blob: d2791ca94f65a32e7b51534fa964d3a4cb353068 [file] [log] [blame]
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/planar_functions.h"
#include <string.h> // for memset()
#include "libyuv/cpu_id.h"
#include "source/row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// Copy a plane of data
void CopyPlane(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C;
#if defined(HAS_COPYROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 64)) {
CopyRow = CopyRow_NEON;
}
#endif
#if defined(HAS_COPYROW_X86)
if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) {
CopyRow = CopyRow_X86;
}
#endif
#if defined(HAS_COPYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
CopyRow = CopyRow_SSE2;
}
#endif
// Copy plane
for (int y = 0; y < height; ++y) {
CopyRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
}
}
// Mirror a plane of data
void MirrorPlane(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C;
#if defined(HAS_MIRRORROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) {
MirrorRow = MirrorRow_NEON;
}
#endif
#if defined(HAS_MIRRORROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16)) {
MirrorRow = MirrorRow_SSE2;
#if defined(HAS_MIRRORROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16)) {
MirrorRow = MirrorRow_SSSE3;
}
#endif
}
#endif
// Mirror plane
for (int y = 0; y < height; ++y) {
MirrorRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
}
}
// Mirror I420 with optional flipping
int I420Mirror(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
int halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if (dst_y) {
MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
}
MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight);
MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight);
return 0;
}
// Copy ARGB with optional flipping
int ARGBCopy(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb ||
!dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
CopyPlane(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
width * 4, height);
return 0;
}
// Get a blender that optimized for the CPU, alignment and pixel count.
// As there are 6 blenders to choose from, the caller should try to use
// the same blend function for all pixels if possible.
ARGBBlendRow GetARGBBlend(uint8* dst_argb, int dst_stride_argb, int width) {
void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
uint8* dst_argb, int width) = ARGBBlendRow_C;
#if defined(HAS_ARGBBLENDROW1_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ARGBBlendRow = ARGBBlendRow1_SSSE3;
#if defined(HAS_ARGBBLENDROW_SSSE3)
if (width >= 4) {
ARGBBlendRow = ARGBBlendRow_Any_SSSE3;
if (IS_ALIGNED(width, 4) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBBlendRow = ARGBBlendRow_Aligned_SSSE3;
}
}
#endif
return ARGBBlendRow;
}
#endif
#if defined(HAS_ARGBBLENDROW1_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ARGBBlendRow = ARGBBlendRow1_SSE2;
#if defined(HAS_ARGBBLENDROW_SSE2)
if (width >= 4) {
ARGBBlendRow = ARGBBlendRow_Any_SSE2;
if (IS_ALIGNED(width, 4) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBBlendRow = ARGBBlendRow_Aligned_SSE2;
}
}
#endif
}
#endif
return ARGBBlendRow;
}
// Alpha Blend 2 ARGB images and store to destination.
int ARGBBlend(const uint8* src_argb0, int src_stride_argb0,
const uint8* src_argb1, int src_stride_argb1,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
uint8* dst_argb, int width) =
GetARGBBlend(dst_argb, dst_stride_argb, width);
for (int y = 0; y < height; ++y) {
ARGBBlendRow(src_argb0, src_argb1, dst_argb, width);
src_argb0 += src_stride_argb0;
src_argb1 += src_stride_argb1;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert I422 to ARGB.
int I422ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*I420ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I420ToARGBRow_C;
#if defined(HAS_I420TOARGBROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I420ToARGBRow = I420ToARGBRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
I420ToARGBRow = I420ToARGBRow_NEON;
}
}
#elif defined(HAS_I420TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I420ToARGBRow = I420ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I420ToARGBRow = I420ToARGBRow_SSSE3;
}
}
#endif
for (int y = 0; y < height; ++y) {
I420ToARGBRow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I444 to ARGB.
int I444ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*I444ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I444ToARGBRow_C;
#if defined(HAS_I444TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I444ToARGBRow = I444ToARGBRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
I444ToARGBRow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I400 to ARGB.
int I400ToARGB_Reference(const uint8* src_y, int src_stride_y,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*YToARGBRow)(const uint8* y_buf,
uint8* rgb_buf,
int width) = YToARGBRow_C;
#if defined(HAS_YTOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
YToARGBRow = YToARGBRow_SSE2;
}
#endif
for (int y = 0; y < height; ++y) {
YToARGBRow(src_y, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
}
return 0;
}
// Convert I400 to ARGB.
int I400ToARGB(const uint8* src_y, int src_stride_y,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
void (*I400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int pix) =
I400ToARGBRow_C;
#if defined(HAS_I400TOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(src_y, 8) && IS_ALIGNED(src_stride_y, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I400ToARGBRow = I400ToARGBRow_SSE2;
}
#endif
for (int y = 0; y < height; ++y) {
I400ToARGBRow(src_y, dst_argb, width);
src_y += src_stride_y;
dst_argb += dst_stride_argb;
}
return 0;
}
int ABGRToARGB(const uint8* src_abgr, int src_stride_abgr,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_abgr = src_abgr + (height - 1) * src_stride_abgr;
src_stride_abgr = -src_stride_abgr;
}
void (*ABGRToARGBRow)(const uint8* src_abgr, uint8* dst_argb, int pix) =
ABGRToARGBRow_C;
#if defined(HAS_ABGRTOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_abgr, 16) && IS_ALIGNED(src_stride_abgr, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ABGRToARGBRow = ABGRToARGBRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
ABGRToARGBRow(src_abgr, dst_argb, width);
src_abgr += src_stride_abgr;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert BGRA to ARGB.
