blob: 0cebcf1c6b5ddb3542154a1fb623ee2cc9d32067 [file] [log] [blame]
//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the target machine instruction set to the code generator.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETINSTRINFO_H
#define LLVM_TARGET_TARGETINSTRINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineCombinerPattern.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Target/TargetRegisterInfo.h"
namespace llvm {
class InstrItineraryData;
class LiveVariables;
class MCAsmInfo;
class MachineMemOperand;
class MachineRegisterInfo;
class MDNode;
class MCInst;
struct MCSchedModel;
class MCSymbolRefExpr;
class SDNode;
class ScheduleHazardRecognizer;
class SelectionDAG;
class ScheduleDAG;
class TargetRegisterClass;
class TargetRegisterInfo;
class TargetSubtargetInfo;
class TargetSchedModel;
class DFAPacketizer;
template<class T> class SmallVectorImpl;
//---------------------------------------------------------------------------
///
/// TargetInstrInfo - Interface to description of machine instruction set
///
class TargetInstrInfo : public MCInstrInfo {
TargetInstrInfo(const TargetInstrInfo &) = delete;
void operator=(const TargetInstrInfo &) = delete;
public:
TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
unsigned CatchRetOpcode = ~0u)
: CallFrameSetupOpcode(CFSetupOpcode),
CallFrameDestroyOpcode(CFDestroyOpcode),
CatchRetOpcode(CatchRetOpcode) {}
virtual ~TargetInstrInfo();
static bool isGenericOpcode(unsigned Opc) {
return Opc <= TargetOpcode::GENERIC_OP_END;
}
/// Given a machine instruction descriptor, returns the register
/// class constraint for OpNum, or NULL.
const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
unsigned OpNum,
const TargetRegisterInfo *TRI,
const MachineFunction &MF) const;
/// Return true if the instruction is trivially rematerializable, meaning it
/// has no side effects and requires no operands that aren't always available.
/// This means the only allowed uses are constants and unallocatable physical
/// registers so that the instructions result is independent of the place
/// in the function.
bool isTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA = nullptr) const {
return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
(MI->getDesc().isRematerializable() &&
(isReallyTriviallyReMaterializable(MI, AA) ||
isReallyTriviallyReMaterializableGeneric(MI, AA)));
}
protected:
/// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
/// set, this hook lets the target specify whether the instruction is actually
/// trivially rematerializable, taking into consideration its operands. This
/// predicate must return false if the instruction has any side effects other
/// than producing a value, or if it requres any address registers that are
/// not always available.
/// Requirements must be check as stated in isTriviallyReMaterializable() .
virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA) const {
return false;
}
/// This method commutes the operands of the given machine instruction MI.
/// The operands to be commuted are specified by their indices OpIdx1 and
/// OpIdx2.
///
/// If a target has any instructions that are commutable but require
/// converting to different instructions or making non-trivial changes
/// to commute them, this method can be overloaded to do that.
/// The default implementation simply swaps the commutable operands.
///
/// If NewMI is false, MI is modified in place and returned; otherwise, a
/// new machine instruction is created and returned.
///
/// Do not call this method for a non-commutable instruction.
/// Even though the instruction is commutable, the method may still
/// fail to commute the operands, null pointer is returned in such cases.
virtual MachineInstr *commuteInstructionImpl(MachineInstr *MI,
bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const;
/// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
/// operand indices to (ResultIdx1, ResultIdx2).
/// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
/// predefined to some indices or be undefined (designated by the special
/// value 'CommuteAnyOperandIndex').
/// The predefined result indices cannot be re-defined.
/// The function returns true iff after the result pair redefinition
/// the fixed result pair is equal to or equivalent to the source pair of
/// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
/// the pairs (x,y) and (y,x) are equivalent.
static bool fixCommutedOpIndices(unsigned &ResultIdx1,
unsigned &ResultIdx2,
unsigned CommutableOpIdx1,
unsigned CommutableOpIdx2);
private:
/// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
/// set and the target hook isReallyTriviallyReMaterializable returns false,
/// this function does target-independent tests to determine if the
/// instruction is really trivially rematerializable.
bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
AliasAnalysis *AA) const;
public:
/// These methods return the opcode of the frame setup/destroy instructions
/// if they exist (-1 otherwise). Some targets use pseudo instructions in
/// order to abstract away the difference between operating with a frame
/// pointer and operating without, through the use of these two instructions.
///
unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
/// Returns the actual stack pointer adjustment made by an instruction
/// as part of a call sequence. By default, only call frame setup/destroy
/// instructions adjust the stack, but targets may want to override this
/// to enable more fine-grained adjustment, or adjust by a different value.
virtual int getSPAdjust(const MachineInstr *MI) const;
/// Return true if the instruction is a "coalescable" extension instruction.
/// That is, it's like a copy where it's legal for the source to overlap the
/// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
/// expected the pre-extension value is available as a subreg of the result
/// register. This also returns the sub-register index in SubIdx.
virtual bool isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
return false;
}
/// If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
return 0;
}
/// Check for post-frame ptr elimination stack locations as well.
/// This uses a heuristic so it isn't reliable for correctness.
virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
return 0;
}
/// If the specified machine instruction has a load from a stack slot,
/// return true along with the FrameIndex of the loaded stack slot and the
/// machine mem operand containing the reference.
