr:
case X86::VMOVPQI2QIrr:
case X86::VMOVZPQILo2PQIrr:
case X86::VMOVZPQILo2PQIZrr:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::MOVQI2PQIrm:
case X86::MOVZQI2PQIrm:
case X86::MOVZPQILo2PQIrm:
case X86::VMOVQI2PQIrm:
case X86::VMOVZQI2PQIrm:
case X86::VMOVZPQILo2PQIrm:
case X86::VMOVZPQILo2PQIZrm:
DecodeZeroMoveLowMask(MVT::v2i64, ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::MOVDI2PDIrm:
case X86::VMOVDI2PDIrm:
DecodeZeroMoveLowMask(MVT::v4i32, ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
break;
case X86::EXTRQI:
if (MI->getOperand(2).isImm() &&
MI->getOperand(3).isImm())
DecodeEXTRQIMask(MI->getOperand(2).getImm(),
MI->getOperand(3).getImm(),
ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
Src1Name = getRegName(MI->getOperand(1).getReg());
break;
case X86::INSERTQI:
if (MI->getOperand(3).isImm() &&
MI->getOperand(4).isImm())
DecodeINSERTQIMask(MI->getOperand(3).getImm(),
MI->getOperand(4).getImm(),
ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
Src1Name = getRegName(MI->getOperand(1).getReg());
Src2Name = getRegName(MI->getOperand(2).getReg());
break;
case X86::PMOVZXBWrr:
case X86::PMOVZXBDrr:
case X86::PMOVZXBQrr:
case X86::PMOVZXWDrr:
case X86::PMOVZXWQrr:
case X86::PMOVZXDQrr:
case X86::VPMOVZXBWrr:
case X86::VPMOVZXBDrr:
case X86::VPMOVZXBQrr:
case X86::VPMOVZXWDrr:
case X86::VPMOVZXWQrr:
case X86::VPMOVZXDQrr:
case X86::VPMOVZXBWYrr:
case X86::VPMOVZXBDYrr:
case X86::VPMOVZXBQYrr:
case X86::VPMOVZXWDYrr:
case X86::VPMOVZXWQYrr:
case X86::VPMOVZXDQYrr:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PMOVZXBWrm:
case X86::PMOVZXBDrm:
case X86::PMOVZXBQrm:
case X86::PMOVZXWDrm:
case X86::PMOVZXWQrm:
case X86::PMOVZXDQrm:
case X86::VPMOVZXBWrm:
case X86::VPMOVZXBDrm:
case X86::VPMOVZXBQrm:
case X86::VPMOVZXWDrm:
case X86::VPMOVZXWQrm:
case X86::VPMOVZXDQrm:
case X86::VPMOVZXBWYrm:
case X86::VPMOVZXBDYrm:
case X86::VPMOVZXBQYrm:
case X86::VPMOVZXWDYrm:
case X86::VPMOVZXWQYrm:
case X86::VPMOVZXDQYrm: {
MVT SrcVT, DstVT;
getZeroExtensionTypes(MI, SrcVT, DstVT);
DecodeZeroExtendMask(SrcVT, DstVT, ShuffleMask);
DestName = getRegName(MI->getOperand(0).getReg());
} break;
}
// The only comments we decode are shuffles, so give up if we were unable to
// decode a shuffle mask.
if (ShuffleMask.empty())
return false;
if (!DestName) DestName = Src1Name;
OS << (DestName ? DestName : "mem") << " = ";
// If the two sources are the same, canonicalize the input elements to be
// from the first src so that we get larger element spans.
if (Src1Name == Src2Name) {
for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
if ((int)ShuffleMask[i] >= 0 && // Not sentinel.
ShuffleMask[i] >= (int)e) // From second mask.
ShuffleMask[i] -= e;
}
}
// The shuffle mask specifies which elements of the src1/src2 fill in the
// destination, with a few sentinel values. Loop through and print them
// out.
for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
if (i != 0)
OS << ',';
if (ShuffleMask[i] == SM_SentinelZero) {
OS << "zero";
continue;
}
// Otherwise, it must come from src1 or src2. Print the span of elements
// that comes from this src.
bool isSrc1 = ShuffleMask[i] < (int)ShuffleMask.size();
const char *SrcName = isSrc1 ? Src1Name : Src2Name;
OS << (SrcName ? SrcName : "mem") << '[';
bool IsFirst = true;
while (i != e && (int)ShuffleMask[i] != SM_SentinelZero &&
(ShuffleMask[i] < (int)ShuffleMask.size()) == isSrc1) {
if (!IsFirst)
OS << ',';
else
IsFirst = false;
if (ShuffleMask[i] == SM_SentinelUndef)
OS << "u";
else
OS << ShuffleMask[i] % ShuffleMask.size();
++i;
}
OS << ']';
--i; // For loop increments element #.
}
//MI->print(OS, 0);
OS << "\n";
// We successfully added a comment to this instruction.
return true;
}