blob: 17aaee03e4a87276d64afb7e5d8dfe2a53a65476 [file] [log] [blame]
//===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -*- C++ -*-=========//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines some loop transformation utilities.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
#define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
namespace llvm {
class AliasSet;
class AliasSetTracker;
class AssumptionCache;
class BasicBlock;
class DataLayout;
class DominatorTree;
class Loop;
class LoopInfo;
class Pass;
class PredIteratorCache;
class ScalarEvolution;
class TargetLibraryInfo;
/// \brief Captures loop safety information.
/// It keep information for loop & its header may throw exception.
struct LICMSafetyInfo {
bool MayThrow; // The current loop contains an instruction which
// may throw.
bool HeaderMayThrow; // Same as previous, but specific to loop header
LICMSafetyInfo() : MayThrow(false), HeaderMayThrow(false)
{}
};
/// The RecurrenceDescriptor is used to identify recurrences variables in a
/// loop. Reduction is a special case of recurrence that has uses of the
/// recurrence variable outside the loop. The method isReductionPHI identifies
/// reductions that are basic recurrences.
///
/// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
/// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
/// array[i]; } is a summation of array elements. Basic recurrences are a
/// special case of chains of recurrences (CR). See ScalarEvolution for CR
/// references.
/// This struct holds information about recurrence variables.
class RecurrenceDescriptor {
public:
/// This enum represents the kinds of recurrences that we support.
enum RecurrenceKind {
RK_NoRecurrence, ///< Not a recurrence.
RK_IntegerAdd, ///< Sum of integers.
RK_IntegerMult, ///< Product of integers.
RK_IntegerOr, ///< Bitwise or logical OR of numbers.
RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
RK_FloatAdd, ///< Sum of floats.
RK_FloatMult, ///< Product of floats.
RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
};
// This enum represents the kind of minmax recurrence.
enum MinMaxRecurrenceKind {
MRK_Invalid,
MRK_UIntMin,
MRK_UIntMax,
MRK_SIntMin,
MRK_SIntMax,
MRK_FloatMin,
MRK_FloatMax
};
RecurrenceDescriptor()
: StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoRecurrence),
MinMaxKind(MRK_Invalid), UnsafeAlgebraInst(nullptr),
RecurrenceType(nullptr), IsSigned(false) {}
RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
MinMaxRecurrenceKind MK, Instruction *UAI, Type *RT,
bool Signed, SmallPtrSetImpl<Instruction *> &CI)
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK),
UnsafeAlgebraInst(UAI), RecurrenceType(RT), IsSigned(Signed) {
CastInsts.insert(CI.begin(), CI.end());
}
/// This POD struct holds information about a potential recurrence operation.
class InstDesc {
public:
InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
: IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid),
UnsafeAlgebraInst(UAI) {}
InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr)
: IsRecurrence(true), PatternLastInst(I), MinMaxKind(K),
UnsafeAlgebraInst(UAI) {}
bool isRecurrence() { return IsRecurrence; }
bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
Instruction *getPatternInst() { return PatternLastInst; }
private:
// Is this instruction a recurrence candidate.
bool IsRecurrence;
// The last instruction in a min/max pattern (select of the select(icmp())
// pattern), or the current recurrence instruction otherwise.
Instruction *PatternLastInst;
// If this is a min/max pattern the comparison predicate.
MinMaxRecurrenceKind MinMaxKind;
// Recurrence has unsafe algebra.
