blob: 13f544f3c0b9ba4e8f0134bd644085a2edd850c6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <linux/io.h>
#include <linux/mfd/core.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/uio_driver.h>
#include "pcie.h"
/* Core (Resource) Table Layout:
* one Resource per record (8 bytes)
* 6 5 4 3 2 1 0
* 3210987654321098765432109876543210987654321098765432109876543210
* IIIIIIIIIIII Core Type [up to 4095 types]
* D S2C DMA Present
* DDD S2C DMA Channel Number [up to 8 channels]
* LLLLLLLLLLLLLLLL Register Count (64-bit registers) [up to 65535 registers]
* OOOOOOOOOOOOOOOO Core Offset (in 4kB blocks) [up to 65535 cores]
* D C2S DMA Present
* DDD C2S DMA Channel Number [up to 8 channels]
* II IRQ Count [0 to 3 IRQs per core]
1111111000
* IIIIIII IRQ Base Number [up to 128 IRQs per card]
* ___ Spare
*
*/
#define KPC_OLD_DMA_CH_NUM(present, channel) ((present) ? (0x8 | ((channel) & 0x7)) : 0)
#define KPC_OLD_S2C_DMA_CH_NUM(cte) KPC_OLD_DMA_CH_NUM(cte.s2c_dma_present, cte.s2c_dma_channel_num)
#define KPC_OLD_C2S_DMA_CH_NUM(cte) KPC_OLD_DMA_CH_NUM(cte.c2s_dma_present, cte.c2s_dma_channel_num)
#define KP_CORE_ID_INVALID 0
#define KP_CORE_ID_I2C 3
#define KP_CORE_ID_SPI 5
struct core_table_entry {
u16 type;
u32 offset;
u32 length;
bool s2c_dma_present;
u8 s2c_dma_channel_num;
bool c2s_dma_present;
u8 c2s_dma_channel_num;
u8 irq_count;
u8 irq_base_num;
};
static
void parse_core_table_entry_v0(struct core_table_entry *cte, const u64 read_val)
{
cte->type = ((read_val & 0xFFF0000000000000) >> 52);
cte->offset = ((read_val & 0x00000000FFFF0000) >> 16) * 4096;
cte->length = ((read_val & 0x0000FFFF00000000) >> 32) * 8;
cte->s2c_dma_present = ((read_val & 0x0008000000000000) >> 51);
cte->s2c_dma_channel_num = ((read_val & 0x0007000000000000) >> 48);
cte->c2s_dma_present = ((read_val & 0x0000000000008000) >> 15);
cte->c2s_dma_channel_num = ((read_val & 0x0000000000007000) >> 12);
cte->irq_count = ((read_val & 0x0000000000000C00) >> 10);
cte->irq_base_num = ((read_val & 0x00000000000003F8) >> 3);
}
static
void dbg_cte(struct kp2000_device *pcard, struct core_table_entry *cte)
{
dev_dbg(&pcard->pdev->dev, "CTE: type:%3d offset:%3d (%3d) length:%3d (%3d) s2c:%d c2s:%d irq_count:%d base_irq:%d\n",
cte->type,
cte->offset,
cte->offset / 4096,
cte->length,
cte->length / 8,
(cte->s2c_dma_present ? cte->s2c_dma_channel_num : -1),
(cte->c2s_dma_present ? cte->c2s_dma_channel_num : -1),
cte->irq_count,
cte->irq_base_num
);
}
static
void parse_core_table_entry(struct core_table_entry *cte, const u64 read_val, const u8 entry_rev)
{
switch (entry_rev) {
case 0: parse_core_table_entry_v0(cte, read_val); break;
default: cte->type = 0; break;
}
}
int probe_core_basic(unsigned int core_num, struct kp2000_device *pcard, char *name, const struct core_table_entry cte)
{
struct mfd_cell cell = {0};
struct resource resources[2];
struct kpc_core_device_platdata core_pdata = {
.card_id = pcard->card_id,
.build_version = pcard->build_version,
.hardware_revision = pcard->hardware_revision,
.ssid = pcard->ssid,
.ddna = pcard->ddna,
};
dev_dbg(&pcard->pdev->dev, "Found Basic core: type = %02d dma = %02x / %02x offset = 0x%x length = 0x%x (%d regs)\n", cte.type, KPC_OLD_S2C_DMA_CH_NUM(cte), KPC_OLD_C2S_DMA_CH_NUM(cte), cte.offset, cte.length, cte.length / 8);
cell.platform_data = &core_pdata;
cell.pdata_size = sizeof(struct kpc_core_device_platdata);
cell.name = name;
cell.id = core_num;
cell.num_resources = 2;
