blob: 30f7f1cd5f593757fb92a5ef371a4fbe0dbe1a56 [file] [log] [blame]
//===- CompileOnDemandLayer.h - Compile each function on demand -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// JIT layer for breaking up modules and inserting callbacks to allow
// individual functions to be compiled on demand.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#define LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#include "IndirectionUtils.h"
#include "LambdaResolver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include <list>
namespace llvm {
namespace orc {
/// @brief Compile-on-demand layer.
///
/// Modules added to this layer have their calls indirected, and are then
/// broken up into a set of single-function modules, each of which is added
/// to the layer below in a singleton set. The lower layer can be any layer that
/// accepts IR module sets.
///
/// It is expected that this layer will frequently be used on top of a
/// LazyEmittingLayer. The combination of the two ensures that each function is
/// compiled only when it is first called.
template <typename BaseLayerT, typename CompileCallbackMgrT>
class CompileOnDemandLayer {
private:
/// @brief Lookup helper that provides compatibility with the classic
/// static-compilation symbol resolution process.
///
/// The CompileOnDemand (COD) layer splits modules up into multiple
/// sub-modules, each held in its own llvm::Module instance, in order to
/// support lazy compilation. When a module that contains private symbols is
/// broken up symbol linkage changes may be required to enable access to
/// "private" data that now resides in a different llvm::Module instance. To
/// retain expected symbol resolution behavior for clients of the COD layer,
/// the CODScopedLookup class uses a two-tiered lookup system to resolve
/// symbols. Lookup first scans sibling modules that were split from the same
/// original module (logical-module scoped lookup), then scans all other
/// modules that have been added to the lookup scope (logical-dylib scoped
/// lookup).
class CODScopedLookup {
private:
typedef typename BaseLayerT::ModuleSetHandleT BaseLayerModuleSetHandleT;
typedef std::vector<BaseLayerModuleSetHandleT> SiblingHandlesList;
typedef std::list<SiblingHandlesList> PseudoDylibModuleSetHandlesList;
public:
/// @brief Handle for a logical module.
typedef typename PseudoDylibModuleSetHandlesList::iterator LMHandle;
/// @brief Construct a scoped lookup.
CODScopedLookup(BaseLayerT &BaseLayer) : BaseLayer(BaseLayer) {}
virtual ~CODScopedLookup() {}
/// @brief Start a new context for a single logical module.
LMHandle createLogicalModule() {
Handles.push_back(SiblingHandlesList());
return std::prev(Handles.end());
}
/// @brief Add a concrete Module's handle to the given logical Module's
/// lookup scope.
void addToLogicalModule(LMHandle LMH, BaseLayerModuleSetHandleT H) {
LMH->push_back(H);
}
/// @brief Remove a logical Module from the CODScopedLookup entirely.
void removeLogicalModule(LMHandle LMH) { Handles.erase(LMH); }
/// @brief Look up a symbol in this context.
JITSymbol findSymbol(LMHandle LMH, const std::string &Name) {
if (auto Symbol = findSymbolIn(LMH, Name))
return Symbol;
for (auto I = Handles.begin(), E = Handles.end(); I != E; ++I)
if (I != LMH)
if (auto Symbol = findSymbolIn(I, Name))
return Symbol;
return nullptr;
}
/// @brief Find an external symbol (via the user supplied SymbolResolver).
virtual RuntimeDyld::SymbolInfo
externalLookup(const std::string &Name) const = 0;
private:
JITSymbol findSymbolIn(LMHandle LMH, const std::string &Name) {
for (auto H : *LMH)
if (auto Symbol = BaseLayer.findSymbolIn(H, Name, false))
return Symbol;
return nullptr;
}
BaseLayerT &BaseLayer;
PseudoDylibModuleSetHandlesList Handles;
};
template <typename ResolverPtrT>
class CODScopedLookupImpl : public CODScopedLookup {
public:
CODScopedLookupImpl(BaseLayerT &BaseLayer, ResolverPtrT Resolver)
: CODScopedLookup(BaseLayer), Resolver(std::move(Resolver)) {}
RuntimeDyld::SymbolInfo
externalLookup(const std::string &Name) const override {
return Resolver->findSymbol(Name);
}
private:
ResolverPtrT Resolver;
};
template <typename ResolverPtrT>
static std::shared_ptr<CODScopedLookup>
createCODScopedLookup(BaseLayerT &BaseLayer,
ResolverPtrT Resolver) {
typedef CODScopedLookupImpl<ResolverPtrT> Impl;
return std::make_shared<Impl>(BaseLayer, std::move(Resolver));
}
typedef typename BaseLayerT::ModuleSetHandleT BaseLayerModuleSetHandleT;
typedef std::vector<BaseLayerModuleSetHandleT> BaseLayerModuleSetHandleListT;
struct ModuleSetInfo {
// Symbol lookup - just one for the whole module set.
std::shared_ptr<CODScopedLookup> Lookup;
// Logical module handles.
std::vector<typename CODScopedLookup::LMHandle> LMHandles;
// List of vectors of module set handles:
// One vector per logical module - each vector holds the handles for the
// exploded modules for that logical module in the base layer.
