| /* |
| * Copyright 2011 The LibYuv Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "libyuv/planar_functions.h" |
| |
| #include <string.h> // for memset() |
| |
| #include "libyuv/cpu_id.h" |
| #ifdef HAVE_JPEG |
| #include "libyuv/mjpeg_decoder.h" |
| #endif |
| #include "libyuv/row.h" |
| #include "libyuv/scale_row.h" // for ScaleRowDown2 |
| |
| #ifdef __cplusplus |
| namespace libyuv { |
| extern "C" { |
| #endif |
| |
| // Copy a plane of data |
| LIBYUV_API |
| void CopyPlane(const uint8* src_y, |
| int src_stride_y, |
| uint8* dst_y, |
| int dst_stride_y, |
| int width, |
| int height) { |
| int y; |
| void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_y = dst_y + (height - 1) * dst_stride_y; |
| dst_stride_y = -dst_stride_y; |
| } |
| // Coalesce rows. |
| if (src_stride_y == width && dst_stride_y == width) { |
| width *= height; |
| height = 1; |
| src_stride_y = dst_stride_y = 0; |
| } |
| // Nothing to do. |
| if (src_y == dst_y && src_stride_y == dst_stride_y) { |
| return; |
| } |
| #if defined(HAS_COPYROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| CopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2; |
| } |
| #endif |
| #if defined(HAS_COPYROW_AVX) |
| if (TestCpuFlag(kCpuHasAVX)) { |
| CopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX; |
| } |
| #endif |
| #if defined(HAS_COPYROW_ERMS) |
| if (TestCpuFlag(kCpuHasERMS)) { |
| CopyRow = CopyRow_ERMS; |
| } |
| #endif |
| #if defined(HAS_COPYROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| CopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON; |
| } |
| #endif |
| #if defined(HAS_COPYROW_MIPS) |
| if (TestCpuFlag(kCpuHasMIPS)) { |
| CopyRow = CopyRow_MIPS; |
| } |
| #endif |
| |
| // Copy plane |
| for (y = 0; y < height; ++y) { |
| CopyRow(src_y, dst_y, width); |
| src_y += src_stride_y; |
| dst_y += dst_stride_y; |
| } |
| } |
| |
| // TODO(fbarchard): Consider support for negative height. |
| // TODO(fbarchard): Consider stride measured in bytes. |
| LIBYUV_API |
| void CopyPlane_16(const uint16* src_y, |
| int src_stride_y, |
| uint16* dst_y, |
| int dst_stride_y, |
| int width, |
| int height) { |
| int y; |
| void (*CopyRow)(const uint16* src, uint16* dst, int width) = CopyRow_16_C; |
| // Coalesce rows. |
| if (src_stride_y == width && dst_stride_y == width) { |
| width *= height; |
| height = 1; |
| src_stride_y = dst_stride_y = 0; |
| } |
| #if defined(HAS_COPYROW_16_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32)) { |
| CopyRow = CopyRow_16_SSE2; |
| } |
| #endif |
| #if defined(HAS_COPYROW_16_ERMS) |
| if (TestCpuFlag(kCpuHasERMS)) { |
| CopyRow = CopyRow_16_ERMS; |
| } |
| #endif |
| #if defined(HAS_COPYROW_16_NEON) |
| if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 32)) { |
| CopyRow = CopyRow_16_NEON; |
| } |
| #endif |
| #if defined(HAS_COPYROW_16_MIPS) |
| if (TestCpuFlag(kCpuHasMIPS)) { |
| CopyRow = CopyRow_16_MIPS; |
| } |
| #endif |
| |
| // Copy plane |
| for (y = 0; y < height; ++y) { |
| CopyRow(src_y, dst_y, width); |
| src_y += src_stride_y; |
| dst_y += dst_stride_y; |
| } |
| } |
| |
| // Copy I422. |
| LIBYUV_API |
| int I422Copy(const uint8* src_y, |
| int src_stride_y, |
| const uint8* src_u, |
| int src_stride_u, |
| const uint8* src_v, |
| int src_stride_v, |
| uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_u, |
| int dst_stride_u, |
| uint8* dst_v, |
| int dst_stride_v, |
| int width, |
| int height) { |
| int halfwidth = (width + 1) >> 1; |
| if (!src_u || !src_v || !dst_u || !dst_v || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_y = src_y + (height - 1) * src_stride_y; |
| src_u = src_u + (height - 1) * src_stride_u; |
| src_v = src_v + (height - 1) * src_stride_v; |
| src_stride_y = -src_stride_y; |
| src_stride_u = -src_stride_u; |
| src_stride_v = -src_stride_v; |
| } |
| |
| if (dst_y) { |
| CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); |
| } |
| CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height); |
| CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height); |
| return 0; |
| } |
| |
| // Copy I444. |
| LIBYUV_API |
| int I444Copy(const uint8* src_y, |
| int src_stride_y, |
| const uint8* src_u, |
| int src_stride_u, |
| const uint8* src_v, |
| int src_stride_v, |
| uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_u, |
| int dst_stride_u, |
| uint8* dst_v, |
| int dst_stride_v, |
| int width, |
| int height) { |
| if (!src_u || !src_v || !dst_u || !dst_v || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_y = src_y + (height - 1) * src_stride_y; |
| src_u = src_u + (height - 1) * src_stride_u; |
| src_v = src_v + (height - 1) * src_stride_v; |
| src_stride_y = -src_stride_y; |
| src_stride_u = -src_stride_u; |
| src_stride_v = -src_stride_v; |
| } |
| |
| if (dst_y) { |
| CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); |
| } |
| CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height); |
| CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height); |
| return 0; |
| } |
| |
| // Copy I400. |
| LIBYUV_API |
| int I400ToI400(const uint8* src_y, |
| int src_stride_y, |
| uint8* dst_y, |
| int dst_stride_y, |
| int width, |
| int height) { |
| if (!src_y || !dst_y || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_y = src_y + (height - 1) * src_stride_y; |
| src_stride_y = -src_stride_y; |
| } |
| CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); |
| return 0; |
| } |
| |
| // Convert I420 to I400. |
| LIBYUV_API |
| int I420ToI400(const uint8* src_y, |
| int src_stride_y, |
| const uint8* src_u, |
| int src_stride_u, |
| const uint8* src_v, |
| int src_stride_v, |
| uint8* dst_y, |
| int dst_stride_y, |
| int width, |
| int height) { |
| (void)src_u; |
| (void)src_stride_u; |
| (void)src_v; |
| (void)src_stride_v; |
| if (!src_y || !dst_y || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_y = src_y + (height - 1) * src_stride_y; |
| src_stride_y = -src_stride_y; |
| } |
| |
| CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); |
| return 0; |
| } |
| |
| // Support function for NV12 etc UV channels. |
| // Width and height are plane sizes (typically half pixel width). |
| LIBYUV_API |
| void SplitUVPlane(const uint8* src_uv, |
| int src_stride_uv, |
| uint8* dst_u, |
| int dst_stride_u, |
| uint8* dst_v, |
| int dst_stride_v, |
| int width, |
| int height) { |
| int y; |
| void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, |
| int width) = SplitUVRow_C; |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_u = dst_u + (height - 1) * dst_stride_u; |
| dst_v = dst_v + (height - 1) * dst_stride_v; |
| dst_stride_u = -dst_stride_u; |
| dst_stride_v = -dst_stride_v; |
| } |
| // Coalesce rows. |
| if (src_stride_uv == width * 2 && dst_stride_u == width && |
| dst_stride_v == width) { |
| width *= height; |
| height = 1; |
| src_stride_uv = dst_stride_u = dst_stride_v = 0; |
| } |
| #if defined(HAS_SPLITUVROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| SplitUVRow = SplitUVRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| SplitUVRow = SplitUVRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_SPLITUVROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| SplitUVRow = SplitUVRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| SplitUVRow = SplitUVRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_SPLITUVROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SplitUVRow = SplitUVRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| SplitUVRow = SplitUVRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_SPLITUVROW_DSPR2) |
| if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(dst_u, 4) && |
| IS_ALIGNED(dst_stride_u, 4) && IS_ALIGNED(dst_v, 4) && |
| IS_ALIGNED(dst_stride_v, 4)) { |
| SplitUVRow = SplitUVRow_Any_DSPR2; |
| if (IS_ALIGNED(width, 16)) { |
| SplitUVRow = SplitUVRow_DSPR2; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| // Copy a row of UV. |
| SplitUVRow(src_uv, dst_u, dst_v, width); |
| dst_u += dst_stride_u; |
| dst_v += dst_stride_v; |
| src_uv += src_stride_uv; |
| } |
| } |
| |
| LIBYUV_API |
| void MergeUVPlane(const uint8* src_u, |
| int src_stride_u, |
| const uint8* src_v, |
| int src_stride_v, |
| uint8* dst_uv, |
| int dst_stride_uv, |
| int width, |
| int height) { |
| int y; |
| void (*MergeUVRow)(const uint8* src_u, const uint8* src_v, uint8* dst_uv, |
| int width) = MergeUVRow_C; |
| // Coalesce rows. |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_uv = dst_uv + (height - 1) * dst_stride_uv; |
| dst_stride_uv = -dst_stride_uv; |
| } |
| // Coalesce rows. |
| if (src_stride_u == width && src_stride_v == width && |
| dst_stride_uv == width * 2) { |
| width *= height; |
| height = 1; |
| src_stride_u = src_stride_v = dst_stride_uv = 0; |
| } |
| #if defined(HAS_MERGEUVROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| MergeUVRow = MergeUVRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| MergeUVRow = MergeUVRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_MERGEUVROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| MergeUVRow = MergeUVRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| MergeUVRow = MergeUVRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_MERGEUVROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| MergeUVRow = MergeUVRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| MergeUVRow = MergeUVRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_MERGEUVROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| MergeUVRow = MergeUVRow_Any_MSA; |
| if (IS_ALIGNED(width, 16)) { |
| MergeUVRow = MergeUVRow_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| // Merge a row of U and V into a row of UV. |
| MergeUVRow(src_u, src_v, dst_uv, width); |
| src_u += src_stride_u; |
| src_v += src_stride_v; |
| dst_uv += dst_stride_uv; |
| } |
| } |
| |
| // Mirror a plane of data. |
| void MirrorPlane(const uint8* src_y, |
| int src_stride_y, |
| uint8* dst_y, |
| int dst_stride_y, |
| int width, |
| int height) { |
| int y; |
| void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C; |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_y = src_y + (height - 1) * src_stride_y; |
| src_stride_y = -src_stride_y; |
| } |
| #if defined(HAS_MIRRORROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| MirrorRow = MirrorRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| MirrorRow = MirrorRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_MIRRORROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| MirrorRow = MirrorRow_Any_SSSE3; |
| if (IS_ALIGNED(width, 16)) { |