memset(&resources, 0, sizeof(resources));
resources[0].start = cte.offset;
resources[0].end = cte.offset + (cte.length - 1);
resources[0].flags = IORESOURCE_MEM;
resources[1].start = pcard->pdev->irq;
resources[1].end = pcard->pdev->irq;
resources[1].flags = IORESOURCE_IRQ;
cell.resources = resources;
return mfd_add_devices(
PCARD_TO_DEV(pcard), // parent
pcard->card_num * 100, // id
&cell, // struct mfd_cell *
1, // ndevs
&pcard->regs_base_resource,
0, // irq_base
NULL // struct irq_domain *
);
}
struct kpc_uio_device {
struct list_head list;
struct kp2000_device *pcard;
struct device *dev;
struct uio_info uioinfo;
struct core_table_entry cte;
u16 core_num;
};
static ssize_t show_attr(struct device *dev, struct device_attribute *attr, char *buf)
{
struct kpc_uio_device *kudev = dev_get_drvdata(dev);
#define ATTR_NAME_CMP(v) (strcmp(v, attr->attr.name) == 0)
if ATTR_NAME_CMP("offset"){
return scnprintf(buf, PAGE_SIZE, "%u\n", kudev->cte.offset);
} else if ATTR_NAME_CMP("size"){
return scnprintf(buf, PAGE_SIZE, "%u\n", kudev->cte.length);
} else if ATTR_NAME_CMP("type"){
return scnprintf(buf, PAGE_SIZE, "%u\n", kudev->cte.type);
}
else if ATTR_NAME_CMP("s2c_dma"){
if (kudev->cte.s2c_dma_present){
return scnprintf(buf, PAGE_SIZE, "%u\n", kudev->cte.s2c_dma_channel_num);
} else {
return scnprintf(buf, PAGE_SIZE, "not present\n");
}
} else if ATTR_NAME_CMP("c2s_dma"){
if (kudev->cte.c2s_dma_present){
return scnprintf(buf, PAGE_SIZE, "%u\n", kudev->cte.c2s_dma_channel_num);
} else {
return scnprintf(buf, PAGE_SIZE, "not present\n");
}
}
else if ATTR_NAME_CMP("irq_count"){
return scnprintf(buf, PAGE_SIZE, "%u\n", kudev->cte.irq_count);
} else if ATTR_NAME_CMP("irq_base_num"){
return scnprintf(buf, PAGE_SIZE, "%u\n", kudev->cte.irq_base_num);
} else if ATTR_NAME_CMP("core_num"){
return scnprintf(buf, PAGE_SIZE, "%u\n", kudev->core_num);
} else {
return 0;
}
#undef ATTR_NAME_CMP
}
DEVICE_ATTR(offset, 0444, show_attr, NULL);
DEVICE_ATTR(size, 0444, show_attr, NULL);
DEVICE_ATTR(type, 0444, show_attr, NULL);
DEVICE_ATTR(s2c_dma_ch, 0444, show_attr, NULL);
DEVICE_ATTR(c2s_dma_ch, 0444, show_attr, NULL);
DEVICE_ATTR(s2c_dma, 0444, show_attr, NULL);
DEVICE_ATTR(c2s_dma, 0444, show_attr, NULL);
DEVICE_ATTR(irq_count, 0444, show_attr, NULL);
DEVICE_ATTR(irq_base_num, 0444, show_attr, NULL);
DEVICE_ATTR(core_num, 0444, show_attr, NULL);
struct attribute * kpc_uio_class_attrs[] = {
&dev_attr_offset.attr,
&dev_attr_size.attr,
&dev_attr_type.attr,
&dev_attr_s2c_dma_ch.attr,
&dev_attr_c2s_dma_ch.attr,
&dev_attr_s2c_dma.attr,
&dev_attr_c2s_dma.attr,
&dev_attr_irq_count.attr,
&dev_attr_irq_base_num.attr,
&dev_attr_core_num.attr,
NULL,
};
static
int kp2000_check_uio_irq(struct kp2000_device *pcard, u32 irq_num)
{
u64 interrupt_active = readq(pcard->sysinfo_regs_base + REG_INTERRUPT_ACTIVE);
u64 interrupt_mask_inv = ~readq(pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
u64 irq_check_mask = (1 << irq_num);
if (interrupt_active & irq_check_mask){ // if it's active (interrupt pending)
if (interrupt_mask_inv & irq_check_mask){ // and if it's not masked off
return 1;
}
}
return 0;
}
static
irqreturn_t kuio_handler(int irq, struct uio_info *uioinfo)
{
struct kpc_uio_device *kudev = uioinfo->priv;
if (irq != kudev->pcard->pdev->irq)
return IRQ_NONE;
if (kp2000_check_uio_irq(kudev->pcard, kudev->cte.irq_base_num)){
writeq((1 << kudev->cte.irq_base_num), kudev->pcard->sysinfo_regs_base + REG_INTERRUPT_ACTIVE); // Clear the active flag