BaseLayerModuleSetHandleListT BaseLayerModuleSetHandles;
ModuleSetInfo(std::shared_ptr<CODScopedLookup> Lookup)
: Lookup(std::move(Lookup)) {}
void releaseResources(BaseLayerT &BaseLayer) {
for (auto LMH : LMHandles)
Lookup->removeLogicalModule(LMH);
for (auto H : BaseLayerModuleSetHandles)
BaseLayer.removeModuleSet(H);
}
};
typedef std::list<ModuleSetInfo> ModuleSetInfoListT;
public:
/// @brief Handle to a set of loaded modules.
typedef typename ModuleSetInfoListT::iterator ModuleSetHandleT;
/// @brief Construct a compile-on-demand layer instance.
CompileOnDemandLayer(BaseLayerT &BaseLayer, CompileCallbackMgrT &CallbackMgr)
: BaseLayer(BaseLayer), CompileCallbackMgr(CallbackMgr) {}
/// @brief Add a module to the compile-on-demand layer.
template <typename ModuleSetT, typename MemoryManagerPtrT,
typename SymbolResolverPtrT>
ModuleSetHandleT addModuleSet(ModuleSetT Ms,
MemoryManagerPtrT MemMgr,
SymbolResolverPtrT Resolver) {
assert(MemMgr == nullptr &&
"User supplied memory managers not supported with COD yet.");
// Create a lookup context and ModuleSetInfo for this module set.
// For the purposes of symbol resolution the set Ms will be treated as if
// the modules it contained had been linked together as a dylib.
auto DylibLookup = createCODScopedLookup(BaseLayer, std::move(Resolver));
ModuleSetHandleT H =
ModuleSetInfos.insert(ModuleSetInfos.end(), ModuleSetInfo(DylibLookup));
ModuleSetInfo &MSI = ModuleSetInfos.back();
// Process each of the modules in this module set.
for (auto &M : Ms)
partitionAndAdd(*M, MSI);
return H;
}
/// @brief Remove the module represented by the given handle.
///
/// This will remove all modules in the layers below that were derived from
/// the module represented by H.
void removeModuleSet(ModuleSetHandleT H) {
H->releaseResources(BaseLayer);
ModuleSetInfos.erase(H);
}
/// @brief Search for the given named symbol.
/// @param Name The name of the symbol to search for.
/// @param ExportedSymbolsOnly If true, search only for exported symbols.
/// @return A handle for the given named symbol, if it exists.
JITSymbol findSymbol(StringRef Name, bool ExportedSymbolsOnly) {
return BaseLayer.findSymbol(Name, ExportedSymbolsOnly);
}
/// @brief Get the address of a symbol provided by this layer, or some layer
/// below this one.
JITSymbol findSymbolIn(ModuleSetHandleT H, const std::string &Name,
bool ExportedSymbolsOnly) {
for (auto &BH : H->BaseLayerModuleSetHandles) {
if (auto Symbol = BaseLayer.findSymbolIn(BH, Name, ExportedSymbolsOnly))
return Symbol;
}
return nullptr;
}
private:
void partitionAndAdd(Module &M, ModuleSetInfo &MSI) {
const char *AddrSuffix = "$orc_addr";
const char *BodySuffix = "$orc_body";
// We're going to break M up into a bunch of sub-modules, but we want
// internal linkage symbols to still resolve sensibly. CODScopedLookup
// provides the "logical module" concept to make this work, so create a
// new logical module for M.
auto DylibLookup = MSI.Lookup;
auto LogicalModule = DylibLookup->createLogicalModule();
MSI.LMHandles.push_back(LogicalModule);
// Partition M into a "globals and stubs" module, a "common symbols" module,
// and a list of single-function modules.
auto PartitionedModule = fullyPartition(M);
auto StubsModule = std::move(PartitionedModule.GlobalVars);
auto CommonsModule = std::move(PartitionedModule.Commons);
auto FunctionModules = std::move(PartitionedModule.Functions);
// Emit the commons stright away.