Instruction *UnsafeAlgebraInst;
};
/// Returns a struct describing if the instruction 'I' can be a recurrence
/// variable of type 'Kind'. If the recurrence is a min/max pattern of
/// select(icmp()) this function advances the instruction pointer 'I' from the
/// compare instruction to the select instruction and stores this pointer in
/// 'PatternLastInst' member of the returned struct.
static InstDesc isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
InstDesc &Prev, bool HasFunNoNaNAttr);
/// Returns true if instruction I has multiple uses in Insts
static bool hasMultipleUsesOf(Instruction *I,
SmallPtrSetImpl<Instruction *> &Insts);
/// Returns true if all uses of the instruction I is within the Set.
static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
/// Returns a struct describing if the instruction if the instruction is a
/// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
/// or max(X, Y).
static InstDesc isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev);
/// Returns identity corresponding to the RecurrenceKind.
static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
/// Returns the opcode of binary operation corresponding to the
/// RecurrenceKind.
static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
/// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
static Value *createMinMaxOp(IRBuilder<> &Builder, MinMaxRecurrenceKind RK,
Value *Left, Value *Right);
/// Returns true if Phi is a reduction of type Kind and adds it to the
/// RecurrenceDescriptor.
static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
bool HasFunNoNaNAttr,
RecurrenceDescriptor &RedDes);
/// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor is
/// returned in RedDes.
static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
RecurrenceDescriptor &RedDes);
RecurrenceKind getRecurrenceKind() { return Kind; }
MinMaxRecurrenceKind getMinMaxRecurrenceKind() { return MinMaxKind; }
TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
Instruction *getLoopExitInstr() { return LoopExitInstr; }
/// Returns true if the recurrence has unsafe algebra which requires a relaxed
/// floating-point model.
bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
/// Returns first unsafe algebra instruction in the PHI node's use-chain.
Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
/// Returns true if the recurrence kind is an integer kind.
static bool isIntegerRecurrenceKind(RecurrenceKind Kind);
/// Returns true if the recurrence kind is a floating point kind.
static bool isFloatingPointRecurrenceKind(RecurrenceKind Kind);
/// Returns true if the recurrence kind is an arithmetic kind.
static bool isArithmeticRecurrenceKind(RecurrenceKind Kind);
/// Determines if Phi may have been type-promoted. If Phi has a single user
/// that ANDs the Phi with a type mask, return the user. RT is updated to
/// account for the narrower bit width represented by the mask, and the AND
/// instruction is added to CI.
static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
SmallPtrSetImpl<Instruction *> &Visited,
SmallPtrSetImpl<Instruction *> &CI);
/// Returns true if all the source operands of a recurrence are either
/// SExtInsts or ZExtInsts. This function is intended to be used with
/// lookThroughAnd to determine if the recurrence has been type-promoted. The
/// source operands are added to CI, and IsSigned is updated to indicate if
/// all source operands are SExtInsts.
static bool getSourceExtensionKind(Instruction *Start, Instruction *Exit,
Type *RT, bool &IsSigned,
SmallPtrSetImpl<Instruction *> &Visited,
SmallPtrSetImpl<Instruction *> &CI);
/// Returns the type of the recurrence. This type can be narrower than the
/// actual type of the Phi if the recurrence has been type-promoted.
Type *getRecurrenceType() { return RecurrenceType; }
/// Returns a reference to the instructions used for type-promoting the
/// recurrence.
SmallPtrSet<Instruction *, 8> &getCastInsts() { return CastInsts; }
/// Returns true if all source operands of the recurrence are SExtInsts.
bool isSigned() { return IsSigned; }
private:
// The starting value of the recurrence.
// It does not have to be zero!
TrackingVH<Value> StartValue;
// The instruction who's value is used outside the loop.
Instruction *LoopExitInstr;
// The kind of the recurrence.
RecurrenceKind Kind;
// If this a min/max recurrence the kind of recurrence.
MinMaxRecurrenceKind MinMaxKind;
// First occurance of unasfe algebra in the PHI's use-chain.
Instruction *UnsafeAlgebraInst;
// The type of the recurrence.
Type *RecurrenceType;
// True if all source operands of the recurrence are SExtInsts.
bool IsSigned;
// Instructions used for type-promoting the recurrence.
SmallPtrSet<Instruction *, 8> CastInsts;
};
/// A struct for saving information about induction variables.
class InductionDescriptor {
public:
/// This enum represents the kinds of inductions that we support.
enum InductionKind {
IK_NoInduction, ///< Not an induction variable.