/// If not, return false. Unlike isLoadFromStackSlot, this returns true for
/// any instructions that loads from the stack. This is just a hint, as some
/// cases may be missed.
virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const;
/// If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
return 0;
}
/// Check for post-frame ptr elimination stack locations as well.
/// This uses a heuristic, so it isn't reliable for correctness.
virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
return 0;
}
/// If the specified machine instruction has a store to a stack slot,
/// return true along with the FrameIndex of the loaded stack slot and the
/// machine mem operand containing the reference.
/// If not, return false. Unlike isStoreToStackSlot,
/// this returns true for any instructions that stores to the
/// stack. This is just a hint, as some cases may be missed.
virtual bool hasStoreToStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const;
/// Return true if the specified machine instruction
/// is a copy of one stack slot to another and has no other effect.
/// Provide the identity of the two frame indices.
virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
int &SrcFrameIndex) const {
return false;
}
/// Compute the size in bytes and offset within a stack slot of a spilled
/// register or subregister.
///
/// \param [out] Size in bytes of the spilled value.
/// \param [out] Offset in bytes within the stack slot.
/// \returns true if both Size and Offset are successfully computed.
///
/// Not all subregisters have computable spill slots. For example,
/// subregisters registers may not be byte-sized, and a pair of discontiguous
/// subregisters has no single offset.
///
/// Targets with nontrivial bigendian implementations may need to override
/// this, particularly to support spilled vector registers.
virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
unsigned &Size, unsigned &Offset,
const MachineFunction &MF) const;
/// Return true if the instruction is as cheap as a move instruction.
///
/// Targets for different archs need to override this, and different
/// micro-architectures can also be finely tuned inside.
virtual bool isAsCheapAsAMove(const MachineInstr *MI) const {
return MI->isAsCheapAsAMove();
}
/// Re-issue the specified 'original' instruction at the
/// specific location targeting a new destination register.
/// The register in Orig->getOperand(0).getReg() will be substituted by
/// DestReg:SubIdx. Any existing subreg index is preserved or composed with
/// SubIdx.
virtual void reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SubIdx,
const MachineInstr *Orig,
const TargetRegisterInfo &TRI) const;
/// Create a duplicate of the Orig instruction in MF. This is like
/// MachineFunction::CloneMachineInstr(), but the target may update operands
/// that are required to be unique.
///
/// The instruction must be duplicable as indicated by isNotDuplicable().
virtual MachineInstr *duplicate(MachineInstr *Orig,
MachineFunction &MF) const;
/// This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into one or more true
/// three-address instructions on demand. This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the last new instruction.
///
virtual MachineInstr *
convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
return nullptr;
}
// This constant can be used as an input value of operand index passed to
// the method findCommutedOpIndices() to tell the method that the
// corresponding operand index is not pre-defined and that the method
// can pick any commutable operand.
static const unsigned CommuteAnyOperandIndex = ~0U;
/// This method commutes the operands of the given machine instruction MI.
///
/// The operands to be commuted are specified by their indices OpIdx1 and
/// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
/// 'CommuteAnyOperandIndex', which means that the method is free to choose
/// any arbitrarily chosen commutable operand. If both arguments are set to
/// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
/// operands; then commutes them if such operands could be found.
///
/// If NewMI is false, MI is modified in place and returned; otherwise, a
/// new machine instruction is created and returned.
///
/// Do not call this method for a non-commutable instruction or
/// for non-commuable operands.
/// Even though the instruction is commutable, the method may still
/// fail to commute the operands, null pointer is returned in such cases.
MachineInstr *
commuteInstruction(MachineInstr *MI,
bool NewMI = false,
unsigned OpIdx1 = CommuteAnyOperandIndex,
unsigned OpIdx2 = CommuteAnyOperandIndex) const;
/// Returns true iff the routine could find two commutable operands in the
/// given machine instruction.
/// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
/// If any of the INPUT values is set to the special value
/// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
/// operand, then returns its index in the corresponding argument.
/// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
/// looks for 2 commutable operands.
/// If INPUT values refer to some operands of MI, then the method simply
/// returns true if the corresponding operands are commutable and returns
/// false otherwise.
///
/// For example, calling this method this way:
/// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
/// findCommutedOpIndices(MI, Op1, Op2);
/// can be interpreted as a query asking to find an operand that would be
/// commutable with the operand#1.
virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const;
/// A pair composed of a register and a sub-register index.
/// Used to give some type checking when modeling Reg:SubReg.
struct RegSubRegPair {
unsigned Reg;
unsigned SubReg;
RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
: Reg(Reg), SubReg(SubReg) {}
};
/// A pair composed of a pair of a register and a sub-register index,
/// and another sub-register index.
/// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
struct RegSubRegPairAndIdx : RegSubRegPair {
unsigned SubIdx;
RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
unsigned SubIdx = 0)
: RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
};
/// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
/// and \p DefIdx.
/// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
/// the list is modeled as <Reg:SubReg, SubIdx>.
/// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
/// two elements:
/// - vreg1:sub1, sub0
/// - vreg2<:0>, sub1
///
/// \returns true if it is possible to build such an input sequence
/// with the pair \p MI, \p DefIdx. False otherwise.
///
/// \pre MI.isRegSequence() or MI.isRegSequenceLike().