| MirrorRow = MirrorRow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_MIRRORROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| MirrorRow = MirrorRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| MirrorRow = MirrorRow_AVX2; |
| } |
| } |
| #endif |
| // TODO(fbarchard): Mirror on mips handle unaligned memory. |
| #if defined(HAS_MIRRORROW_DSPR2) |
| if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_y, 4) && |
| IS_ALIGNED(src_stride_y, 4) && IS_ALIGNED(dst_y, 4) && |
| IS_ALIGNED(dst_stride_y, 4)) { |
| MirrorRow = MirrorRow_DSPR2; |
| } |
| #endif |
| #if defined(HAS_MIRRORROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| MirrorRow = MirrorRow_Any_MSA; |
| if (IS_ALIGNED(width, 64)) { |
| MirrorRow = MirrorRow_MSA; |
| } |
| } |
| #endif |
| |
| // Mirror plane |
| for (y = 0; y < height; ++y) { |
| MirrorRow(src_y, dst_y, width); |
| src_y += src_stride_y; |
| dst_y += dst_stride_y; |
| } |
| } |
| |
| // Convert YUY2 to I422. |
| LIBYUV_API |
| int YUY2ToI422(const uint8* src_yuy2, |
| int src_stride_yuy2, |
| uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_u, |
| int dst_stride_u, |
| uint8* dst_v, |
| int dst_stride_v, |
| int width, |
| int height) { |
| int y; |
| void (*YUY2ToUV422Row)(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v, |
| int width) = YUY2ToUV422Row_C; |
| void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int width) = |
| YUY2ToYRow_C; |
| if (!src_yuy2 || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; |
| src_stride_yuy2 = -src_stride_yuy2; |
| } |
| // Coalesce rows. |
| if (src_stride_yuy2 == width * 2 && dst_stride_y == width && |
| dst_stride_u * 2 == width && dst_stride_v * 2 == width && |
| width * height <= 32768) { |
| width *= height; |
| height = 1; |
| src_stride_yuy2 = dst_stride_y = dst_stride_u = dst_stride_v = 0; |
| } |
| #if defined(HAS_YUY2TOYROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2; |
| YUY2ToYRow = YUY2ToYRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| YUY2ToUV422Row = YUY2ToUV422Row_SSE2; |
| YUY2ToYRow = YUY2ToYRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_YUY2TOYROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| YUY2ToUV422Row = YUY2ToUV422Row_Any_AVX2; |
| YUY2ToYRow = YUY2ToYRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| YUY2ToUV422Row = YUY2ToUV422Row_AVX2; |
| YUY2ToYRow = YUY2ToYRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_YUY2TOYROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| YUY2ToYRow = YUY2ToYRow_Any_NEON; |
| YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| YUY2ToYRow = YUY2ToYRow_NEON; |
| YUY2ToUV422Row = YUY2ToUV422Row_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_YUY2TOYROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| YUY2ToYRow = YUY2ToYRow_Any_MSA; |
| YUY2ToUV422Row = YUY2ToUV422Row_Any_MSA; |
| if (IS_ALIGNED(width, 32)) { |
| YUY2ToYRow = YUY2ToYRow_MSA; |
| YUY2ToUV422Row = YUY2ToUV422Row_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width); |
| YUY2ToYRow(src_yuy2, dst_y, width); |
| src_yuy2 += src_stride_yuy2; |
| dst_y += dst_stride_y; |
| dst_u += dst_stride_u; |
| dst_v += dst_stride_v; |
| } |
| return 0; |
| } |
| |
| // Convert UYVY to I422. |
| LIBYUV_API |
| int UYVYToI422(const uint8* src_uyvy, |
| int src_stride_uyvy, |
| uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_u, |
| int dst_stride_u, |
| uint8* dst_v, |
| int dst_stride_v, |
| int width, |
| int height) { |
| int y; |
| void (*UYVYToUV422Row)(const uint8* src_uyvy, uint8* dst_u, uint8* dst_v, |
| int width) = UYVYToUV422Row_C; |
| void (*UYVYToYRow)(const uint8* src_uyvy, uint8* dst_y, int width) = |
| UYVYToYRow_C; |
| if (!src_uyvy || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; |
| src_stride_uyvy = -src_stride_uyvy; |
| } |
| // Coalesce rows. |
| if (src_stride_uyvy == width * 2 && dst_stride_y == width && |
| dst_stride_u * 2 == width && dst_stride_v * 2 == width && |
| width * height <= 32768) { |
| width *= height; |
| height = 1; |
| src_stride_uyvy = dst_stride_y = dst_stride_u = dst_stride_v = 0; |
| } |
| #if defined(HAS_UYVYTOYROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| UYVYToUV422Row = UYVYToUV422Row_Any_SSE2; |
| UYVYToYRow = UYVYToYRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| UYVYToUV422Row = UYVYToUV422Row_SSE2; |
| UYVYToYRow = UYVYToYRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_UYVYTOYROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| UYVYToUV422Row = UYVYToUV422Row_Any_AVX2; |
| UYVYToYRow = UYVYToYRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| UYVYToUV422Row = UYVYToUV422Row_AVX2; |
| UYVYToYRow = UYVYToYRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_UYVYTOYROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| UYVYToYRow = UYVYToYRow_Any_NEON; |
| UYVYToUV422Row = UYVYToUV422Row_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| UYVYToYRow = UYVYToYRow_NEON; |
| UYVYToUV422Row = UYVYToUV422Row_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_UYVYTOYROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| UYVYToYRow = UYVYToYRow_Any_MSA; |
| UYVYToUV422Row = UYVYToUV422Row_Any_MSA; |
| if (IS_ALIGNED(width, 32)) { |
| UYVYToYRow = UYVYToYRow_MSA; |
| UYVYToUV422Row = UYVYToUV422Row_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| UYVYToUV422Row(src_uyvy, dst_u, dst_v, width); |
| UYVYToYRow(src_uyvy, dst_y, width); |
| src_uyvy += src_stride_uyvy; |
| dst_y += dst_stride_y; |
| dst_u += dst_stride_u; |
| dst_v += dst_stride_v; |
| } |
| return 0; |
| } |
| |
| // Convert YUY2 to Y. |
| LIBYUV_API |
| int YUY2ToY(const uint8* src_yuy2, |
| int src_stride_yuy2, |
| uint8* dst_y, |
| int dst_stride_y, |
| int width, |
| int height) { |
| int y; |
| void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int width) = |
| YUY2ToYRow_C; |
| if (!src_yuy2 || !dst_y || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; |
| src_stride_yuy2 = -src_stride_yuy2; |
| } |
| // Coalesce rows. |
| if (src_stride_yuy2 == width * 2 && dst_stride_y == width) { |
| width *= height; |
| height = 1; |
| src_stride_yuy2 = dst_stride_y = 0; |
| } |
| #if defined(HAS_YUY2TOYROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| YUY2ToYRow = YUY2ToYRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| YUY2ToYRow = YUY2ToYRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_YUY2TOYROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| YUY2ToYRow = YUY2ToYRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| YUY2ToYRow = YUY2ToYRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_YUY2TOYROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| YUY2ToYRow = YUY2ToYRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| YUY2ToYRow = YUY2ToYRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_YUY2TOYROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| YUY2ToYRow = YUY2ToYRow_Any_MSA; |
| if (IS_ALIGNED(width, 32)) { |
| YUY2ToYRow = YUY2ToYRow_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| YUY2ToYRow(src_yuy2, dst_y, width); |
| src_yuy2 += src_stride_yuy2; |
| dst_y += dst_stride_y; |
| } |
| return 0; |
| } |
| |
| // Mirror I400 with optional flipping |
| LIBYUV_API |
| int I400Mirror(const uint8* src_y, |
| int src_stride_y, |
| uint8* dst_y, |
| int dst_stride_y, |
| int width, |
| int height) { |
| if (!src_y || !dst_y || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_y = src_y + (height - 1) * src_stride_y; |
| src_stride_y = -src_stride_y; |
| } |
| |
| MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); |
| return 0; |
| } |
| |
| // Mirror I420 with optional flipping |
| LIBYUV_API |
| int I420Mirror(const uint8* src_y, |
| int src_stride_y, |
| const uint8* src_u, |
| int src_stride_u, |
| const uint8* src_v, |
| int src_stride_v, |
| uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_u, |
| int dst_stride_u, |
| uint8* dst_v, |
| int dst_stride_v, |
| int width, |
| int height) { |
| int halfwidth = (width + 1) >> 1; |
| int halfheight = (height + 1) >> 1; |
| if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || width <= 0 || |
| height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| halfheight = (height + 1) >> 1; |
| src_y = src_y + (height - 1) * src_stride_y; |
| src_u = src_u + (halfheight - 1) * src_stride_u; |
| src_v = src_v + (halfheight - 1) * src_stride_v; |
| src_stride_y = -src_stride_y; |
| src_stride_u = -src_stride_u; |
| src_stride_v = -src_stride_v; |
| } |
| |
| if (dst_y) { |
| MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); |
| } |
| MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); |
| MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); |
| return 0; |
| } |
| |
| // ARGB mirror. |
| LIBYUV_API |
| int ARGBMirror(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBMirrorRow)(const uint8* src, uint8* dst, int width) = |
| ARGBMirrorRow_C; |
| if (!src_argb || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| #if defined(HAS_ARGBMIRRORROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBMirrorRow = ARGBMirrorRow_Any_NEON; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBMirrorRow = ARGBMirrorRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBMIRRORROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBMirrorRow = ARGBMirrorRow_Any_SSE2; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBMirrorRow = ARGBMirrorRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBMIRRORROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBMirrorRow = ARGBMirrorRow_Any_AVX2; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBMirrorRow = ARGBMirrorRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBMIRRORROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| ARGBMirrorRow = ARGBMirrorRow_Any_MSA; |
| if (IS_ALIGNED(width, 16)) { |
| ARGBMirrorRow = ARGBMirrorRow_MSA; |
| } |
| } |
| #endif |
| |
| // Mirror plane |
| for (y = 0; y < height; ++y) { |
| ARGBMirrorRow(src_argb, dst_argb, width); |
| src_argb += src_stride_argb; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Get a blender that optimized for the CPU and pixel count. |
| // As there are 6 blenders to choose from, the caller should try to use |
| // the same blend function for all pixels if possible. |
| LIBYUV_API |
| ARGBBlendRow GetARGBBlend() { |
| void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, |
| uint8* dst_argb, int width) = ARGBBlendRow_C; |
| #if defined(HAS_ARGBBLENDROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| ARGBBlendRow = ARGBBlendRow_SSSE3; |
| return ARGBBlendRow; |
| } |
| #endif |
| #if defined(HAS_ARGBBLENDROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBBlendRow = ARGBBlendRow_NEON; |