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static
int kuio_irqcontrol(struct uio_info *uioinfo, s32 irq_on)
{
struct kpc_uio_device *kudev = uioinfo->priv;
struct kp2000_device *pcard = kudev->pcard;
u64 mask;
lock_card(pcard);
mask = readq(pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
if (irq_on){
mask &= ~(1 << (kudev->cte.irq_base_num));
} else {
mask |= (1 << (kudev->cte.irq_base_num));
}
writeq(mask, pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
unlock_card(pcard);
return 0;
}
int probe_core_uio(unsigned int core_num, struct kp2000_device *pcard, char *name, const struct core_table_entry cte)
{
struct kpc_uio_device *kudev;
int rv;
dev_dbg(&pcard->pdev->dev, "Found UIO core: type = %02d dma = %02x / %02x offset = 0x%x length = 0x%x (%d regs)\n", cte.type, KPC_OLD_S2C_DMA_CH_NUM(cte), KPC_OLD_C2S_DMA_CH_NUM(cte), cte.offset, cte.length, cte.length / 8);
kudev = kzalloc(sizeof(struct kpc_uio_device), GFP_KERNEL);
if (!kudev){
dev_err(&pcard->pdev->dev, "probe_core_uio: failed to kzalloc kpc_uio_device\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&kudev->list);
kudev->pcard = pcard;
kudev->cte = cte;
kudev->core_num = core_num;
kudev->uioinfo.priv = kudev;
kudev->uioinfo.name = name;
kudev->uioinfo.version = "0.0";
if (cte.irq_count > 0){
kudev->uioinfo.irq_flags = IRQF_SHARED;
kudev->uioinfo.irq = pcard->pdev->irq;
kudev->uioinfo.handler = kuio_handler;
kudev->uioinfo.irqcontrol = kuio_irqcontrol;
} else {
kudev->uioinfo.irq = 0;
}
kudev->uioinfo.mem[0].name = "uiomap";
kudev->uioinfo.mem[0].addr = pci_resource_start(pcard->pdev, REG_BAR) + cte.offset;
kudev->uioinfo.mem[0].size = (cte.length + PAGE_SIZE-1) & ~(PAGE_SIZE-1); // Round up to nearest PAGE_SIZE boundary
kudev->uioinfo.mem[0].memtype = UIO_MEM_PHYS;
kudev->dev = device_create(kpc_uio_class, &pcard->pdev->dev, MKDEV(0,0), kudev, "%s.%d.%d.%d", kudev->uioinfo.name, pcard->card_num, cte.type, kudev->core_num);
if (IS_ERR(kudev->dev)) {
dev_err(&pcard->pdev->dev, "probe_core_uio device_create failed!\n");
return -ENODEV;
}
dev_set_drvdata(kudev->dev, kudev);
rv = uio_register_device(kudev->dev, &kudev->uioinfo);
if (rv){
dev_err(&pcard->pdev->dev, "probe_core_uio failed uio_register_device: %d\n", rv);
return rv;
}
list_add_tail(&kudev->list, &pcard->uio_devices_list);
return 0;
}
static int create_dma_engine_core(struct kp2000_device *pcard, size_t engine_regs_offset, int engine_num, int irq_num)
{
struct mfd_cell cell = {0};
struct resource resources[2];
dev_dbg(&pcard->pdev->dev, "create_dma_core(pcard = [%p], engine_regs_offset = %zx, engine_num = %d)\n", pcard, engine_regs_offset, engine_num);
cell.platform_data = NULL;
cell.pdata_size = 0;
cell.id = engine_num;
cell.name = KP_DRIVER_NAME_DMA_CONTROLLER;
cell.num_resources = 2;
memset(&resources, 0, sizeof(resources));
resources[0].start = engine_regs_offset;
resources[0].end = engine_regs_offset + (KPC_DMA_ENGINE_SIZE - 1);
resources[0].flags = IORESOURCE_MEM;
resources[1].start = irq_num;
resources[1].end = irq_num;
resources[1].flags = IORESOURCE_IRQ;
cell.resources = resources;
return mfd_add_devices(
PCARD_TO_DEV(pcard), // parent
pcard->card_num * 100, // id
&cell, // struct mfd_cell *
1, // ndevs
&pcard->dma_base_resource,
0, // irq_base
NULL // struct irq_domain *
);
}
static int kp2000_setup_dma_controller(struct kp2000_device *pcard)
{
int err;
unsigned int i;
u64 capabilities_reg;
// S2C Engines