auto CommonHandle = addModule(std::move(CommonsModule), MSI, LogicalModule);
BaseLayer.emitAndFinalize(CommonHandle);
// Map of definition names to callback-info data structures. We'll use
// this to build the compile actions for the stubs below.
typedef std::map<std::string,
typename CompileCallbackMgrT::CompileCallbackInfo>
StubInfoMap;
StubInfoMap StubInfos;
// Now we need to take each of the extracted Modules and add them to
// base layer. Each Module will be added individually to make sure they
// can be compiled separately, and each will get its own lookaside
// memory manager that will resolve within this logical module first.
for (auto &SubM : FunctionModules) {
// Keep track of the stubs we create for this module so that we can set
// their compile actions.
std::vector<typename StubInfoMap::iterator> NewStubInfos;
// Search for function definitions and insert stubs into the stubs
// module.
for (auto &F : *SubM) {
if (F.isDeclaration())
continue;
std::string Name = F.getName();
Function *Proto = StubsModule->getFunction(Name);
assert(Proto && "Failed to clone function decl into stubs module.");
auto CallbackInfo =
CompileCallbackMgr.getCompileCallback(Proto->getContext());
GlobalVariable *FunctionBodyPointer =
createImplPointer(*Proto->getType(), *Proto->getParent(),
Name + AddrSuffix,
createIRTypedAddress(*Proto->getFunctionType(),
CallbackInfo.getAddress()));
makeStub(*Proto, *FunctionBodyPointer);
F.setName(Name + BodySuffix);
F.setVisibility(GlobalValue::HiddenVisibility);
auto KV = std::make_pair(std::move(Name), std::move(CallbackInfo));
NewStubInfos.push_back(StubInfos.insert(StubInfos.begin(), KV));
}
auto H = addModule(std::move(SubM), MSI, LogicalModule);
// Set the compile actions for this module:
for (auto &KVPair : NewStubInfos) {
std::string BodyName = Mangle(KVPair->first + BodySuffix,
M.getDataLayout());
auto &CCInfo = KVPair->second;
CCInfo.setCompileAction(
[=](){
return BaseLayer.findSymbolIn(H, BodyName, false).getAddress();
});
}
}
// Ok - we've processed all the partitioned modules. Now add the
// stubs/globals module and set the update actions.
auto StubsH =
addModule(std::move(StubsModule), MSI, LogicalModule);
for (auto &KVPair : StubInfos) {
std::string AddrName = Mangle(KVPair.first + AddrSuffix,
M.getDataLayout());
auto &CCInfo = KVPair.second;
CCInfo.setUpdateAction(
getLocalFPUpdater(BaseLayer, StubsH, AddrName));
}
}
// Add the given Module to the base layer using a memory manager that will
// perform the appropriate scoped lookup (i.e. will look first with in the
// module from which it was extracted, then into the set to which that module
// belonged, and finally externally).
BaseLayerModuleSetHandleT addModule(
std::unique_ptr<Module> M,
ModuleSetInfo &MSI,
typename CODScopedLookup::LMHandle LogicalModule) {
// Add this module to the JIT with a memory manager that uses the
// DylibLookup to resolve symbols.
std::vector<std::unique_ptr<Module>> MSet;
MSet.push_back(std::move(M));
auto DylibLookup = MSI.Lookup;
auto Resolver =
createLambdaResolver(
[=](const std::string &Name) {
if (auto Symbol = DylibLookup->findSymbol(LogicalModule, Name))
return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
Symbol.getFlags());
return DylibLookup->externalLookup(Name);
},
[=](const std::string &Name) -> RuntimeDyld::SymbolInfo {
if (auto Symbol = DylibLookup->findSymbol(LogicalModule, Name))
return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
Symbol.getFlags());
return nullptr;
});
BaseLayerModuleSetHandleT H =
BaseLayer.addModuleSet(std::move(MSet),
make_unique<SectionMemoryManager>(),
std::move(Resolver));
// Add this module to the logical module lookup.
DylibLookup->addToLogicalModule(LogicalModule, H);
MSI.BaseLayerModuleSetHandles.push_back(H);
return H;
}
static std::string Mangle(StringRef Name, const DataLayout &DL) {
Mangler M(&DL);
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
M.getNameWithPrefix(MangledNameStream, Name);
}
return MangledName;
}
BaseLayerT &BaseLayer;
CompileCallbackMgrT &CompileCallbackMgr;
ModuleSetInfoListT ModuleSetInfos;
};
} // End namespace orc.
} // End namespace llvm.
#endif // LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H