| } |
| #endif |
| return ARGBBlendRow; |
| } |
| |
| // Alpha Blend 2 ARGB images and store to destination. |
| LIBYUV_API |
| int ARGBBlend(const uint8* src_argb0, |
| int src_stride_argb0, |
| const uint8* src_argb1, |
| int src_stride_argb1, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, |
| uint8* dst_argb, int width) = GetARGBBlend(); |
| if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_argb = dst_argb + (height - 1) * dst_stride_argb; |
| dst_stride_argb = -dst_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 && |
| dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; |
| } |
| |
| for (y = 0; y < height; ++y) { |
| ARGBBlendRow(src_argb0, src_argb1, dst_argb, width); |
| src_argb0 += src_stride_argb0; |
| src_argb1 += src_stride_argb1; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Alpha Blend plane and store to destination. |
| LIBYUV_API |
| int BlendPlane(const uint8* src_y0, |
| int src_stride_y0, |
| const uint8* src_y1, |
| int src_stride_y1, |
| const uint8* alpha, |
| int alpha_stride, |
| uint8* dst_y, |
| int dst_stride_y, |
| int width, |
| int height) { |
| int y; |
| void (*BlendPlaneRow)(const uint8* src0, const uint8* src1, |
| const uint8* alpha, uint8* dst, int width) = |
| BlendPlaneRow_C; |
| if (!src_y0 || !src_y1 || !alpha || !dst_y || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_y = dst_y + (height - 1) * dst_stride_y; |
| dst_stride_y = -dst_stride_y; |
| } |
| |
| // Coalesce rows for Y plane. |
| if (src_stride_y0 == width && src_stride_y1 == width && |
| alpha_stride == width && dst_stride_y == width) { |
| width *= height; |
| height = 1; |
| src_stride_y0 = src_stride_y1 = alpha_stride = dst_stride_y = 0; |
| } |
| |
| #if defined(HAS_BLENDPLANEROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| BlendPlaneRow = BlendPlaneRow_Any_SSSE3; |
| if (IS_ALIGNED(width, 8)) { |
| BlendPlaneRow = BlendPlaneRow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_BLENDPLANEROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| BlendPlaneRow = BlendPlaneRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| BlendPlaneRow = BlendPlaneRow_AVX2; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| BlendPlaneRow(src_y0, src_y1, alpha, dst_y, width); |
| src_y0 += src_stride_y0; |
| src_y1 += src_stride_y1; |
| alpha += alpha_stride; |
| dst_y += dst_stride_y; |
| } |
| return 0; |
| } |
| |
| #define MAXTWIDTH 2048 |
| // Alpha Blend YUV images and store to destination. |
| LIBYUV_API |
| int I420Blend(const uint8* src_y0, |
| int src_stride_y0, |
| const uint8* src_u0, |
| int src_stride_u0, |
| const uint8* src_v0, |
| int src_stride_v0, |
| const uint8* src_y1, |
| int src_stride_y1, |
| const uint8* src_u1, |
| int src_stride_u1, |
| const uint8* src_v1, |
| int src_stride_v1, |
| const uint8* alpha, |
| int alpha_stride, |
| uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_u, |
| int dst_stride_u, |
| uint8* dst_v, |
| int dst_stride_v, |
| int width, |
| int height) { |
| int y; |
| // Half width/height for UV. |
| int halfwidth = (width + 1) >> 1; |
| void (*BlendPlaneRow)(const uint8* src0, const uint8* src1, |
| const uint8* alpha, uint8* dst, int width) = |
| BlendPlaneRow_C; |
| void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride, |
| uint8* dst_ptr, int dst_width) = ScaleRowDown2Box_C; |
| if (!src_y0 || !src_u0 || !src_v0 || !src_y1 || !src_u1 || !src_v1 || |
| !alpha || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { |
| return -1; |
| } |
| |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_y = dst_y + (height - 1) * dst_stride_y; |
| dst_stride_y = -dst_stride_y; |
| } |
| |
| // Blend Y plane. |
| BlendPlane(src_y0, src_stride_y0, src_y1, src_stride_y1, alpha, alpha_stride, |
| dst_y, dst_stride_y, width, height); |
| |
| #if defined(HAS_BLENDPLANEROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| BlendPlaneRow = BlendPlaneRow_Any_SSSE3; |
| if (IS_ALIGNED(halfwidth, 8)) { |
| BlendPlaneRow = BlendPlaneRow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_BLENDPLANEROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| BlendPlaneRow = BlendPlaneRow_Any_AVX2; |
| if (IS_ALIGNED(halfwidth, 32)) { |
| BlendPlaneRow = BlendPlaneRow_AVX2; |
| } |
| } |
| #endif |
| if (!IS_ALIGNED(width, 2)) { |
| ScaleRowDown2 = ScaleRowDown2Box_Odd_C; |
| } |
| #if defined(HAS_SCALEROWDOWN2_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ScaleRowDown2 = ScaleRowDown2Box_Odd_NEON; |
| if (IS_ALIGNED(width, 2)) { |
| ScaleRowDown2 = ScaleRowDown2Box_Any_NEON; |
| if (IS_ALIGNED(halfwidth, 16)) { |
| ScaleRowDown2 = ScaleRowDown2Box_NEON; |
| } |
| } |
| } |
| #endif |
| #if defined(HAS_SCALEROWDOWN2_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| ScaleRowDown2 = ScaleRowDown2Box_Odd_SSSE3; |
| if (IS_ALIGNED(width, 2)) { |
| ScaleRowDown2 = ScaleRowDown2Box_Any_SSSE3; |
| if (IS_ALIGNED(halfwidth, 16)) { |
| ScaleRowDown2 = ScaleRowDown2Box_SSSE3; |
| } |
| } |
| } |
| #endif |
| #if defined(HAS_SCALEROWDOWN2_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ScaleRowDown2 = ScaleRowDown2Box_Odd_AVX2; |
| if (IS_ALIGNED(width, 2)) { |
| ScaleRowDown2 = ScaleRowDown2Box_Any_AVX2; |
| if (IS_ALIGNED(halfwidth, 32)) { |
| ScaleRowDown2 = ScaleRowDown2Box_AVX2; |
| } |
| } |
| } |
| #endif |
| |
| // Row buffer for intermediate alpha pixels. |
| align_buffer_64(halfalpha, halfwidth); |
| for (y = 0; y < height; y += 2) { |
| // last row of odd height image use 1 row of alpha instead of 2. |
| if (y == (height - 1)) { |
| alpha_stride = 0; |
| } |
| // Subsample 2 rows of UV to half width and half height. |
| ScaleRowDown2(alpha, alpha_stride, halfalpha, halfwidth); |
| alpha += alpha_stride * 2; |
| BlendPlaneRow(src_u0, src_u1, halfalpha, dst_u, halfwidth); |
| BlendPlaneRow(src_v0, src_v1, halfalpha, dst_v, halfwidth); |
| src_u0 += src_stride_u0; |
| src_u1 += src_stride_u1; |
| dst_u += dst_stride_u; |
| src_v0 += src_stride_v0; |
| src_v1 += src_stride_v1; |
| dst_v += dst_stride_v; |
| } |
| free_aligned_buffer_64(halfalpha); |
| return 0; |
| } |
| |
| // Multiply 2 ARGB images and store to destination. |
| LIBYUV_API |
| int ARGBMultiply(const uint8* src_argb0, |
| int src_stride_argb0, |
| const uint8* src_argb1, |
| int src_stride_argb1, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBMultiplyRow)(const uint8* src0, const uint8* src1, uint8* dst, |
| int width) = ARGBMultiplyRow_C; |
| if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_argb = dst_argb + (height - 1) * dst_stride_argb; |
| dst_stride_argb = -dst_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 && |
| dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBMULTIPLYROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBMultiplyRow = ARGBMultiplyRow_Any_SSE2; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBMultiplyRow = ARGBMultiplyRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBMULTIPLYROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBMultiplyRow = ARGBMultiplyRow_Any_AVX2; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBMultiplyRow = ARGBMultiplyRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBMULTIPLYROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBMultiplyRow = ARGBMultiplyRow_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBMultiplyRow = ARGBMultiplyRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBMULTIPLYROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| ARGBMultiplyRow = ARGBMultiplyRow_Any_MSA; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBMultiplyRow = ARGBMultiplyRow_MSA; |
| } |
| } |
| #endif |
| |
| // Multiply plane |
| for (y = 0; y < height; ++y) { |
| ARGBMultiplyRow(src_argb0, src_argb1, dst_argb, width); |
| src_argb0 += src_stride_argb0; |
| src_argb1 += src_stride_argb1; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Add 2 ARGB images and store to destination. |
| LIBYUV_API |
| int ARGBAdd(const uint8* src_argb0, |
| int src_stride_argb0, |
| const uint8* src_argb1, |
| int src_stride_argb1, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBAddRow)(const uint8* src0, const uint8* src1, uint8* dst, |
| int width) = ARGBAddRow_C; |
| if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_argb = dst_argb + (height - 1) * dst_stride_argb; |
| dst_stride_argb = -dst_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 && |
| dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBADDROW_SSE2) && (defined(_MSC_VER) && !defined(__clang__)) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBAddRow = ARGBAddRow_SSE2; |
| } |
| #endif |
| #if defined(HAS_ARGBADDROW_SSE2) && !(defined(_MSC_VER) && !defined(__clang__)) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBAddRow = ARGBAddRow_Any_SSE2; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBAddRow = ARGBAddRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBADDROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBAddRow = ARGBAddRow_Any_AVX2; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBAddRow = ARGBAddRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBADDROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBAddRow = ARGBAddRow_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBAddRow = ARGBAddRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBADDROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| ARGBAddRow = ARGBAddRow_Any_MSA; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBAddRow = ARGBAddRow_MSA; |
| } |
| } |
| #endif |
| |
| // Add plane |
| for (y = 0; y < height; ++y) { |
| ARGBAddRow(src_argb0, src_argb1, dst_argb, width); |
| src_argb0 += src_stride_argb0; |
| src_argb1 += src_stride_argb1; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Subtract 2 ARGB images and store to destination. |
| LIBYUV_API |
| int ARGBSubtract(const uint8* src_argb0, |
| int src_stride_argb0, |
| const uint8* src_argb1, |
| int src_stride_argb1, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBSubtractRow)(const uint8* src0, const uint8* src1, uint8* dst, |
| int width) = ARGBSubtractRow_C; |
| if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_argb = dst_argb + (height - 1) * dst_stride_argb; |
| dst_stride_argb = -dst_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 && |
| dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBSUBTRACTROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBSubtractRow = ARGBSubtractRow_Any_SSE2; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBSubtractRow = ARGBSubtractRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBSUBTRACTROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBSubtractRow = ARGBSubtractRow_Any_AVX2; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBSubtractRow = ARGBSubtractRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBSUBTRACTROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBSubtractRow = ARGBSubtractRow_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBSubtractRow = ARGBSubtractRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBSUBTRACTROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| ARGBSubtractRow = ARGBSubtractRow_Any_MSA; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBSubtractRow = ARGBSubtractRow_MSA; |
| } |
| } |
| #endif |
| |
| // Subtract plane |
| for (y = 0; y < height; ++y) { |
| ARGBSubtractRow(src_argb0, src_argb1, dst_argb, width); |
| src_argb0 += src_stride_argb0; |
| src_argb1 += src_stride_argb1; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| // Convert I422 to RGBA with matrix |
| static int I422ToRGBAMatrix(const uint8* src_y, |
| int src_stride_y, |
| const uint8* src_u, |
| int src_stride_u, |
| const uint8* src_v, |
| int src_stride_v, |
| uint8* dst_rgba, |
| int dst_stride_rgba, |
| const struct YuvConstants* yuvconstants, |
| int width, |
| int height) { |
| int y; |
| void (*I422ToRGBARow)(const uint8* y_buf, const uint8* u_buf, |
| const uint8* v_buf, uint8* rgb_buf, |
| const struct YuvConstants* yuvconstants, int width) = |
| I422ToRGBARow_C; |
| if (!src_y || !src_u || !src_v || !dst_rgba || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_rgba = dst_rgba + (height - 1) * dst_stride_rgba; |
| dst_stride_rgba = -dst_stride_rgba; |
| } |
| #if defined(HAS_I422TORGBAROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| I422ToRGBARow = I422ToRGBARow_Any_SSSE3; |
| if (IS_ALIGNED(width, 8)) { |
| I422ToRGBARow = I422ToRGBARow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_I422TORGBAROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| I422ToRGBARow = I422ToRGBARow_Any_AVX2; |
| if (IS_ALIGNED(width, 16)) { |
| I422ToRGBARow = I422ToRGBARow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_I422TORGBAROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| I422ToRGBARow = I422ToRGBARow_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| I422ToRGBARow = I422ToRGBARow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_I422TORGBAROW_DSPR2) |
| if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 4) && |
| IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && |
| IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && |
| IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) && |
| IS_ALIGNED(dst_rgba, 4) && IS_ALIGNED(dst_stride_rgba, 4)) { |
| I422ToRGBARow = I422ToRGBARow_DSPR2; |
| } |
| #endif |
| #if defined(HAS_I422TORGBAROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| I422ToRGBARow = I422ToRGBARow_Any_MSA; |
| if (IS_ALIGNED(width, 8)) { |
| I422ToRGBARow = I422ToRGBARow_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| I422ToRGBARow(src_y, src_u, src_v, dst_rgba, yuvconstants, width); |
| dst_rgba += dst_stride_rgba; |
| src_y += src_stride_y; |
| src_u += src_stride_u; |
| src_v += src_stride_v; |
| } |
| return 0; |
| } |
| |
| // Convert I422 to RGBA. |
| LIBYUV_API |
| int I422ToRGBA(const uint8* src_y, |
| int src_stride_y, |
| const uint8* src_u, |
| int src_stride_u, |
| const uint8* src_v, |
| int src_stride_v, |
| uint8* dst_rgba, |
| int dst_stride_rgba, |
| int width, |
| int height) { |
| return I422ToRGBAMatrix(src_y, src_stride_y, src_u, src_stride_u, src_v, |
| src_stride_v, dst_rgba, dst_stride_rgba, |
| &kYuvI601Constants, width, height); |
| } |
| |
| // Convert I422 to BGRA. |
| LIBYUV_API |
| int I422ToBGRA(const uint8* src_y, |
| int src_stride_y, |
| const uint8* src_u, |
| int src_stride_u, |
| const uint8* src_v, |
| int src_stride_v, |
| uint8* dst_bgra, |
| int dst_stride_bgra, |
| int width, |
| int height) { |
| return I422ToRGBAMatrix(src_y, src_stride_y, src_v, |
| src_stride_v, // Swap U and V |
| src_u, src_stride_u, dst_bgra, dst_stride_bgra, |
| &kYvuI601Constants, // Use Yvu matrix |
| width, height); |
| } |
| |
| // Convert NV12 to RGB565. |
| LIBYUV_API |
| int NV12ToRGB565(const uint8* src_y, |
| int src_stride_y, |
| const uint8* src_uv, |
| int src_stride_uv, |
| uint8* dst_rgb565, |
| int dst_stride_rgb565, |
| int width, |
| int height) { |
| int y; |
| void (*NV12ToRGB565Row)( |
| const uint8* y_buf, const uint8* uv_buf, uint8* rgb_buf, |
| const struct YuvConstants* yuvconstants, int width) = NV12ToRGB565Row_C; |
| if (!src_y || !src_uv || !dst_rgb565 || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565; |
| dst_stride_rgb565 = -dst_stride_rgb565; |
| } |
| #if defined(HAS_NV12TORGB565ROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| NV12ToRGB565Row = NV12ToRGB565Row_Any_SSSE3; |
| if (IS_ALIGNED(width, 8)) { |
| NV12ToRGB565Row = NV12ToRGB565Row_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_NV12TORGB565ROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| NV12ToRGB565Row = NV12ToRGB565Row_Any_AVX2; |
| if (IS_ALIGNED(width, 16)) { |
| NV12ToRGB565Row = NV12ToRGB565Row_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_NV12TORGB565ROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| NV12ToRGB565Row = NV12ToRGB565Row_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| NV12ToRGB565Row = NV12ToRGB565Row_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_NV12TORGB565ROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| NV12ToRGB565Row = NV12ToRGB565Row_Any_MSA; |
| if (IS_ALIGNED(width, 8)) { |
| NV12ToRGB565Row = NV12ToRGB565Row_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| NV12ToRGB565Row(src_y, src_uv, dst_rgb565, &kYuvI601Constants, width); |
| dst_rgb565 += dst_stride_rgb565; |
| src_y += src_stride_y; |
| if (y & 1) { |
| src_uv += src_stride_uv; |
| } |
| } |
| return 0; |
| } |
| |
| // Convert RAW to RGB24. |
| LIBYUV_API |
| int RAWToRGB24(const uint8* src_raw, |
| int src_stride_raw, |
| uint8* dst_rgb24, |
| int dst_stride_rgb24, |
| int width, |
| int height) { |
| int y; |
| void (*RAWToRGB24Row)(const uint8* src_rgb, uint8* dst_rgb24, int width) = |
| RAWToRGB24Row_C; |
| if (!src_raw || !dst_rgb24 || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_raw = src_raw + (height - 1) * src_stride_raw; |
| src_stride_raw = -src_stride_raw; |
| } |
| // Coalesce rows. |
| if (src_stride_raw == width * 3 && dst_stride_rgb24 == width * 3) { |
| width *= height; |
| height = 1; |
| src_stride_raw = dst_stride_rgb24 = 0; |
| } |
| #if defined(HAS_RAWTORGB24ROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| RAWToRGB24Row = RAWToRGB24Row_Any_SSSE3; |
| if (IS_ALIGNED(width, 8)) { |
| RAWToRGB24Row = RAWToRGB24Row_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_RAWTORGB24ROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| RAWToRGB24Row = RAWToRGB24Row_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| RAWToRGB24Row = RAWToRGB24Row_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_RAWTORGB24ROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| RAWToRGB24Row = RAWToRGB24Row_Any_MSA; |
| if (IS_ALIGNED(width, 16)) { |
| RAWToRGB24Row = RAWToRGB24Row_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| RAWToRGB24Row(src_raw, dst_rgb24, width); |
| src_raw += src_stride_raw; |
| dst_rgb24 += dst_stride_rgb24; |
| } |
| return 0; |
| } |
| |
| LIBYUV_API |
| void SetPlane(uint8* dst_y, |
| int dst_stride_y, |
| int width, |
| int height, |
| uint32 value) { |
| int y; |
| void (*SetRow)(uint8 * dst, uint8 value, int width) = SetRow_C; |
| if (height < 0) { |
| height = -height; |
| dst_y = dst_y + (height - 1) * dst_stride_y; |
| dst_stride_y = -dst_stride_y; |
| } |
| // Coalesce rows. |
| if (dst_stride_y == width) { |
| width *= height; |
| height = 1; |
| dst_stride_y = 0; |
| } |
| #if defined(HAS_SETROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SetRow = SetRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| SetRow = SetRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_SETROW_X86) |
| if (TestCpuFlag(kCpuHasX86)) { |
| SetRow = SetRow_Any_X86; |
| if (IS_ALIGNED(width, 4)) { |
| SetRow = SetRow_X86; |
| } |
| } |
| #endif |
| #if defined(HAS_SETROW_ERMS) |
| if (TestCpuFlag(kCpuHasERMS)) { |
| SetRow = SetRow_ERMS; |
| } |
| #endif |
| |
| // Set plane |
| for (y = 0; y < height; ++y) { |
| SetRow(dst_y, value, width); |
| dst_y += dst_stride_y; |
| } |
| } |
| |
| // Draw a rectangle into I420 |
| LIBYUV_API |
| int I420Rect(uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_u, |
| int dst_stride_u, |
| uint8* dst_v, |
| int dst_stride_v, |
| int x, |
| int y, |
| int width, |
| int height, |
| int value_y, |
| int value_u, |
| int value_v) { |
| int halfwidth = (width + 1) >> 1; |
| int halfheight = (height + 1) >> 1; |
| uint8* start_y = dst_y + y * dst_stride_y + x; |
| uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2); |
| uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2); |
| if (!dst_y || !dst_u || !dst_v || width <= 0 || height == 0 || x < 0 || |
| y < 0 || value_y < 0 || value_y > 255 || value_u < 0 || value_u > 255 || |
| value_v < 0 || value_v > 255) { |
| return -1; |
| } |
| |
| SetPlane(start_y, dst_stride_y, width, height, value_y); |
| SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u); |
| SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v); |
| return 0; |
| } |
| |
| // Draw a rectangle into ARGB |
| LIBYUV_API |
| int ARGBRect(uint8* dst_argb, |
| int dst_stride_argb, |
| int dst_x, |
| int dst_y, |
| int width, |
| int height, |
| uint32 value) { |
| int y; |
| void (*ARGBSetRow)(uint8 * dst_argb, uint32 value, int width) = ARGBSetRow_C; |
| if (!dst_argb || width <= 0 || height == 0 || dst_x < 0 || dst_y < 0) { |
| return -1; |
| } |
| if (height < 0) { |
| height = -height; |
| dst_argb = dst_argb + (height - 1) * dst_stride_argb; |
| dst_stride_argb = -dst_stride_argb; |
| } |
| dst_argb += dst_y * dst_stride_argb + dst_x * 4; |
| // Coalesce rows. |
| if (dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| dst_stride_argb = 0; |
| } |
| |
| #if defined(HAS_ARGBSETROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBSetRow = ARGBSetRow_Any_NEON; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBSetRow = ARGBSetRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBSETROW_X86) |
| if (TestCpuFlag(kCpuHasX86)) { |
| ARGBSetRow = ARGBSetRow_X86; |
| } |
| #endif |
| #if defined(HAS_ARGBSETROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| ARGBSetRow = ARGBSetRow_Any_MSA; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBSetRow = ARGBSetRow_MSA; |