///
/// \note The generic implementation does not provide any support for
/// MI.isRegSequenceLike(). In other words, one has to override
/// getRegSequenceLikeInputs for target specific instructions.
bool
getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
/// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
/// and \p DefIdx.
/// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
/// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
/// - vreg1:sub1, sub0
///
/// \returns true if it is possible to build such an input sequence
/// with the pair \p MI, \p DefIdx. False otherwise.
///
/// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
///
/// \note The generic implementation does not provide any support for
/// MI.isExtractSubregLike(). In other words, one has to override
/// getExtractSubregLikeInputs for target specific instructions.
bool
getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
RegSubRegPairAndIdx &InputReg) const;
/// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
/// and \p DefIdx.
/// \p [out] BaseReg and \p [out] InsertedReg contain
/// the equivalent inputs of INSERT_SUBREG.
/// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
/// - BaseReg: vreg0:sub0
/// - InsertedReg: vreg1:sub1, sub3
///
/// \returns true if it is possible to build such an input sequence
/// with the pair \p MI, \p DefIdx. False otherwise.
///
/// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
///
/// \note The generic implementation does not provide any support for
/// MI.isInsertSubregLike(). In other words, one has to override
/// getInsertSubregLikeInputs for target specific instructions.
bool
getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
RegSubRegPair &BaseReg,
RegSubRegPairAndIdx &InsertedReg) const;
/// Return true if two machine instructions would produce identical values.
/// By default, this is only true when the two instructions
/// are deemed identical except for defs. If this function is called when the
/// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
/// aggressive checks.
virtual bool produceSameValue(const MachineInstr *MI0,
const MachineInstr *MI1,
const MachineRegisterInfo *MRI = nullptr) const;
/// Analyze the branching code at the end of MBB, returning
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
/// implemented for a target). Upon success, this returns false and returns
/// with the following information in various cases:
///
/// 1. If this block ends with no branches (it just falls through to its succ)
/// just return false, leaving TBB/FBB null.
/// 2. If this block ends with only an unconditional branch, it sets TBB to be
/// the destination block.
/// 3. If this block ends with a conditional branch and it falls through to a
/// successor block, it sets TBB to be the branch destination block and a
/// list of operands that evaluate the condition. These operands can be
/// passed to other TargetInstrInfo methods to create new branches.
/// 4. If this block ends with a conditional branch followed by an
/// unconditional branch, it returns the 'true' destination in TBB, the
/// 'false' destination in FBB, and a list of operands that evaluate the
/// condition. These operands can be passed to other TargetInstrInfo
/// methods to create new branches.
///
/// Note that RemoveBranch and InsertBranch must be implemented to support
/// cases where this method returns success.
///
/// If AllowModify is true, then this routine is allowed to modify the basic
/// block (e.g. delete instructions after the unconditional branch).
///
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify = false) const {
return true;
}
/// Represents a predicate at the MachineFunction level. The control flow a
/// MachineBranchPredicate represents is:
///
/// Reg <def>= LHS `Predicate` RHS == ConditionDef
/// if Reg then goto TrueDest else goto FalseDest
///
struct MachineBranchPredicate {
enum ComparePredicate {
PRED_EQ, // True if two values are equal
PRED_NE, // True if two values are not equal
PRED_INVALID // Sentinel value
};
ComparePredicate Predicate;
MachineOperand LHS;
MachineOperand RHS;
MachineBasicBlock *TrueDest;
MachineBasicBlock *FalseDest;
MachineInstr *ConditionDef;
/// SingleUseCondition is true if ConditionDef is dead except for the
/// branch(es) at the end of the basic block.
///
bool SingleUseCondition;
explicit MachineBranchPredicate()
: Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)),
RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr),
FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) {
}
};
/// Analyze the branching code at the end of MBB and parse it into the
/// MachineBranchPredicate structure if possible. Returns false on success
/// and true on failure.
///
/// If AllowModify is true, then this routine is allowed to modify the basic
/// block (e.g. delete instructions after the unconditional branch).
///
virtual bool AnalyzeBranchPredicate(MachineBasicBlock &MBB,
MachineBranchPredicate &MBP,
bool AllowModify = false) const {
return true;
}
/// Remove the branching code at the end of the specific MBB.
/// This is only invoked in cases where AnalyzeBranch returns success. It
/// returns the number of instructions that were removed.
virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
}
/// Insert branch code into the end of the specified MachineBasicBlock.
/// The operands to this method are the same as those
/// returned by AnalyzeBranch. This is only invoked in cases where
/// AnalyzeBranch returns success. It returns the number of instructions
/// inserted.
///
/// It is also invoked by tail merging to add unconditional branches in
/// cases where AnalyzeBranch doesn't apply because there was no original
/// branch to analyze. At least this much must be implemented, else tail
/// merging needs to be disabled.