IK_IntInduction, ///< Integer induction variable. Step = C.
IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem).
};
public:
/// Default constructor - creates an invalid induction.
InductionDescriptor()
: StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {}
/// Get the consecutive direction. Returns:
/// 0 - unknown or non-consecutive.
/// 1 - consecutive and increasing.
/// -1 - consecutive and decreasing.
int getConsecutiveDirection() const;
/// Compute the transformed value of Index at offset StartValue using step
/// StepValue.
/// For integer induction, returns StartValue + Index * StepValue.
/// For pointer induction, returns StartValue[Index * StepValue].
/// FIXME: The newly created binary instructions should contain nsw/nuw
/// flags, which can be found from the original scalar operations.
Value *transform(IRBuilder<> &B, Value *Index) const;
Value *getStartValue() const { return StartValue; }
InductionKind getKind() const { return IK; }
ConstantInt *getStepValue() const { return StepValue; }
static bool isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
InductionDescriptor &D);
private:
/// Private constructor - used by \c isInductionPHI.
InductionDescriptor(Value *Start, InductionKind K, ConstantInt *Step);
/// Start value.
TrackingVH<Value> StartValue;
/// Induction kind.
InductionKind IK;
/// Step value.
ConstantInt *StepValue;
};
BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
bool PreserveLCSSA);
/// \brief Simplify each loop in a loop nest recursively.
///
/// This takes a potentially un-simplified loop L (and its children) and turns
/// it into a simplified loop nest with preheaders and single backedges. It will
/// update \c AliasAnalysis and \c ScalarEvolution analyses if they're non-null.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
AssumptionCache *AC, bool PreserveLCSSA);
/// \brief Put loop into LCSSA form.
///
/// Looks at all instructions in the loop which have uses outside of the
/// current loop. For each, an LCSSA PHI node is inserted and the uses outside
/// the loop are rewritten to use this node.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution *SE);
/// \brief Put a loop nest into LCSSA form.
///
/// This recursively forms LCSSA for a loop nest.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution *SE);
/// \brief Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
/// uses before definitions, allowing us to sink a loop body in one pass without
/// iteration. Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree,
/// DataLayout, TargetLibraryInfo, Loop, AliasSet information for all
/// instructions of the loop and loop safety information as arguments.
/// It returns changed status.
bool sinkRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
TargetLibraryInfo *, Loop *, AliasSetTracker *,
LICMSafetyInfo *);
/// \brief Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
/// Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree, DataLayout,
/// TargetLibraryInfo, Loop, AliasSet information for all instructions of the
/// loop and loop safety information as arguments. It returns changed status.
bool hoistRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
TargetLibraryInfo *, Loop *, AliasSetTracker *,
LICMSafetyInfo *);
/// \brief Try to promote memory values to scalars by sinking stores out of
/// the loop and moving loads to before the loop. We do this by looping over
/// the stores in the loop, looking for stores to Must pointers which are
/// loop invariant. It takes AliasSet, Loop exit blocks vector, loop exit blocks
/// insertion point vector, PredIteratorCache, LoopInfo, DominatorTree, Loop,
/// AliasSet information for all instructions of the loop and loop safety
/// information as arguments. It returns changed status.
bool promoteLoopAccessesToScalars(AliasSet &, SmallVectorImpl<BasicBlock*> &,
SmallVectorImpl<Instruction*> &,
PredIteratorCache &, LoopInfo *,
DominatorTree *, Loop *, AliasSetTracker *,
LICMSafetyInfo *);
/// \brief Computes safety information for a loop
/// checks loop body & header for the possibility of may throw
/// exception, it takes LICMSafetyInfo and loop as argument.
/// Updates safety information in LICMSafetyInfo argument.
void computeLICMSafetyInfo(LICMSafetyInfo *, Loop *);
/// \brief Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);
}
#endif