| } |
| } |
| #endif |
| |
| // Set plane |
| for (y = 0; y < height; ++y) { |
| ARGBSetRow(dst_argb, value, width); |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Convert unattentuated ARGB to preattenuated ARGB. |
| // An unattenutated ARGB alpha blend uses the formula |
| // p = a * f + (1 - a) * b |
| // where |
| // p is output pixel |
| // f is foreground pixel |
| // b is background pixel |
| // a is alpha value from foreground pixel |
| // An preattenutated ARGB alpha blend uses the formula |
| // p = f + (1 - a) * b |
| // where |
| // f is foreground pixel premultiplied by alpha |
| |
| LIBYUV_API |
| int ARGBAttenuate(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb, int width) = |
| ARGBAttenuateRow_C; |
| if (!src_argb || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBATTENUATEROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| ARGBAttenuateRow = ARGBAttenuateRow_Any_SSSE3; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBAttenuateRow = ARGBAttenuateRow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBATTENUATEROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBAttenuateRow = ARGBAttenuateRow_Any_AVX2; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBAttenuateRow = ARGBAttenuateRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBATTENUATEROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBAttenuateRow = ARGBAttenuateRow_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBAttenuateRow = ARGBAttenuateRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBATTENUATEROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| ARGBAttenuateRow = ARGBAttenuateRow_Any_MSA; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBAttenuateRow = ARGBAttenuateRow_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBAttenuateRow(src_argb, dst_argb, width); |
| src_argb += src_stride_argb; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Convert preattentuated ARGB to unattenuated ARGB. |
| LIBYUV_API |
| int ARGBUnattenuate(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb, |
| int width) = ARGBUnattenuateRow_C; |
| if (!src_argb || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBUNATTENUATEROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBUnattenuateRow = ARGBUnattenuateRow_Any_SSE2; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBUNATTENUATEROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBUnattenuateRow = ARGBUnattenuateRow_Any_AVX2; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBUnattenuateRow = ARGBUnattenuateRow_AVX2; |
| } |
| } |
| #endif |
| // TODO(fbarchard): Neon version. |
| |
| for (y = 0; y < height; ++y) { |
| ARGBUnattenuateRow(src_argb, dst_argb, width); |
| src_argb += src_stride_argb; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Convert ARGB to Grayed ARGB. |
| LIBYUV_API |
| int ARGBGrayTo(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb, int width) = |
| ARGBGrayRow_C; |
| if (!src_argb || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBGRAYROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { |
| ARGBGrayRow = ARGBGrayRow_SSSE3; |
| } |
| #endif |
| #if defined(HAS_ARGBGRAYROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { |
| ARGBGrayRow = ARGBGrayRow_NEON; |
| } |
| #endif |
| #if defined(HAS_ARGBGRAYROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 8)) { |
| ARGBGrayRow = ARGBGrayRow_MSA; |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBGrayRow(src_argb, dst_argb, width); |
| src_argb += src_stride_argb; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Make a rectangle of ARGB gray scale. |
| LIBYUV_API |
| int ARGBGray(uint8* dst_argb, |
| int dst_stride_argb, |
| int dst_x, |
| int dst_y, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb, int width) = |
| ARGBGrayRow_C; |
| uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; |
| if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { |
| return -1; |
| } |
| // Coalesce rows. |
| if (dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBGRAYROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { |
| ARGBGrayRow = ARGBGrayRow_SSSE3; |
| } |
| #endif |
| #if defined(HAS_ARGBGRAYROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { |
| ARGBGrayRow = ARGBGrayRow_NEON; |
| } |
| #endif |
| #if defined(HAS_ARGBGRAYROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 8)) { |
| ARGBGrayRow = ARGBGrayRow_MSA; |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBGrayRow(dst, dst, width); |
| dst += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Make a rectangle of ARGB Sepia tone. |
| LIBYUV_API |
| int ARGBSepia(uint8* dst_argb, |
| int dst_stride_argb, |
| int dst_x, |
| int dst_y, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBSepiaRow)(uint8 * dst_argb, int width) = ARGBSepiaRow_C; |
| uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; |
| if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { |
| return -1; |
| } |
| // Coalesce rows. |
| if (dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBSEPIAROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { |
| ARGBSepiaRow = ARGBSepiaRow_SSSE3; |
| } |
| #endif |
| #if defined(HAS_ARGBSEPIAROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { |
| ARGBSepiaRow = ARGBSepiaRow_NEON; |
| } |
| #endif |
| #if defined(HAS_ARGBSEPIAROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 8)) { |
| ARGBSepiaRow = ARGBSepiaRow_MSA; |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBSepiaRow(dst, width); |
| dst += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Apply a 4x4 matrix to each ARGB pixel. |
| // Note: Normally for shading, but can be used to swizzle or invert. |
| LIBYUV_API |
| int ARGBColorMatrix(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| const int8* matrix_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBColorMatrixRow)(const uint8* src_argb, uint8* dst_argb, |
| const int8* matrix_argb, int width) = |
| ARGBColorMatrixRow_C; |
| if (!src_argb || !dst_argb || !matrix_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBCOLORMATRIXROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { |
| ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3; |
| } |
| #endif |
| #if defined(HAS_ARGBCOLORMATRIXROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { |
| ARGBColorMatrixRow = ARGBColorMatrixRow_NEON; |
| } |
| #endif |
| for (y = 0; y < height; ++y) { |
| ARGBColorMatrixRow(src_argb, dst_argb, matrix_argb, width); |
| src_argb += src_stride_argb; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Apply a 4x3 matrix to each ARGB pixel. |
| // Deprecated. |
| LIBYUV_API |
| int RGBColorMatrix(uint8* dst_argb, |
| int dst_stride_argb, |
| const int8* matrix_rgb, |
| int dst_x, |
| int dst_y, |
| int width, |
| int height) { |
| SIMD_ALIGNED(int8 matrix_argb[16]); |
| uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; |
| if (!dst_argb || !matrix_rgb || width <= 0 || height <= 0 || dst_x < 0 || |
| dst_y < 0) { |
| return -1; |
| } |
| |
| // Convert 4x3 7 bit matrix to 4x4 6 bit matrix. |
| matrix_argb[0] = matrix_rgb[0] / 2; |
| matrix_argb[1] = matrix_rgb[1] / 2; |
| matrix_argb[2] = matrix_rgb[2] / 2; |
| matrix_argb[3] = matrix_rgb[3] / 2; |
| matrix_argb[4] = matrix_rgb[4] / 2; |
| matrix_argb[5] = matrix_rgb[5] / 2; |
| matrix_argb[6] = matrix_rgb[6] / 2; |
| matrix_argb[7] = matrix_rgb[7] / 2; |
| matrix_argb[8] = matrix_rgb[8] / 2; |
| matrix_argb[9] = matrix_rgb[9] / 2; |
| matrix_argb[10] = matrix_rgb[10] / 2; |
| matrix_argb[11] = matrix_rgb[11] / 2; |
| matrix_argb[14] = matrix_argb[13] = matrix_argb[12] = 0; |
| matrix_argb[15] = 64; // 1.0 |
| |
| return ARGBColorMatrix((const uint8*)(dst), dst_stride_argb, dst, |
| dst_stride_argb, &matrix_argb[0], width, height); |
| } |
| |
| // Apply a color table each ARGB pixel. |
| // Table contains 256 ARGB values. |
| LIBYUV_API |
| int ARGBColorTable(uint8* dst_argb, |
| int dst_stride_argb, |
| const uint8* table_argb, |
| int dst_x, |
| int dst_y, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBColorTableRow)(uint8 * dst_argb, const uint8* table_argb, |
| int width) = ARGBColorTableRow_C; |
| uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; |
| if (!dst_argb || !table_argb || width <= 0 || height <= 0 || dst_x < 0 || |
| dst_y < 0) { |
| return -1; |
| } |
| // Coalesce rows. |
| if (dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBCOLORTABLEROW_X86) |
| if (TestCpuFlag(kCpuHasX86)) { |
| ARGBColorTableRow = ARGBColorTableRow_X86; |
| } |
| #endif |
| for (y = 0; y < height; ++y) { |
| ARGBColorTableRow(dst, table_argb, width); |
| dst += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Apply a color table each ARGB pixel but preserve destination alpha. |
| // Table contains 256 ARGB values. |
| LIBYUV_API |
| int RGBColorTable(uint8* dst_argb, |
| int dst_stride_argb, |
| const uint8* table_argb, |
| int dst_x, |
| int dst_y, |
| int width, |
| int height) { |
| int y; |
| void (*RGBColorTableRow)(uint8 * dst_argb, const uint8* table_argb, |
| int width) = RGBColorTableRow_C; |
| uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; |
| if (!dst_argb || !table_argb || width <= 0 || height <= 0 || dst_x < 0 || |
| dst_y < 0) { |
| return -1; |
| } |
| // Coalesce rows. |
| if (dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| dst_stride_argb = 0; |
| } |
| #if defined(HAS_RGBCOLORTABLEROW_X86) |
| if (TestCpuFlag(kCpuHasX86)) { |
| RGBColorTableRow = RGBColorTableRow_X86; |
| } |
| #endif |
| for (y = 0; y < height; ++y) { |
| RGBColorTableRow(dst, table_argb, width); |
| dst += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // ARGBQuantize is used to posterize art. |
| // e.g. rgb / qvalue * qvalue + qvalue / 2 |
| // But the low levels implement efficiently with 3 parameters, and could be |
| // used for other high level operations. |
| // dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset; |
| // where scale is 1 / interval_size as a fixed point value. |
| // The divide is replaces with a multiply by reciprocal fixed point multiply. |
| // Caveat - although SSE2 saturates, the C function does not and should be used |
| // with care if doing anything but quantization. |
| LIBYUV_API |
| int ARGBQuantize(uint8* dst_argb, |
| int dst_stride_argb, |
| int scale, |
| int interval_size, |
| int interval_offset, |
| int dst_x, |
| int dst_y, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBQuantizeRow)(uint8 * dst_argb, int scale, int interval_size, |
| int interval_offset, int width) = ARGBQuantizeRow_C; |
| uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; |