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
DebugLoc DL) const {
llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
}
/// Delete the instruction OldInst and everything after it, replacing it with
/// an unconditional branch to NewDest. This is used by the tail merging pass.
virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
MachineBasicBlock *NewDest) const;
/// Get an instruction that performs an unconditional branch to the given
/// symbol.
virtual void
getUnconditionalBranch(MCInst &MI,
const MCSymbolRefExpr *BranchTarget) const {
llvm_unreachable("Target didn't implement "
"TargetInstrInfo::getUnconditionalBranch!");
}
/// Get a machine trap instruction.
virtual void getTrap(MCInst &MI) const {
llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
}
/// Get a number of bytes that suffices to hold
/// either the instruction returned by getUnconditionalBranch or the
/// instruction returned by getTrap. This only makes sense because
/// getUnconditionalBranch returns a single, specific instruction. This
/// information is needed by the jumptable construction code, since it must
/// decide how many bytes to use for a jumptable entry so it can generate the
/// right mask.
///
/// Note that if the jumptable instruction requires alignment, then that
/// alignment should be factored into this required bound so that the
/// resulting bound gives the right alignment for the instruction.
virtual unsigned getJumpInstrTableEntryBound() const {
// This method gets called by LLVMTargetMachine always, so it can't fail
// just because there happens to be no implementation for this target.
// Any code that tries to use a jumptable annotation without defining
// getUnconditionalBranch on the appropriate Target will fail anyway, and
// the value returned here won't matter in that case.
return 0;
}
/// Return true if it's legal to split the given basic
/// block at the specified instruction (i.e. instruction would be the start
/// of a new basic block).
virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) const {
return true;
}
/// Return true if it's profitable to predicate
/// instructions with accumulated instruction latency of "NumCycles"
/// of the specified basic block, where the probability of the instructions
/// being executed is given by Probability, and Confidence is a measure
/// of our confidence that it will be properly predicted.
virtual
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
unsigned ExtraPredCycles,
BranchProbability Probability) const {
return false;
}
/// Second variant of isProfitableToIfCvt. This one
/// checks for the case where two basic blocks from true and false path
/// of a if-then-else (diamond) are predicated on mutally exclusive
/// predicates, where the probability of the true path being taken is given
/// by Probability, and Confidence is a measure of our confidence that it
/// will be properly predicted.
virtual bool
isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles, unsigned ExtraTCycles,
MachineBasicBlock &FMBB,
unsigned NumFCycles, unsigned ExtraFCycles,
BranchProbability Probability) const {
return false;
}
/// Return true if it's profitable for if-converter to duplicate instructions
/// of specified accumulated instruction latencies in the specified MBB to
/// enable if-conversion.
/// The probability of the instructions being executed is given by
/// Probability, and Confidence is a measure of our confidence that it
/// will be properly predicted.
virtual bool
isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
BranchProbability Probability) const {
return false;
}
/// Return true if it's profitable to unpredicate
/// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
/// exclusive predicates.
/// e.g.
/// subeq r0, r1, #1
/// addne r0, r1, #1
/// =>
/// sub r0, r1, #1
/// addne r0, r1, #1
///
/// This may be profitable is conditional instructions are always executed.
virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
MachineBasicBlock &FMBB) const {
return false;
}
/// Return true if it is possible to insert a select
/// instruction that chooses between TrueReg and FalseReg based on the
/// condition code in Cond.
///
/// When successful, also return the latency in cycles from TrueReg,
/// FalseReg, and Cond to the destination register. In most cases, a select
/// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
///
/// Some x86 implementations have 2-cycle cmov instructions.
///
/// @param MBB Block where select instruction would be inserted.
/// @param Cond Condition returned by AnalyzeBranch.
/// @param TrueReg Virtual register to select when Cond is true.
/// @param FalseReg Virtual register to select when Cond is false.
/// @param CondCycles Latency from Cond+Branch to select output.
/// @param TrueCycles Latency from TrueReg to select output.
/// @param FalseCycles Latency from FalseReg to select output.
virtual bool canInsertSelect(const MachineBasicBlock &MBB,
ArrayRef<MachineOperand> Cond,
unsigned TrueReg, unsigned FalseReg,
int &CondCycles,
int &TrueCycles, int &FalseCycles) const {
return false;
}
/// Insert a select instruction into MBB before I that will copy TrueReg to
/// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
///
/// This function can only be called after canInsertSelect() returned true.
/// The condition in Cond comes from AnalyzeBranch, and it can be assumed
/// that the same flags or registers required by Cond are available at the
/// insertion point.
///
/// @param MBB Block where select instruction should be inserted.
/// @param I Insertion point.
/// @param DL Source location for debugging.
/// @param DstReg Virtual register to be defined by select instruction.
/// @param Cond Condition as computed by AnalyzeBranch.
/// @param TrueReg Virtual register to copy when Cond is true.
/// @param FalseReg Virtual register to copy when Cons is false.
virtual void insertSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DstReg, ArrayRef<MachineOperand> Cond,
unsigned TrueReg, unsigned FalseReg) const {
llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
}
/// Analyze the given select instruction, returning true if
/// it cannot be understood. It is assumed that MI->isSelect() is true.
///
/// When successful, return the controlling condition and the operands that
/// determine the true and false result values.
///
/// Result = SELECT Cond, TrueOp, FalseOp
///
/// Some targets can optimize select instructions, for example by predicating
/// the instruction defining one of the operands. Such targets should set
/// Optimizable.
///
/// @param MI Select instruction to analyze.
/// @param Cond Condition controlling the select.
/// @param TrueOp Operand number of the value selected when Cond is true.
/// @param FalseOp Operand number of the value selected when Cond is false.
/// @param Optimizable Returned as true if MI is optimizable.
