blob: 62cee12543da7beca5e6f810f41ea242804e866c [file] [log] [blame]
//===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Mips FPU instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
// - 32 64-bit registers (default mode)
// - 16 even 32-bit registers (32-bit compatible mode) for
// single and double access.
// * 32bit fp:
// - 16 even 32-bit registers - single and double (aliased)
// - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//
// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
SDTCisVT<1, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
SDTCisVT<2, i32>]>;
def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
SDTCisVT<1, f64>,
SDTCisVT<2, i32>]>;
def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
[SDNPHasChain, SDNPOptInGlue]>;
def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
SDT_MipsExtractElementF64>;
// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand" in
def condcode : Operand<i32>;
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
def IsFP64bit : Predicate<"Subtarget.isFP64bit()">;
def NotFP64bit : Predicate<"!Subtarget.isFP64bit()">;
def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">;
def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//
// A set of multiclasses is used to address the register usage.
//
// S32 - single precision in 16 32bit even fp registers
// single precision in 32 32bit fp registers in SingleOnly mode
// S64 - single precision in 32 64bit fp registers (In64BitMode)
// D32 - double precision in 16 32bit even fp registers
// D64 - double precision in 32 64bit fp registers (In64BitMode)
//
// Only S32 and D32 are supported right now.
//===----------------------------------------------------------------------===//
// FP load.
class FPLoad<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
Operand MemOpnd>:
FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
!strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (FOp addr:$addr))],
IILoad>;
// FP store.
class FPStore<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
Operand MemOpnd>:
FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
!strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)],
IIStore>;
// Instructions that convert an FP value to 32-bit fixed point.
multiclass FFR1_W_M<bits<6> funct, string opstr> {
def _S : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
Requires<[NotFP64bit]>;
def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
Requires<[IsFP64bit]>;
}
// Instructions that convert an FP value to 64-bit fixed point.
let Predicates = [IsFP64bit] in
multiclass FFR1_L_M<bits<6> funct, string opstr> {
def _S : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
}
// FP-to-FP conversion instructions.
multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
def _S : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
Requires<[NotFP64bit]>;
def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
Requires<[IsFP64bit]>;
}
multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
let isCommutable = isComm in {
def _S : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
Requires<[NotFP64bit]>;
def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
Requires<[IsFP64bit]>;
}
}
//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//
defm ROUND_W : FFR1_W_M<0xc, "round">;
defm ROUND_L : FFR1_L_M<0x8, "round">;
defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
defm CEIL_W : FFR1_W_M<0xe, "ceil">;
defm CEIL_L : FFR1_L_M<0xa, "ceil">;
defm FLOOR_W : FFR1_W_M<0xf, "floor">;
defm FLOOR_L : FFR1_L_M<0xb, "floor">;
defm CVT_W : FFR1_W_M<0x24, "cvt">;
defm CVT_L : FFR1_L_M<0x25, "cvt">;
def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;
let Predicates = [NotFP64bit] in {
def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
}
let Predicates = [IsFP64bit] in {
def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
def CVT_S_L : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
}
defm FABS : FFR1P_M<0x5, "abs", fabs>;
defm FNEG : FFR1P_M<0x7, "neg", fneg>;
defm FSQRT : FFR1P_M<0x4, "sqrt", fsqrt>;
// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers,
// regardless of register aliasing.
class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
bits<5> rt;
let ft = rt;
let fd = 0;
}
/// Move Control Registers From/To CPU Registers
def CFC1 : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
"cfc1\t$rt, $fs", []>;
def CTC1 : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
"ctc1\t$rt, $fs", []>;
def MFC1 : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
"mfc1\t$rt, $fs",
[(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
def MTC1 : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
"mtc1\t$rt, $fs",
[(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
def FMOV_S : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
Requires<[NotFP64bit]>;
def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
Requires<[IsFP64bit]>;
/// Floating Point Memory Instructions
let Predicates = [IsN64] in {
def LWC1_P8 : FPLoad<0x31, "lwc1", load, FGR32, mem64>;
def SWC1_P8 : FPStore<0x39, "swc1", store, FGR32, mem64>;
def LDC164_P8 : FPLoad<0x35, "ldc1", load, FGR64, mem64>;
def SDC164_P8 : FPStore<0x3d, "sdc1", store, FGR64, mem64>;
}
let Predicates = [NotN64] in {
def LWC1 : FPLoad<0x31, "lwc1", load, FGR32, mem>;
def SWC1 : FPStore<0x39, "swc1", store, FGR32, mem>;
let Predicates = [HasMips64] in {
def LDC164 : FPLoad<0x35, "ldc1", load, FGR64, mem>;
def SDC164 : FPStore<0x3d, "sdc1", store, FGR64, mem>;
}
let Predicates = [NotMips64] in {
def LDC1 : FPLoad<0x35, "ldc1", load, AFGR64, mem>;
def SDC1 : FPStore<0x3d, "sdc1", store, AFGR64, mem>;
}
}
/// Floating-point Aritmetic
defm FADD : FFR2P_M<0x00, "add", fadd, 1>;
defm FDIV : FFR2P_M<0x03, "div", fdiv>;
defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
defm FSUB : FFR2P_M<0x01, "sub", fsub>;
//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
/// Floating Point Branch of False/True (Likely)
let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
[(MipsFPBrcond op, bb:$dst)]> {
let Inst{20-18} = 0;
let Inst{17} = nd;
let Inst{16} = tf;
}
def BC1F : FBRANCH<0, 0, MIPS_BRANCH_F, "bc1f">;
def BC1T : FBRANCH<0, 1, MIPS_BRANCH_T, "bc1t">;
//===----------------------------------------------------------------------===//
// Floating Point Flag Conditions
//===----------------------------------------------------------------------===//
// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_FCOND_F : PatLeaf<(i32 0)>;
def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
def MIPS_FCOND_OEQ : PatLeaf<(i32 2)>;
def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
/// Floating Point Compare
let Defs=[FCR31] in {
def FCMP_S32 : FCC<0x10, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
"c.$cc.s\t$fs, $ft",
[(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc)]>;
def FCMP_D32 : FCC<0x11, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
"c.$cc.d\t$fs, $ft",
[(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc)]>,
Requires<[NotFP64bit]>;
}
//===----------------------------------------------------------------------===//
// Floating Point Pseudo-Instructions
//===----------------------------------------------------------------------===//
def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
"# MOVCCRToCCR", []>;
// This pseudo instr gets expanded into 2 mtc1 instrs after register
// allocation.
def BuildPairF64 :
MipsPseudo<(outs AFGR64:$dst),
(ins CPURegs:$lo, CPURegs:$hi), "",
[(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
// This pseudo instr gets expanded into 2 mfc1 instrs after register
// allocation.
// if n is 0, lower part of src is extracted.
// if n is 1, higher part of src is extracted.
def ExtractElementF64 :
MipsPseudo<(outs CPURegs:$dst),
(ins AFGR64:$src, i32imm:$n), "",
[(set CPURegs:$dst,
(MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def fpimm0 : PatLeaf<(fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def fpimm0neg : PatLeaf<(fpimm), [{
return N->isExactlyValue(-0.0);
}]>;
def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>;
def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
let Predicates = [NotFP64bit] in {
def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
}