| if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0 || |
| interval_size < 1 || interval_size > 255) { |
| return -1; |
| } |
| // Coalesce rows. |
| if (dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBQUANTIZEROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { |
| ARGBQuantizeRow = ARGBQuantizeRow_SSE2; |
| } |
| #endif |
| #if defined(HAS_ARGBQUANTIZEROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { |
| ARGBQuantizeRow = ARGBQuantizeRow_NEON; |
| } |
| #endif |
| for (y = 0; y < height; ++y) { |
| ARGBQuantizeRow(dst, scale, interval_size, interval_offset, width); |
| dst += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Computes table of cumulative sum for image where the value is the sum |
| // of all values above and to the left of the entry. Used by ARGBBlur. |
| LIBYUV_API |
| int ARGBComputeCumulativeSum(const uint8* src_argb, |
| int src_stride_argb, |
| int32* dst_cumsum, |
| int dst_stride32_cumsum, |
| int width, |
| int height) { |
| int y; |
| void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum, |
| const int32* previous_cumsum, int width) = |
| ComputeCumulativeSumRow_C; |
| int32* previous_cumsum = dst_cumsum; |
| if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) { |
| return -1; |
| } |
| #if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; |
| } |
| #endif |
| memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel. |
| for (y = 0; y < height; ++y) { |
| ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width); |
| previous_cumsum = dst_cumsum; |
| dst_cumsum += dst_stride32_cumsum; |
| src_argb += src_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Blur ARGB image. |
| // Caller should allocate CumulativeSum table of width * height * 16 bytes |
| // aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory |
| // as the buffer is treated as circular. |
| LIBYUV_API |
| int ARGBBlur(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int32* dst_cumsum, |
| int dst_stride32_cumsum, |
| int width, |
| int height, |
| int radius) { |
| int y; |
| void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum, |
| const int32* previous_cumsum, int width) = |
| ComputeCumulativeSumRow_C; |
| void (*CumulativeSumToAverageRow)(const int32* topleft, const int32* botleft, |
| int width, int area, uint8* dst, |
| int count) = CumulativeSumToAverageRow_C; |
| int32* cumsum_bot_row; |
| int32* max_cumsum_bot_row; |
| int32* cumsum_top_row; |
| |
| if (!src_argb || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| if (radius > height) { |
| radius = height; |
| } |
| if (radius > (width / 2 - 1)) { |
| radius = width / 2 - 1; |
| } |
| if (radius <= 0) { |
| return -1; |
| } |
| #if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; |
| CumulativeSumToAverageRow = CumulativeSumToAverageRow_SSE2; |
| } |
| #endif |
| // Compute enough CumulativeSum for first row to be blurred. After this |
| // one row of CumulativeSum is updated at a time. |
| ARGBComputeCumulativeSum(src_argb, src_stride_argb, dst_cumsum, |
| dst_stride32_cumsum, width, radius); |
| |
| src_argb = src_argb + radius * src_stride_argb; |
| cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum]; |
| |
| max_cumsum_bot_row = &dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum]; |
| cumsum_top_row = &dst_cumsum[0]; |
| |
| for (y = 0; y < height; ++y) { |
| int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0; |
| int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1); |
| int area = radius * (bot_y - top_y); |
| int boxwidth = radius * 4; |
| int x; |
| int n; |
| |
| // Increment cumsum_top_row pointer with circular buffer wrap around. |
| if (top_y) { |
| cumsum_top_row += dst_stride32_cumsum; |
| if (cumsum_top_row >= max_cumsum_bot_row) { |
| cumsum_top_row = dst_cumsum; |
| } |
| } |
| // Increment cumsum_bot_row pointer with circular buffer wrap around and |
| // then fill in a row of CumulativeSum. |
| if ((y + radius) < height) { |
| const int32* prev_cumsum_bot_row = cumsum_bot_row; |
| cumsum_bot_row += dst_stride32_cumsum; |
| if (cumsum_bot_row >= max_cumsum_bot_row) { |
| cumsum_bot_row = dst_cumsum; |
| } |
| ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row, |
| width); |
| src_argb += src_stride_argb; |
| } |
| |
| // Left clipped. |
| for (x = 0; x < radius + 1; ++x) { |
| CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row, boxwidth, area, |
| &dst_argb[x * 4], 1); |
| area += (bot_y - top_y); |
| boxwidth += 4; |
| } |
| |
| // Middle unclipped. |
| n = (width - 1) - radius - x + 1; |
| CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row, boxwidth, area, |
| &dst_argb[x * 4], n); |
| |
| // Right clipped. |
| for (x += n; x <= width - 1; ++x) { |
| area -= (bot_y - top_y); |
| boxwidth -= 4; |
| CumulativeSumToAverageRow(cumsum_top_row + (x - radius - 1) * 4, |
| cumsum_bot_row + (x - radius - 1) * 4, boxwidth, |
| area, &dst_argb[x * 4], 1); |
| } |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Multiply ARGB image by a specified ARGB value. |
| LIBYUV_API |
| int ARGBShade(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height, |
| uint32 value) { |
| int y; |
| void (*ARGBShadeRow)(const uint8* src_argb, uint8* dst_argb, int width, |
| uint32 value) = ARGBShadeRow_C; |
| if (!src_argb || !dst_argb || width <= 0 || height == 0 || value == 0u) { |
| return -1; |
| } |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBSHADEROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { |
| ARGBShadeRow = ARGBShadeRow_SSE2; |
| } |
| #endif |
| #if defined(HAS_ARGBSHADEROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { |
| ARGBShadeRow = ARGBShadeRow_NEON; |
| } |
| #endif |
| #if defined(HAS_ARGBSHADEROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 4)) { |
| ARGBShadeRow = ARGBShadeRow_MSA; |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBShadeRow(src_argb, dst_argb, width, value); |
| src_argb += src_stride_argb; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Interpolate 2 planes by specified amount (0 to 255). |
| LIBYUV_API |
| int InterpolatePlane(const uint8* src0, |
| int src_stride0, |
| const uint8* src1, |
| int src_stride1, |
| uint8* dst, |
| int dst_stride, |
| int width, |
| int height, |
| int interpolation) { |
| int y; |
| void (*InterpolateRow)(uint8 * dst_ptr, const uint8* src_ptr, |
| ptrdiff_t src_stride, int dst_width, |
| int source_y_fraction) = InterpolateRow_C; |
| if (!src0 || !src1 || !dst || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| dst = dst + (height - 1) * dst_stride; |
| dst_stride = -dst_stride; |
| } |
| // Coalesce rows. |
| if (src_stride0 == width && src_stride1 == width && dst_stride == width) { |
| width *= height; |
| height = 1; |
| src_stride0 = src_stride1 = dst_stride = 0; |
| } |
| #if defined(HAS_INTERPOLATEROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| InterpolateRow = InterpolateRow_Any_SSSE3; |
| if (IS_ALIGNED(width, 16)) { |
| InterpolateRow = InterpolateRow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| InterpolateRow = InterpolateRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| InterpolateRow = InterpolateRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| InterpolateRow = InterpolateRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| InterpolateRow = InterpolateRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_DSPR2) |
| if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src0, 4) && |
| IS_ALIGNED(src_stride0, 4) && IS_ALIGNED(src1, 4) && |
| IS_ALIGNED(src_stride1, 4) && IS_ALIGNED(dst, 4) && |
| IS_ALIGNED(dst_stride, 4) && IS_ALIGNED(width, 4)) { |
| InterpolateRow = InterpolateRow_DSPR2; |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| InterpolateRow = InterpolateRow_Any_MSA; |
| if (IS_ALIGNED(width, 32)) { |
| InterpolateRow = InterpolateRow_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| InterpolateRow(dst, src0, src1 - src0, width, interpolation); |
| src0 += src_stride0; |
| src1 += src_stride1; |
| dst += dst_stride; |
| } |
| return 0; |
| } |
| |
| // Interpolate 2 ARGB images by specified amount (0 to 255). |
| LIBYUV_API |
| int ARGBInterpolate(const uint8* src_argb0, |
| int src_stride_argb0, |
| const uint8* src_argb1, |
| int src_stride_argb1, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height, |
| int interpolation) { |
| return InterpolatePlane(src_argb0, src_stride_argb0, src_argb1, |
| src_stride_argb1, dst_argb, dst_stride_argb, |
| width * 4, height, interpolation); |
| } |
| |
| // Interpolate 2 YUV images by specified amount (0 to 255). |
| LIBYUV_API |
| int I420Interpolate(const uint8* src0_y, |
| int src0_stride_y, |
| const uint8* src0_u, |
| int src0_stride_u, |
| const uint8* src0_v, |
| int src0_stride_v, |
| const uint8* src1_y, |
| int src1_stride_y, |
| const uint8* src1_u, |
| int src1_stride_u, |
| const uint8* src1_v, |
| int src1_stride_v, |
| uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_u, |
| int dst_stride_u, |
| uint8* dst_v, |
| int dst_stride_v, |
| int width, |
| int height, |
| int interpolation) { |
| int halfwidth = (width + 1) >> 1; |
| int halfheight = (height + 1) >> 1; |
| if (!src0_y || !src0_u || !src0_v || !src1_y || !src1_u || !src1_v || |
| !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { |
| return -1; |
| } |
| InterpolatePlane(src0_y, src0_stride_y, src1_y, src1_stride_y, dst_y, |
| dst_stride_y, width, height, interpolation); |
| InterpolatePlane(src0_u, src0_stride_u, src1_u, src1_stride_u, dst_u, |
| dst_stride_u, halfwidth, halfheight, interpolation); |
| InterpolatePlane(src0_v, src0_stride_v, src1_v, src1_stride_v, dst_v, |
| dst_stride_v, halfwidth, halfheight, interpolation); |
| return 0; |
| } |
| |
| // Shuffle ARGB channel order. e.g. BGRA to ARGB. |
| LIBYUV_API |
| int ARGBShuffle(const uint8* src_bgra, |
| int src_stride_bgra, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| const uint8* shuffler, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBShuffleRow)(const uint8* src_bgra, uint8* dst_argb, |
| const uint8* shuffler, int width) = ARGBShuffleRow_C; |
| if (!src_bgra || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_bgra = src_bgra + (height - 1) * src_stride_bgra; |
| src_stride_bgra = -src_stride_bgra; |
| } |
| // Coalesce rows. |