/// @returns False on success.
virtual bool analyzeSelect(const MachineInstr *MI,
SmallVectorImpl<MachineOperand> &Cond,
unsigned &TrueOp, unsigned &FalseOp,
bool &Optimizable) const {
assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
return true;
}
/// Given a select instruction that was understood by
/// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
/// merging it with one of its operands. Returns NULL on failure.
///
/// When successful, returns the new select instruction. The client is
/// responsible for deleting MI.
///
/// If both sides of the select can be optimized, PreferFalse is used to pick
/// a side.
///
/// @param MI Optimizable select instruction.
/// @param NewMIs Set that record all MIs in the basic block up to \p
/// MI. Has to be updated with any newly created MI or deleted ones.
/// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
/// @returns Optimized instruction or NULL.
virtual MachineInstr *optimizeSelect(MachineInstr *MI,
SmallPtrSetImpl<MachineInstr *> &NewMIs,
bool PreferFalse = false) const {
// This function must be implemented if Optimizable is ever set.
llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
}
/// Emit instructions to copy a pair of physical registers.
///
/// This function should support copies within any legal register class as
/// well as any cross-class copies created during instruction selection.
///
/// The source and destination registers may overlap, which may require a
/// careful implementation when multiple copy instructions are required for
/// large registers. See for example the ARM target.
virtual void copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
}
/// Store the specified register of the given register class to the specified
/// stack frame index. The store instruction is to be added to the given
/// machine basic block before the specified machine instruction. If isKill
/// is true, the register operand is the last use and must be marked kill.
virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
llvm_unreachable("Target didn't implement "
"TargetInstrInfo::storeRegToStackSlot!");
}
/// Load the specified register of the given register class from the specified
/// stack frame index. The load instruction is to be added to the given
/// machine basic block before the specified machine instruction.
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
llvm_unreachable("Target didn't implement "
"TargetInstrInfo::loadRegFromStackSlot!");
}
/// This function is called for all pseudo instructions
/// that remain after register allocation. Many pseudo instructions are
/// created to help register allocation. This is the place to convert them
/// into real instructions. The target can edit MI in place, or it can insert
/// new instructions and erase MI. The function should return true if
/// anything was changed.
virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
return false;
}
/// Attempt to fold a load or store of the specified stack
/// slot into the specified machine instruction for the specified operand(s).
/// If this is possible, a new instruction is returned with the specified
/// operand folded, otherwise NULL is returned.
/// The new instruction is inserted before MI, and the client is responsible
/// for removing the old instruction.
MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
ArrayRef<unsigned> Ops, int FrameIndex) const;
/// Same as the previous version except it allows folding of any load and
/// store from / to any address, not just from a specific stack slot.
MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
ArrayRef<unsigned> Ops,
MachineInstr *LoadMI) const;
/// Return true when there is potentially a faster code sequence
/// for an instruction chain ending in \p Root. All potential patterns are
/// returned in the \p Pattern vector. Pattern should be sorted in priority
/// order since the pattern evaluator stops checking as soon as it finds a
/// faster sequence.
/// \param Root - Instruction that could be combined with one of its operands
/// \param Patterns - Vector of possible combination patterns
virtual bool getMachineCombinerPatterns(
MachineInstr &Root,
SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
/// Return true if the input \P Inst is part of a chain of dependent ops
/// that are suitable for reassociation, otherwise return false.
/// If the instruction's operands must be commuted to have a previous
/// instruction of the same type define the first source operand, \P Commuted
/// will be set to true.
bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
/// Return true when \P Inst is both associative and commutative.
virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
return false;
}
/// Return true when \P Inst has reassociable operands in the same \P MBB.
virtual bool hasReassociableOperands(const MachineInstr &Inst,
const MachineBasicBlock *MBB) const;
/// Return true when \P Inst has reassociable sibling.
bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
/// When getMachineCombinerPatterns() finds patterns, this function generates
/// the instructions that could replace the original code sequence. The client
/// has to decide whether the actual replacement is beneficial or not.
/// \param Root - Instruction that could be combined with one of its operands
/// \param Pattern - Combination pattern for Root
/// \param InsInstrs - Vector of new instructions that implement P
/// \param DelInstrs - Old instructions, including Root, that could be
/// replaced by InsInstr
/// \param InstrIdxForVirtReg - map of virtual register to instruction in
/// InsInstr that defines it
virtual void genAlternativeCodeSequence(
MachineInstr &Root, MachineCombinerPattern Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
/// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
/// reduce critical path length.
void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
MachineCombinerPattern Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
/// This is an architecture-specific helper function of reassociateOps.
/// Set special operand attributes for new instructions after reassociation.
virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
MachineInstr &NewMI1,
MachineInstr &NewMI2) const {
return;
};
/// Return true when a target supports MachineCombiner.
virtual bool useMachineCombiner() const { return false; }
protected:
/// Target-dependent implementation for foldMemoryOperand.
/// Target-independent code in foldMemoryOperand will
/// take care of adding a MachineMemOperand to the newly created instruction.
/// The instruction and any auxiliary instructions necessary will be inserted
/// at InsertPt.
virtual MachineInstr *foldMemoryOperandImpl(
MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
return nullptr;
}
/// Target-dependent implementation for foldMemoryOperand.
