blob: 181a9327024c2b699fbbfd39ba14eef2ab11225a [file] [log] [blame]
//===- BasicAliasAnalysis.h - Stateless, local Alias Analysis ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This is the interface for LLVM's primary stateless and local alias analysis.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_BASICALIASANALYSIS_H
#define LLVM_ANALYSIS_BASICALIASANALYSIS_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/ErrorHandling.h"
namespace llvm {
class AssumptionCache;
class DominatorTree;
class LoopInfo;
/// This is the AA result object for the basic, local, and stateless alias
/// analysis. It implements the AA query interface in an entirely stateless
/// manner. As one consequence, it is never invalidated. While it does retain
/// some storage, that is used as an optimization and not to preserve
/// information from query to query.
class BasicAAResult : public AAResultBase<BasicAAResult> {
friend AAResultBase<BasicAAResult>;
const DataLayout &DL;
AssumptionCache &AC;
DominatorTree *DT;
LoopInfo *LI;
public:
BasicAAResult(const DataLayout &DL, const TargetLibraryInfo &TLI,
AssumptionCache &AC, DominatorTree *DT = nullptr,
LoopInfo *LI = nullptr)
: AAResultBase(TLI), DL(DL), AC(AC), DT(DT), LI(LI) {}
BasicAAResult(const BasicAAResult &Arg)
: AAResultBase(Arg), DL(Arg.DL), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI) {}
BasicAAResult(BasicAAResult &&Arg)
: AAResultBase(std::move(Arg)), DL(Arg.DL), AC(Arg.AC), DT(Arg.DT),
LI(Arg.LI) {}
/// Handle invalidation events from the new pass manager.
///
/// By definition, this result is stateless and so remains valid.
bool invalidate(Function &, const PreservedAnalyses &) { return false; }
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
/// Chases pointers until we find a (constant global) or not.
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal);
/// Get the location associated with a pointer argument of a callsite.
ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
/// Returns the behavior when calling the given call site.
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
/// Returns the behavior when calling the given function. For use when the
/// call site is not known.
FunctionModRefBehavior getModRefBehavior(const Function *F);
private:
// A linear transformation of a Value; this class represents ZExt(SExt(V,
// SExtBits), ZExtBits) * Scale + Offset.
struct VariableGEPIndex {
// An opaque Value - we can't decompose this further.
const Value *V;
// We need to track what extensions we've done as we consider the same Value
// with different extensions as different variables in a GEP's linear
// expression;
// e.g.: if V == -1, then sext(x) != zext(x).
unsigned ZExtBits;
unsigned SExtBits;
int64_t Scale;
bool operator==(const VariableGEPIndex &Other) const {
return V == Other.V && ZExtBits == Other.ZExtBits &&
SExtBits == Other.SExtBits && Scale == Other.Scale;
}
bool operator!=(const VariableGEPIndex &Other) const {
return !operator==(Other);
}
};
/// Track alias queries to guard against recursion.
typedef std::pair<MemoryLocation, MemoryLocation> LocPair;
typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
AliasCacheTy AliasCache;
/// Tracks phi nodes we have visited.
///
/// When interpret "Value" pointer equality as value equality we need to make
/// sure that the "Value" is not part of a cycle. Otherwise, two uses could
/// come from different "iterations" of a cycle and see different values for
/// the same "Value" pointer.
///
/// The following example shows the problem:
/// %p = phi(%alloca1, %addr2)
/// %l = load %ptr
/// %addr1 = gep, %alloca2, 0, %l
/// %addr2 = gep %alloca2, 0, (%l + 1)
/// alias(%p, %addr1) -> MayAlias !
/// store %l, ...
SmallPtrSet<const BasicBlock *, 8> VisitedPhiBBs;
/// Tracks instructions visited by pointsToConstantMemory.
SmallPtrSet<const Value *, 16> Visited;
static const Value *
GetLinearExpression(const Value *V, APInt &Scale, APInt &Offset,
unsigned &ZExtBits, unsigned &SExtBits,
const DataLayout &DL, unsigned Depth, AssumptionCache *AC,
DominatorTree *DT, bool &NSW, bool &NUW);
static const Value *
DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
SmallVectorImpl<VariableGEPIndex> &VarIndices,
bool &MaxLookupReached, const DataLayout &DL,
AssumptionCache *AC, DominatorTree *DT);
/// \brief A Heuristic for aliasGEP that searches for a constant offset
/// between the variables.
///
/// GetLinearExpression has some limitations, as generally zext(%x + 1)
/// != zext(%x) + zext(1) if the arithmetic overflows. GetLinearExpression
/// will therefore conservatively refuse to decompose these expressions.
/// However, we know that, for all %x, zext(%x) != zext(%x + 1), even if
/// the addition overflows.
bool
constantOffsetHeuristic(const SmallVectorImpl<VariableGEPIndex> &VarIndices,
uint64_t V1Size, uint64_t V2Size, int64_t BaseOffset,
AssumptionCache *AC, DominatorTree *DT);
bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
const SmallVectorImpl<VariableGEPIndex> &Src);
AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
const AAMDNodes &V1AAInfo, const Value *V2,
uint64_t V2Size, const AAMDNodes &V2AAInfo,
const Value *UnderlyingV1, const Value *UnderlyingV2);
AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
const AAMDNodes &PNAAInfo, const Value *V2,
uint64_t V2Size, const AAMDNodes &V2AAInfo);
AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
const AAMDNodes &SIAAInfo, const Value *V2,
uint64_t V2Size, const AAMDNodes &V2AAInfo);
AliasResult aliasCheck(const Value *V1, uint64_t V1Size, AAMDNodes V1AATag,
const Value *V2, uint64_t V2Size, AAMDNodes V2AATag);
};
/// Analysis pass providing a never-invalidated alias analysis result.
class BasicAA {
public:
typedef BasicAAResult Result;
/// \brief Opaque, unique identifier for this analysis pass.
static void *ID() { return (void *)&PassID; }
BasicAAResult run(Function &F, AnalysisManager<Function> *AM);
/// \brief Provide access to a name for this pass for debugging purposes.
static StringRef name() { return "BasicAliasAnalysis"; }
private:
static char PassID;
};
/// Legacy wrapper pass to provide the BasicAAResult object.
class BasicAAWrapperPass : public FunctionPass {
std::unique_ptr<BasicAAResult> Result;
virtual void anchor();
public:
static char ID;
BasicAAWrapperPass();
BasicAAResult &getResult() { return *Result; }
const BasicAAResult &getResult() const { return *Result; }
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
FunctionPass *createBasicAAWrapperPass();
/// A helper for the legacy pass manager to create a \c BasicAAResult object
/// populated to the best of our ability for a particular function when inside
/// of a \c ModulePass or a \c CallGraphSCCPass.
BasicAAResult createLegacyPMBasicAAResult(Pass &P, Function &F);
}
#endif