| if (src_stride_bgra == width * 4 && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_bgra = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBSHUFFLEROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBShuffleRow = ARGBShuffleRow_Any_SSE2; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBShuffleRow = ARGBShuffleRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBSHUFFLEROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| ARGBShuffleRow = ARGBShuffleRow_Any_SSSE3; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBShuffleRow = ARGBShuffleRow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBSHUFFLEROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBShuffleRow = ARGBShuffleRow_Any_AVX2; |
| if (IS_ALIGNED(width, 16)) { |
| ARGBShuffleRow = ARGBShuffleRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBSHUFFLEROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBShuffleRow = ARGBShuffleRow_Any_NEON; |
| if (IS_ALIGNED(width, 4)) { |
| ARGBShuffleRow = ARGBShuffleRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBSHUFFLEROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| ARGBShuffleRow = ARGBShuffleRow_Any_MSA; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBShuffleRow = ARGBShuffleRow_MSA; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBShuffleRow(src_bgra, dst_argb, shuffler, width); |
| src_bgra += src_stride_bgra; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Sobel ARGB effect. |
| static int ARGBSobelize(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height, |
| void (*SobelRow)(const uint8* src_sobelx, |
| const uint8* src_sobely, |
| uint8* dst, |
| int width)) { |
| int y; |
| void (*ARGBToYJRow)(const uint8* src_argb, uint8* dst_g, int width) = |
| ARGBToYJRow_C; |
| void (*SobelYRow)(const uint8* src_y0, const uint8* src_y1, uint8* dst_sobely, |
| int width) = SobelYRow_C; |
| void (*SobelXRow)(const uint8* src_y0, const uint8* src_y1, |
| const uint8* src_y2, uint8* dst_sobely, int width) = |
| SobelXRow_C; |
| const int kEdge = 16; // Extra pixels at start of row for extrude/align. |
| if (!src_argb || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| |
| #if defined(HAS_ARGBTOYJROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| ARGBToYJRow = ARGBToYJRow_Any_SSSE3; |
| if (IS_ALIGNED(width, 16)) { |
| ARGBToYJRow = ARGBToYJRow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBTOYJROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBToYJRow = ARGBToYJRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| ARGBToYJRow = ARGBToYJRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBTOYJROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBToYJRow = ARGBToYJRow_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBToYJRow = ARGBToYJRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBTOYJROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| ARGBToYJRow = ARGBToYJRow_Any_MSA; |
| if (IS_ALIGNED(width, 16)) { |
| ARGBToYJRow = ARGBToYJRow_MSA; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_SOBELYROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| SobelYRow = SobelYRow_SSE2; |
| } |
| #endif |
| #if defined(HAS_SOBELYROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SobelYRow = SobelYRow_NEON; |
| } |
| #endif |
| #if defined(HAS_SOBELXROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| SobelXRow = SobelXRow_SSE2; |
| } |
| #endif |
| #if defined(HAS_SOBELXROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SobelXRow = SobelXRow_NEON; |
| } |
| #endif |
| { |
| // 3 rows with edges before/after. |
| const int kRowSize = (width + kEdge + 31) & ~31; |
| align_buffer_64(rows, kRowSize * 2 + (kEdge + kRowSize * 3 + kEdge)); |
| uint8* row_sobelx = rows; |
| uint8* row_sobely = rows + kRowSize; |
| uint8* row_y = rows + kRowSize * 2; |
| |
| // Convert first row. |
| uint8* row_y0 = row_y + kEdge; |
| uint8* row_y1 = row_y0 + kRowSize; |
| uint8* row_y2 = row_y1 + kRowSize; |
| ARGBToYJRow(src_argb, row_y0, width); |
| row_y0[-1] = row_y0[0]; |
| memset(row_y0 + width, row_y0[width - 1], 16); // Extrude 16 for valgrind. |
| ARGBToYJRow(src_argb, row_y1, width); |
| row_y1[-1] = row_y1[0]; |
| memset(row_y1 + width, row_y1[width - 1], 16); |
| memset(row_y2 + width, 0, 16); |
| |
| for (y = 0; y < height; ++y) { |
| // Convert next row of ARGB to G. |
| if (y < (height - 1)) { |
| src_argb += src_stride_argb; |
| } |
| ARGBToYJRow(src_argb, row_y2, width); |
| row_y2[-1] = row_y2[0]; |
| row_y2[width] = row_y2[width - 1]; |
| |
| SobelXRow(row_y0 - 1, row_y1 - 1, row_y2 - 1, row_sobelx, width); |
| SobelYRow(row_y0 - 1, row_y2 - 1, row_sobely, width); |
| SobelRow(row_sobelx, row_sobely, dst_argb, width); |
| |
| // Cycle thru circular queue of 3 row_y buffers. |
| { |
| uint8* row_yt = row_y0; |
| row_y0 = row_y1; |
| row_y1 = row_y2; |
| row_y2 = row_yt; |
| } |
| |
| dst_argb += dst_stride_argb; |
| } |
| free_aligned_buffer_64(rows); |
| } |
| return 0; |
| } |
| |
| // Sobel ARGB effect. |
| LIBYUV_API |
| int ARGBSobel(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| void (*SobelRow)(const uint8* src_sobelx, const uint8* src_sobely, |
| uint8* dst_argb, int width) = SobelRow_C; |
| #if defined(HAS_SOBELROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| SobelRow = SobelRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| SobelRow = SobelRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_SOBELROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SobelRow = SobelRow_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| SobelRow = SobelRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_SOBELROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| SobelRow = SobelRow_Any_MSA; |
| if (IS_ALIGNED(width, 16)) { |
| SobelRow = SobelRow_MSA; |
| } |
| } |
| #endif |
| return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb, |
| width, height, SobelRow); |
| } |
| |
| // Sobel ARGB effect with planar output. |
| LIBYUV_API |
| int ARGBSobelToPlane(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_y, |
| int dst_stride_y, |
| int width, |
| int height) { |
| void (*SobelToPlaneRow)(const uint8* src_sobelx, const uint8* src_sobely, |
| uint8* dst_, int width) = SobelToPlaneRow_C; |
| #if defined(HAS_SOBELTOPLANEROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| SobelToPlaneRow = SobelToPlaneRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| SobelToPlaneRow = SobelToPlaneRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_SOBELTOPLANEROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SobelToPlaneRow = SobelToPlaneRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| SobelToPlaneRow = SobelToPlaneRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_SOBELTOPLANEROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| SobelToPlaneRow = SobelToPlaneRow_Any_MSA; |
| if (IS_ALIGNED(width, 32)) { |
| SobelToPlaneRow = SobelToPlaneRow_MSA; |
| } |
| } |
| #endif |
| return ARGBSobelize(src_argb, src_stride_argb, dst_y, dst_stride_y, width, |
| height, SobelToPlaneRow); |
| } |
| |
| // SobelXY ARGB effect. |
| // Similar to Sobel, but also stores Sobel X in R and Sobel Y in B. G = Sobel. |
| LIBYUV_API |
| int ARGBSobelXY(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| void (*SobelXYRow)(const uint8* src_sobelx, const uint8* src_sobely, |
| uint8* dst_argb, int width) = SobelXYRow_C; |
| #if defined(HAS_SOBELXYROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| SobelXYRow = SobelXYRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| SobelXYRow = SobelXYRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_SOBELXYROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SobelXYRow = SobelXYRow_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| SobelXYRow = SobelXYRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_SOBELXYROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| SobelXYRow = SobelXYRow_Any_MSA; |
| if (IS_ALIGNED(width, 16)) { |
| SobelXYRow = SobelXYRow_MSA; |
| } |
| } |
| #endif |
| return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb, |
| width, height, SobelXYRow); |
| } |
| |
| // Apply a 4x4 polynomial to each ARGB pixel. |
| LIBYUV_API |
| int ARGBPolynomial(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| const float* poly, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBPolynomialRow)(const uint8* src_argb, uint8* dst_argb, |
| const float* poly, int width) = ARGBPolynomialRow_C; |
| if (!src_argb || !dst_argb || !poly || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBPOLYNOMIALROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 2)) { |
| ARGBPolynomialRow = ARGBPolynomialRow_SSE2; |
| } |
| #endif |
| #if defined(HAS_ARGBPOLYNOMIALROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2) && TestCpuFlag(kCpuHasFMA3) && |
| IS_ALIGNED(width, 2)) { |
| ARGBPolynomialRow = ARGBPolynomialRow_AVX2; |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBPolynomialRow(src_argb, dst_argb, poly, width); |
| src_argb += src_stride_argb; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Convert plane of 16 bit shorts to half floats. |
| // Source values are multiplied by scale before storing as half float. |
| LIBYUV_API |
| int HalfFloatPlane(const uint16* src_y, |
| int src_stride_y, |
| uint16* dst_y, |
| int dst_stride_y, |
| float scale, |
| int width, |
| int height) { |
| int y; |
| void (*HalfFloatRow)(const uint16* src, uint16* dst, float scale, int width) = |
| HalfFloatRow_C; |
| if (!src_y || !dst_y || width <= 0 || height == 0) { |
| return -1; |
| } |
| src_stride_y >>= 1; |
| dst_stride_y >>= 1; |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_y = src_y + (height - 1) * src_stride_y; |
| src_stride_y = -src_stride_y; |
| } |
| // Coalesce rows. |
| if (src_stride_y == width && dst_stride_y == width) { |
| width *= height; |
| height = 1; |
| src_stride_y = dst_stride_y = 0; |
| } |
| #if defined(HAS_HALFFLOATROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| HalfFloatRow = HalfFloatRow_Any_SSE2; |
| if (IS_ALIGNED(width, 8)) { |
| HalfFloatRow = HalfFloatRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_HALFFLOATROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| HalfFloatRow = HalfFloatRow_Any_AVX2; |
| if (IS_ALIGNED(width, 16)) { |
| HalfFloatRow = HalfFloatRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_HALFFLOATROW_F16C) |
| if (TestCpuFlag(kCpuHasAVX2) && TestCpuFlag(kCpuHasF16C)) { |
| HalfFloatRow = |
| (scale == 1.0f) ? HalfFloat1Row_Any_F16C : HalfFloatRow_Any_F16C; |
| if (IS_ALIGNED(width, 16)) { |
| HalfFloatRow = (scale == 1.0f) ? HalfFloat1Row_F16C : HalfFloatRow_F16C; |
| } |
| } |
| #endif |
| #if defined(HAS_HALFFLOATROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| HalfFloatRow = |
| (scale == 1.0f) ? HalfFloat1Row_Any_NEON : HalfFloatRow_Any_NEON; |
| if (IS_ALIGNED(width, 8)) { |
| HalfFloatRow = (scale == 1.0f) ? HalfFloat1Row_NEON : HalfFloatRow_NEON; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| HalfFloatRow(src_y, dst_y, scale, width); |