/// Target-independent code in foldMemoryOperand will
/// take care of adding a MachineMemOperand to the newly created instruction.
/// The instruction and any auxiliary instructions necessary will be inserted
/// at InsertPt.
virtual MachineInstr *foldMemoryOperandImpl(
MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
return nullptr;
}
/// \brief Target-dependent implementation of getRegSequenceInputs.
///
/// \returns true if it is possible to build the equivalent
/// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
///
/// \pre MI.isRegSequenceLike().
///
/// \see TargetInstrInfo::getRegSequenceInputs.
virtual bool getRegSequenceLikeInputs(
const MachineInstr &MI, unsigned DefIdx,
SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
return false;
}
/// \brief Target-dependent implementation of getExtractSubregInputs.
///
/// \returns true if it is possible to build the equivalent
/// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
///
/// \pre MI.isExtractSubregLike().
///
/// \see TargetInstrInfo::getExtractSubregInputs.
virtual bool getExtractSubregLikeInputs(
const MachineInstr &MI, unsigned DefIdx,
RegSubRegPairAndIdx &InputReg) const {
return false;
}
/// \brief Target-dependent implementation of getInsertSubregInputs.
///
/// \returns true if it is possible to build the equivalent
/// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
///
/// \pre MI.isInsertSubregLike().
///
/// \see TargetInstrInfo::getInsertSubregInputs.
virtual bool
getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
RegSubRegPair &BaseReg,
RegSubRegPairAndIdx &InsertedReg) const {
return false;
}
public:
/// unfoldMemoryOperand - Separate a single instruction which folded a load or
/// a store or a load and a store into two or more instruction. If this is
/// possible, returns true as well as the new instructions by reference.
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const{
return false;
}
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
return false;
}
/// Returns the opcode of the would be new
/// instruction after load / store are unfolded from an instruction of the
/// specified opcode. It returns zero if the specified unfolding is not
/// possible. If LoadRegIndex is non-null, it is filled in with the operand
/// index of the operand which will hold the register holding the loaded
/// value.
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex = nullptr) const {
return 0;
}
/// This is used by the pre-regalloc scheduler to determine if two loads are
/// loading from the same base address. It should only return true if the base
/// pointers are the same and the only differences between the two addresses
/// are the offset. It also returns the offsets by reference.
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
int64_t &Offset1, int64_t &Offset2) const {
return false;
}
/// This is a used by the pre-regalloc scheduler to determine (in conjunction
/// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
/// On some targets if two loads are loading from
/// addresses in the same cache line, it's better if they are scheduled
/// together. This function takes two integers that represent the load offsets
/// from the common base address. It returns true if it decides it's desirable
/// to schedule the two loads together. "NumLoads" is the number of loads that
/// have already been scheduled after Load1.
virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const {
return false;
}
/// Get the base register and byte offset of an instruction that reads/writes
/// memory.
virtual bool getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg,
unsigned &Offset,
const TargetRegisterInfo *TRI) const {
return false;
}
virtual bool enableClusterLoads() const { return false; }
virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
MachineInstr *SecondLdSt,
unsigned NumLoads) const {
return false;
}
/// Can this target fuse the given instructions if they are scheduled
/// adjacent.
virtual bool shouldScheduleAdjacent(MachineInstr* First,
MachineInstr *Second) const {
return false;
}
/// Reverses the branch condition of the specified condition list,
/// returning false on success and true if it cannot be reversed.
virtual
bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
return true;
}
/// Insert a noop into the instruction stream at the specified point.
virtual void insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const;
/// Return the noop instruction to use for a noop.
virtual void getNoopForMachoTarget(MCInst &NopInst) const;
/// Returns true if the instruction is already predicated.
virtual bool isPredicated(const MachineInstr *MI) const {
return false;
}
/// Returns true if the instruction is a
/// terminator instruction that has not been predicated.
virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
/// Convert the instruction into a predicated instruction.
/// It returns true if the operation was successful.
virtual
bool PredicateInstruction(MachineInstr *MI,
ArrayRef<MachineOperand> Pred) const;
/// Returns true if the first specified predicate
/// subsumes the second, e.g. GE subsumes GT.
virtual
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const {
return false;
}
/// If the specified instruction defines any predicate
/// or condition code register(s) used for predication, returns true as well
/// as the definition predicate(s) by reference.
virtual bool DefinesPredicate(MachineInstr *MI,
std::vector<MachineOperand> &Pred) const {
return false;
}
/// Return true if the specified instruction can be predicated.
/// By default, this returns true for every instruction with a
/// PredicateOperand.
virtual bool isPredicable(MachineInstr *MI) const {
return MI->getDesc().isPredicable();
}
/// Return true if it's safe to move a machine
/// instruction that defines the specified register class.
virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
return true;
}
/// Test if the given instruction should be considered a scheduling boundary.