for (i = 0 ; i < 32 ; i++){
capabilities_reg = readq( pcard->dma_bar_base + KPC_DMA_S2C_BASE_OFFSET + (KPC_DMA_ENGINE_SIZE * i) );
if (capabilities_reg & ENGINE_CAP_PRESENT_MASK){
err = create_dma_engine_core(pcard, (KPC_DMA_S2C_BASE_OFFSET + (KPC_DMA_ENGINE_SIZE * i)), i, pcard->pdev->irq);
if (err) goto err_out;
}
}
// C2S Engines
for (i = 0 ; i < 32 ; i++){
capabilities_reg = readq( pcard->dma_bar_base + KPC_DMA_C2S_BASE_OFFSET + (KPC_DMA_ENGINE_SIZE * i) );
if (capabilities_reg & ENGINE_CAP_PRESENT_MASK){
err = create_dma_engine_core(pcard, (KPC_DMA_C2S_BASE_OFFSET + (KPC_DMA_ENGINE_SIZE * i)), 32+i, pcard->pdev->irq);
if (err) goto err_out;
}
}
return 0;
err_out:
dev_err(&pcard->pdev->dev, "kp2000_setup_dma_controller: failed to add a DMA Engine: %d\n", err);
return err;
}
int kp2000_probe_cores(struct kp2000_device *pcard)
{
int err = 0;
int i;
int current_type_id;
u64 read_val;
unsigned int highest_core_id = 0;
struct core_table_entry cte;
dev_dbg(&pcard->pdev->dev, "kp2000_probe_cores(pcard = %p / %d)\n", pcard, pcard->card_num);
err = kp2000_setup_dma_controller(pcard);
if (err) return err;
INIT_LIST_HEAD(&pcard->uio_devices_list);
// First, iterate the core table looking for the highest CORE_ID
for (i = 0 ; i < pcard->core_table_length ; i++){
read_val = readq(pcard->sysinfo_regs_base + ((pcard->core_table_offset + i) * 8));
parse_core_table_entry(&cte, read_val, pcard->core_table_rev);
dbg_cte(pcard, &cte);
if (cte.type > highest_core_id){
highest_core_id = cte.type;
}
if (cte.type == KP_CORE_ID_INVALID){
dev_info(&pcard->pdev->dev, "Found Invalid core: %016llx\n", read_val);
}
}
// Then, iterate over the possible core types.
for (current_type_id = 1 ; current_type_id <= highest_core_id ; current_type_id++){
unsigned int core_num = 0;
// Foreach core type, iterate the whole table and instantiate subdevices for each core.
// Yes, this is O(n*m) but the actual runtime is small enough that it's an acceptable tradeoff.
for (i = 0 ; i < pcard->core_table_length ; i++){
read_val = readq(pcard->sysinfo_regs_base + ((pcard->core_table_offset + i) * 8));
parse_core_table_entry(&cte, read_val, pcard->core_table_rev);
if (cte.type == current_type_id){
switch (cte.type){
case KP_CORE_ID_I2C:
err = probe_core_basic(core_num, pcard, KP_DRIVER_NAME_I2C, cte);
break;
case KP_CORE_ID_SPI:
err = probe_core_basic(core_num, pcard, KP_DRIVER_NAME_SPI, cte);
break;
default:
err = probe_core_uio(core_num, pcard, "kpc_uio", cte);
break;
}
if (err){
dev_err(&pcard->pdev->dev, "kp2000_probe_cores: failed to add core %d: %d\n", i, err);
return err;
}
core_num++;
}
}
}
// Finally, instantiate a UIO device for the core_table.
cte.type = 0; // CORE_ID_BOARD_INFO
cte.offset = 0; // board info is always at the beginning
cte.length = 512*8;
cte.s2c_dma_present = false;
cte.s2c_dma_channel_num = 0;
cte.c2s_dma_present = false;
cte.c2s_dma_channel_num = 0;
cte.irq_count = 0;
cte.irq_base_num = 0;
err = probe_core_uio(0, pcard, "kpc_uio", cte);
if (err){
dev_err(&pcard->pdev->dev, "kp2000_probe_cores: failed to add board_info core: %d\n", err);
return err;
}
return 0;
}
void kp2000_remove_cores(struct kp2000_device *pcard)
{
struct list_head *ptr;
struct list_head *next;
list_for_each_safe(ptr, next, &pcard->uio_devices_list){
struct kpc_uio_device *kudev = list_entry(ptr, struct kpc_uio_device, list);
uio_unregister_device(&kudev->uioinfo);
device_unregister(kudev->dev);
list_del(&kudev->list);
kfree(kudev);
}
}