| src_y += src_stride_y; |
| dst_y += dst_stride_y; |
| } |
| return 0; |
| } |
| |
| // Apply a lumacolortable to each ARGB pixel. |
| LIBYUV_API |
| int ARGBLumaColorTable(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| const uint8* luma, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBLumaColorTableRow)( |
| const uint8* src_argb, uint8* dst_argb, int width, const uint8* luma, |
| const uint32 lumacoeff) = ARGBLumaColorTableRow_C; |
| if (!src_argb || !dst_argb || !luma || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBLUMACOLORTABLEROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4)) { |
| ARGBLumaColorTableRow = ARGBLumaColorTableRow_SSSE3; |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBLumaColorTableRow(src_argb, dst_argb, width, luma, 0x00264b0f); |
| src_argb += src_stride_argb; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Copy Alpha from one ARGB image to another. |
| LIBYUV_API |
| int ARGBCopyAlpha(const uint8* src_argb, |
| int src_stride_argb, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBCopyAlphaRow)(const uint8* src_argb, uint8* dst_argb, int width) = |
| ARGBCopyAlphaRow_C; |
| if (!src_argb || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_argb = src_argb + (height - 1) * src_stride_argb; |
| src_stride_argb = -src_stride_argb; |
| } |
| // Coalesce rows. |
| if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_argb = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBCOPYALPHAROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_SSE2; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBCopyAlphaRow = ARGBCopyAlphaRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBCOPYALPHAROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_AVX2; |
| if (IS_ALIGNED(width, 16)) { |
| ARGBCopyAlphaRow = ARGBCopyAlphaRow_AVX2; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBCopyAlphaRow(src_argb, dst_argb, width); |
| src_argb += src_stride_argb; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // Extract just the alpha channel from ARGB. |
| LIBYUV_API |
| int ARGBExtractAlpha(const uint8* src_argb, |
| int src_stride, |
| uint8* dst_a, |
| int dst_stride, |
| int width, |
| int height) { |
| if (!src_argb || !dst_a || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_argb += (height - 1) * src_stride; |
| src_stride = -src_stride; |
| } |
| // Coalesce rows. |
| if (src_stride == width * 4 && dst_stride == width) { |
| width *= height; |
| height = 1; |
| src_stride = dst_stride = 0; |
| } |
| void (*ARGBExtractAlphaRow)(const uint8* src_argb, uint8* dst_a, int width) = |
| ARGBExtractAlphaRow_C; |
| #if defined(HAS_ARGBEXTRACTALPHAROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBExtractAlphaRow = IS_ALIGNED(width, 8) ? ARGBExtractAlphaRow_SSE2 |
| : ARGBExtractAlphaRow_Any_SSE2; |
| } |
| #endif |
| #if defined(HAS_ARGBEXTRACTALPHAROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBExtractAlphaRow = IS_ALIGNED(width, 32) ? ARGBExtractAlphaRow_AVX2 |
| : ARGBExtractAlphaRow_Any_AVX2; |
| } |
| #endif |
| #if defined(HAS_ARGBEXTRACTALPHAROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| ARGBExtractAlphaRow = IS_ALIGNED(width, 16) ? ARGBExtractAlphaRow_NEON |
| : ARGBExtractAlphaRow_Any_NEON; |
| } |
| #endif |
| |
| for (int y = 0; y < height; ++y) { |
| ARGBExtractAlphaRow(src_argb, dst_a, width); |
| src_argb += src_stride; |
| dst_a += dst_stride; |
| } |
| return 0; |
| } |
| |
| // Copy a planar Y channel to the alpha channel of a destination ARGB image. |
| LIBYUV_API |
| int ARGBCopyYToAlpha(const uint8* src_y, |
| int src_stride_y, |
| uint8* dst_argb, |
| int dst_stride_argb, |
| int width, |
| int height) { |
| int y; |
| void (*ARGBCopyYToAlphaRow)(const uint8* src_y, uint8* dst_argb, int width) = |
| ARGBCopyYToAlphaRow_C; |
| if (!src_y || !dst_argb || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_y = src_y + (height - 1) * src_stride_y; |
| src_stride_y = -src_stride_y; |
| } |
| // Coalesce rows. |
| if (src_stride_y == width && dst_stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| src_stride_y = dst_stride_argb = 0; |
| } |
| #if defined(HAS_ARGBCOPYYTOALPHAROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_SSE2; |
| if (IS_ALIGNED(width, 8)) { |
| ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_ARGBCOPYYTOALPHAROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_AVX2; |
| if (IS_ALIGNED(width, 16)) { |
| ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_AVX2; |
| } |
| } |
| #endif |
| |
| for (y = 0; y < height; ++y) { |
| ARGBCopyYToAlphaRow(src_y, dst_argb, width); |
| src_y += src_stride_y; |
| dst_argb += dst_stride_argb; |
| } |
| return 0; |
| } |
| |
| // TODO(fbarchard): Consider if width is even Y channel can be split |
| // directly. A SplitUVRow_Odd function could copy the remaining chroma. |
| |
| LIBYUV_API |
| int YUY2ToNV12(const uint8* src_yuy2, |
| int src_stride_yuy2, |
| uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_uv, |
| int dst_stride_uv, |
| int width, |
| int height) { |
| int y; |
| int halfwidth = (width + 1) >> 1; |
| void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, |
| int width) = SplitUVRow_C; |
| void (*InterpolateRow)(uint8 * dst_ptr, const uint8* src_ptr, |
| ptrdiff_t src_stride, int dst_width, |
| int source_y_fraction) = InterpolateRow_C; |
| if (!src_yuy2 || !dst_y || !dst_uv || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; |
| src_stride_yuy2 = -src_stride_yuy2; |
| } |
| #if defined(HAS_SPLITUVROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| SplitUVRow = SplitUVRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| SplitUVRow = SplitUVRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_SPLITUVROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| SplitUVRow = SplitUVRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| SplitUVRow = SplitUVRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_SPLITUVROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SplitUVRow = SplitUVRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| SplitUVRow = SplitUVRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| InterpolateRow = InterpolateRow_Any_SSSE3; |
| if (IS_ALIGNED(width, 16)) { |
| InterpolateRow = InterpolateRow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| InterpolateRow = InterpolateRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| InterpolateRow = InterpolateRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| InterpolateRow = InterpolateRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| InterpolateRow = InterpolateRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| InterpolateRow = InterpolateRow_Any_MSA; |
| if (IS_ALIGNED(width, 32)) { |
| InterpolateRow = InterpolateRow_MSA; |
| } |
| } |
| #endif |
| |
| { |
| int awidth = halfwidth * 2; |
| // row of y and 2 rows of uv |
| align_buffer_64(rows, awidth * 3); |
| |
| for (y = 0; y < height - 1; y += 2) { |
| // Split Y from UV. |
| SplitUVRow(src_yuy2, rows, rows + awidth, awidth); |
| memcpy(dst_y, rows, width); |
| SplitUVRow(src_yuy2 + src_stride_yuy2, rows, rows + awidth * 2, awidth); |
| memcpy(dst_y + dst_stride_y, rows, width); |
| InterpolateRow(dst_uv, rows + awidth, awidth, awidth, 128); |
| src_yuy2 += src_stride_yuy2 * 2; |
| dst_y += dst_stride_y * 2; |
| dst_uv += dst_stride_uv; |
| } |
| if (height & 1) { |
| // Split Y from UV. |
| SplitUVRow(src_yuy2, rows, dst_uv, awidth); |
| memcpy(dst_y, rows, width); |
| } |
| free_aligned_buffer_64(rows); |
| } |
| return 0; |
| } |
| |
| LIBYUV_API |
| int UYVYToNV12(const uint8* src_uyvy, |
| int src_stride_uyvy, |
| uint8* dst_y, |
| int dst_stride_y, |
| uint8* dst_uv, |
| int dst_stride_uv, |
| int width, |
| int height) { |
| int y; |
| int halfwidth = (width + 1) >> 1; |
| void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, |
| int width) = SplitUVRow_C; |
| void (*InterpolateRow)(uint8 * dst_ptr, const uint8* src_ptr, |
| ptrdiff_t src_stride, int dst_width, |
| int source_y_fraction) = InterpolateRow_C; |
| if (!src_uyvy || !dst_y || !dst_uv || width <= 0 || height == 0) { |
| return -1; |
| } |
| // Negative height means invert the image. |
| if (height < 0) { |
| height = -height; |
| src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; |
| src_stride_uyvy = -src_stride_uyvy; |
| } |
| #if defined(HAS_SPLITUVROW_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| SplitUVRow = SplitUVRow_Any_SSE2; |
| if (IS_ALIGNED(width, 16)) { |
| SplitUVRow = SplitUVRow_SSE2; |
| } |
| } |
| #endif |
| #if defined(HAS_SPLITUVROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| SplitUVRow = SplitUVRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| SplitUVRow = SplitUVRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_SPLITUVROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SplitUVRow = SplitUVRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| SplitUVRow = SplitUVRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| InterpolateRow = InterpolateRow_Any_SSSE3; |
| if (IS_ALIGNED(width, 16)) { |
| InterpolateRow = InterpolateRow_SSSE3; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| InterpolateRow = InterpolateRow_Any_AVX2; |
| if (IS_ALIGNED(width, 32)) { |
| InterpolateRow = InterpolateRow_AVX2; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| InterpolateRow = InterpolateRow_Any_NEON; |
| if (IS_ALIGNED(width, 16)) { |
| InterpolateRow = InterpolateRow_NEON; |
| } |
| } |
| #endif |
| #if defined(HAS_INTERPOLATEROW_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| InterpolateRow = InterpolateRow_Any_MSA; |
| if (IS_ALIGNED(width, 32)) { |
| InterpolateRow = InterpolateRow_MSA; |
| } |
| } |
| #endif |
| |
| { |
| int awidth = halfwidth * 2; |
| // row of y and 2 rows of uv |
| align_buffer_64(rows, awidth * 3); |
| |
| for (y = 0; y < height - 1; y += 2) { |
| // Split Y from UV. |
| SplitUVRow(src_uyvy, rows + awidth, rows, awidth); |
| memcpy(dst_y, rows, width); |
| SplitUVRow(src_uyvy + src_stride_uyvy, rows + awidth * 2, rows, awidth); |
| memcpy(dst_y + dst_stride_y, rows, width); |
| InterpolateRow(dst_uv, rows + awidth, awidth, awidth, 128); |
| src_uyvy += src_stride_uyvy * 2; |
| dst_y += dst_stride_y * 2; |
| dst_uv += dst_stride_uv; |
| } |
| if (height & 1) { |
| // Split Y from UV. |
| SplitUVRow(src_uyvy, dst_uv, rows, awidth); |
| memcpy(dst_y, rows, width); |
| } |
| free_aligned_buffer_64(rows); |
| } |
| return 0; |
| } |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| } // namespace libyuv |
| #endif |