/// This primarily includes labels and terminators.
virtual bool isSchedulingBoundary(const MachineInstr *MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const;
/// Measure the specified inline asm to determine an approximation of its
/// length.
virtual unsigned getInlineAsmLength(const char *Str,
const MCAsmInfo &MAI) const;
/// Allocate and return a hazard recognizer to use for this target when
/// scheduling the machine instructions before register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
const ScheduleDAG *DAG) const;
/// Allocate and return a hazard recognizer to use for this target when
/// scheduling the machine instructions before register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetMIHazardRecognizer(const InstrItineraryData*,
const ScheduleDAG *DAG) const;
/// Allocate and return a hazard recognizer to use for this target when
/// scheduling the machine instructions after register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
const ScheduleDAG *DAG) const;
/// Provide a global flag for disabling the PreRA hazard recognizer that
/// targets may choose to honor.
bool usePreRAHazardRecognizer() const;
/// For a comparison instruction, return the source registers
/// in SrcReg and SrcReg2 if having two register operands, and the value it
/// compares against in CmpValue. Return true if the comparison instruction
/// can be analyzed.
virtual bool analyzeCompare(const MachineInstr *MI,
unsigned &SrcReg, unsigned &SrcReg2,
int &Mask, int &Value) const {
return false;
}
/// See if the comparison instruction can be converted
/// into something more efficient. E.g., on ARM most instructions can set the
/// flags register, obviating the need for a separate CMP.
virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
unsigned SrcReg, unsigned SrcReg2,
int Mask, int Value,
const MachineRegisterInfo *MRI) const {
return false;
}
virtual bool optimizeCondBranch(MachineInstr *MI) const { return false; }
/// Try to remove the load by folding it to a register operand at the use.
/// We fold the load instructions if and only if the
/// def and use are in the same BB. We only look at one load and see
/// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
/// defined by the load we are trying to fold. DefMI returns the machine
/// instruction that defines FoldAsLoadDefReg, and the function returns
/// the machine instruction generated due to folding.
virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
const MachineRegisterInfo *MRI,
unsigned &FoldAsLoadDefReg,
MachineInstr *&DefMI) const {
return nullptr;
}
/// 'Reg' is known to be defined by a move immediate instruction,
/// try to fold the immediate into the use instruction.
/// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
/// then the caller may assume that DefMI has been erased from its parent
/// block. The caller may assume that it will not be erased by this
/// function otherwise.
virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
unsigned Reg, MachineRegisterInfo *MRI) const {
return false;
}
/// Return the number of u-operations the given machine
/// instruction will be decoded to on the target cpu. The itinerary's
/// IssueWidth is the number of microops that can be dispatched each
/// cycle. An instruction with zero microops takes no dispatch resources.
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
const MachineInstr *MI) const;
/// Return true for pseudo instructions that don't consume any
/// machine resources in their current form. These are common cases that the
/// scheduler should consider free, rather than conservatively handling them
/// as instructions with no itinerary.
bool isZeroCost(unsigned Opcode) const {
return Opcode <= TargetOpcode::COPY;
}
virtual int getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const;
/// Compute and return the use operand latency of a given pair of def and use.
/// In most cases, the static scheduling itinerary was enough to determine the
/// operand latency. But it may not be possible for instructions with variable
/// number of defs / uses.
///
/// This is a raw interface to the itinerary that may be directly overridden
/// by a target. Use computeOperandLatency to get the best estimate of
/// latency.
virtual int getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI,
unsigned UseIdx) const;
/// Compute and return the latency of the given data
/// dependent def and use when the operand indices are already known.
unsigned computeOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx)
const;
/// Compute the instruction latency of a given instruction.
/// If the instruction has higher cost when predicated, it's returned via
/// PredCost.
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost = nullptr) const;
virtual unsigned getPredicationCost(const MachineInstr *MI) const;
virtual int getInstrLatency(const InstrItineraryData *ItinData,
SDNode *Node) const;
/// Return the default expected latency for a def based on it's opcode.
unsigned defaultDefLatency(const MCSchedModel &SchedModel,
const MachineInstr *DefMI) const;
int computeDefOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI) const;
/// Return true if this opcode has high latency to its result.
virtual bool isHighLatencyDef(int opc) const { return false; }
/// Compute operand latency between a def of 'Reg'
/// and a use in the current loop. Return true if the target considered
/// it 'high'. This is used by optimization passes such as machine LICM to
/// determine whether it makes sense to hoist an instruction out even in a
/// high register pressure situation.
virtual
bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
const MachineRegisterInfo *MRI,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const {
return false;
}
/// Compute operand latency of a def of 'Reg'. Return true
/// if the target considered it 'low'.
virtual
bool hasLowDefLatency(const TargetSchedModel &SchedModel,
const MachineInstr *DefMI, unsigned DefIdx) const;
/// Perform target-specific instruction verification.
virtual
bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
return true;
}
/// Return the current execution domain and bit mask of
/// possible domains for instruction.
///
/// Some micro-architectures have multiple execution domains, and multiple
/// opcodes that perform the same operation in different domains. For
/// example, the x86 architecture provides the por, orps, and orpd
/// instructions that all do the same thing. There is a latency penalty if a
/// register is written in one domain and read in another.
///
/// This function returns a pair (domain, mask) containing the execution
/// domain of MI, and a bit mask of possible domains. The setExecutionDomain
/// function can be used to change the opcode to one of the domains in the
/// bit mask. Instructions whose execution domain can't be changed should
/// return a 0 mask.
///
/// The execution domain numbers don't have any special meaning except domain
/// 0 is used for instructions that are not associated with any interesting
/// execution domain.
///
virtual std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr *MI) const {
return std::make_pair(0, 0);
}
/// Change the opcode of MI to execute in Domain.
///
/// The bit (1 << Domain) must be set in the mask returned from
/// getExecutionDomain(MI).
virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
/// Returns the preferred minimum clearance
/// before an instruction with an unwanted partial register update.
///
/// Some instructions only write part of a register, and implicitly need to
/// read the other parts of the register. This may cause unwanted stalls
/// preventing otherwise unrelated instructions from executing in parallel in
/// an out-of-order CPU.
///
/// For example, the x86 instruction cvtsi2ss writes its result to bits
/// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
/// the instruction needs to wait for the old value of the register to become
/// available:
///
/// addps %xmm1, %xmm0
/// movaps %xmm0, (%rax)
/// cvtsi2ss %rbx, %xmm0
///
/// In the code above, the cvtsi2ss instruction needs to wait for the addps
/// instruction before it can issue, even though the high bits of %xmm0
/// probably aren't needed.
///
/// This hook returns the preferred clearance before MI, measured in
/// instructions. Other defs of MI's operand OpNum are avoided in the last N
/// instructions before MI. It should only return a positive value for
/// unwanted dependencies. If the old bits of the defined register have
/// useful values, or if MI is determined to otherwise read the dependency,
/// the hook should return 0.
///
/// The unwanted dependency may be handled by:
///
/// 1. Allocating the same register for an MI def and use. That makes the
/// unwanted dependency identical to a required dependency.
///
/// 2. Allocating a register for the def that has no defs in the previous N
/// instructions.
///
/// 3. Calling breakPartialRegDependency() with the same arguments. This
/// allows the target to insert a dependency breaking instruction.
///
virtual unsigned
getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
const TargetRegisterInfo *TRI) const {
// The default implementation returns 0 for no partial register dependency.
return 0;
}
/// \brief Return the minimum clearance before an instruction that reads an
/// unused register.
///
/// For example, AVX instructions may copy part of a register operand into
/// the unused high bits of the destination register.
///
/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
///
/// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
/// false dependence on any previous write to %xmm0.
///
/// This hook works similarly to getPartialRegUpdateClearance, except that it
/// does not take an operand index. Instead sets \p OpNum to the index of the
/// unused register.
virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
const TargetRegisterInfo *TRI) const {
// The default implementation returns 0 for no undef register dependency.
return 0;
}
/// Insert a dependency-breaking instruction
/// before MI to eliminate an unwanted dependency on OpNum.
///
/// If it wasn't possible to avoid a def in the last N instructions before MI
/// (see getPartialRegUpdateClearance), this hook will be called to break the
/// unwanted dependency.
///
/// On x86, an xorps instruction can be used as a dependency breaker:
///
/// addps %xmm1, %xmm0
/// movaps %xmm0, (%rax)
/// xorps %xmm0, %xmm0
/// cvtsi2ss %rbx, %xmm0
///
/// An <imp-kill> operand should be added to MI if an instruction was
/// inserted. This ties the instructions together in the post-ra scheduler.
///
virtual void
breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
const TargetRegisterInfo *TRI) const {}
/// Create machine specific model for scheduling.
virtual DFAPacketizer *
CreateTargetScheduleState(const TargetSubtargetInfo &) const {
return nullptr;
}
// Sometimes, it is possible for the target
// to tell, even without aliasing information, that two MIs access different
// memory addresses. This function returns true if two MIs access different
// memory addresses and false otherwise.
virtual bool
areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
AliasAnalysis *AA = nullptr) const {
assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
"MIa must load from or modify a memory location");
assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
"MIb must load from or modify a memory location");
return false;
}
/// \brief Return the value to use for the MachineCSE's LookAheadLimit,
/// which is a heuristic used for CSE'ing phys reg defs.
virtual unsigned getMachineCSELookAheadLimit () const {
// The default lookahead is small to prevent unprofitable quadratic
// behavior.
return 5;
}
/// Return an array that contains the ids of the target indices (used for the
/// TargetIndex machine operand) and their names.
///
/// MIR Serialization is able to serialize only the target indices that are
/// defined by this method.
virtual ArrayRef<std::pair<int, const char *>>
getSerializableTargetIndices() const {
return None;
}
/// Decompose the machine operand's target flags into two values - the direct
/// target flag value and any of bit flags that are applied.
virtual std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
return std::make_pair(0u, 0u);
}
/// Return an array that contains the direct target flag values and their
/// names.
///
/// MIR Serialization is able to serialize only the target flags that are
/// defined by this method.
virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const {
return None;
}
/// Return an array that contains the bitmask target flag values and their
/// names.
///
/// MIR Serialization is able to serialize only the target flags that are
/// defined by this method.
virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const {
return None;
}
private:
unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
unsigned CatchRetOpcode;
};
/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
template<>
struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
typedef DenseMapInfo<unsigned> RegInfo;
static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
RegInfo::getEmptyKey());
}
static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
RegInfo::getTombstoneKey());
}
/// \brief Reuse getHashValue implementation from
/// std::pair<unsigned, unsigned>.
static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
std::pair<unsigned, unsigned> PairVal =
std::make_pair(Val.Reg, Val.SubReg);
return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
}
static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
const TargetInstrInfo::RegSubRegPair &RHS) {
return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
}
};
} // End llvm namespace
#endif