int BGRAToARGB(const uint8* src_bgra, int src_stride_bgra,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_bgra = src_bgra + (height - 1) * src_stride_bgra;
src_stride_bgra = -src_stride_bgra;
}
void (*BGRAToARGBRow)(const uint8* src_bgra, uint8* dst_argb, int pix) =
BGRAToARGBRow_C;
#if defined(HAS_BGRATOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
BGRAToARGBRow = BGRAToARGBRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
BGRAToARGBRow(src_bgra, dst_argb, width);
src_bgra += src_stride_bgra;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert ARGB to I400.
int ARGBToI400(const uint8* src_argb, int src_stride_argb,
uint8* dst_y, int dst_stride_y,
int width, int height) {
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix) =
ARGBToYRow_C;
#if defined(HAS_ARGBTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ARGBToYRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
ARGBToYRow(src_argb, dst_y, width);
src_argb += src_stride_argb;
dst_y += dst_stride_y;
}
return 0;
}
// Convert RAW to ARGB.
int RAWToARGB(const uint8* src_raw, int src_stride_raw,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_raw = src_raw + (height - 1) * src_stride_raw;
src_stride_raw = -src_stride_raw;
}
void (*RAWToARGBRow)(const uint8* src_raw, uint8* dst_argb, int pix) =
RAWToARGBRow_C;
#if defined(HAS_RAWTOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
RAWToARGBRow = RAWToARGBRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
RAWToARGBRow(src_raw, dst_argb, width);
src_raw += src_stride_raw;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert RGB24 to ARGB.
int RGB24ToARGB(const uint8* src_rgb24, int src_stride_rgb24,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24;
src_stride_rgb24 = -src_stride_rgb24;
}
void (*RGB24ToARGBRow)(const uint8* src_rgb24, uint8* dst_argb, int pix) =
RGB24ToARGBRow_C;
#if defined(HAS_RGB24TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
RGB24ToARGBRow = RGB24ToARGBRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
RGB24ToARGBRow(src_rgb24, dst_argb, width);
src_rgb24 += src_stride_rgb24;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert ARGB To RGB24.
int ARGBToRGB24(const uint8* src_argb, int src_stride_argb,
uint8* dst_rgb24, int dst_stride_rgb24,
int width, int height) {
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
void (*ARGBToRGB24Row)(const uint8* src_argb, uint8* dst_rgb, int pix) =
ARGBToRGB24Row_C;
#if defined(HAS_ARGBTORGB24ROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
if (width * 3 <= kMaxStride) {
ARGBToRGB24Row = ARGBToRGB24Row_Any_SSSE3;
}
if (IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_rgb24, 16) && IS_ALIGNED(dst_stride_rgb24, 16)) {
ARGBToRGB24Row = ARGBToRGB24Row_SSSE3;
}
}
#endif
for (int y = 0; y < height; ++y) {
ARGBToRGB24Row(src_argb, dst_rgb24, width);
src_argb += src_stride_argb;
dst_rgb24 += dst_stride_rgb24;
}
return 0;
}
// Convert ARGB To RAW.
int ARGBToRAW(const uint8* src_argb, int src_stride_argb,
uint8* dst_raw, int dst_stride_raw,
int width, int height) {
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
void (*ARGBToRAWRow)(const uint8* src_argb, uint8* dst_rgb, int pix) =
ARGBToRAWRow_C;
#if defined(HAS_ARGBTORAWROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16)) {
if (width * 3 <= kMaxStride) {
ARGBToRAWRow = ARGBToRAWRow_Any_SSSE3;
}
if (IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_raw, 16) && IS_ALIGNED(dst_stride_raw, 16)) {
ARGBToRAWRow = ARGBToRAWRow_SSSE3;
}
}
#endif
for (int y = 0; y < height; ++y) {
ARGBToRAWRow(src_argb, dst_raw, width);
src_argb += src_stride_argb;
dst_raw += dst_stride_raw;
}
return 0;
}
// Convert NV12 to ARGB.
int NV12ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*I420ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* argb_buf,
int width) = I420ToARGBRow_C;
#if defined(HAS_I420TOARGBROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I420ToARGBRow = I420ToARGBRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
I420ToARGBRow = I420ToARGBRow_NEON;
}
}
#elif defined(HAS_I420TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I420ToARGBRow = I420ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I420ToARGBRow = I420ToARGBRow_SSSE3;
}
}
#endif
int halfwidth = (width + 1) >> 1;
void (*SplitUV)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix) =
SplitUV_C;
#if defined(HAS_SPLITUV_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SplitUV = SplitUV_NEON;
}
#elif defined(HAS_SPLITUV_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(src_uv, 16) && IS_ALIGNED(src_stride_uv, 16)) {
SplitUV = SplitUV_SSE2;
}
#endif
SIMD_ALIGNED(uint8 rowuv[kMaxStride * 2]);
for (int y = 0; y < height; ++y) {
if ((y & 1) == 0) {
// Copy a row of UV.
SplitUV(src_uv, rowuv, rowuv + kMaxStride, halfwidth);
src_uv += src_stride_uv;
}
I420ToARGBRow(src_y, rowuv, rowuv + kMaxStride, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
}
return 0;
}
// Convert YUY2 to ARGB.
int YUY2ToARGB(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
src_stride_yuy2 = -src_stride_yuy2;
}
void (*YUY2ToUVRow)(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_u, uint8* dst_v, int pix) = YUY2ToUVRow_C;
void (*YUY2ToYRow)(const uint8* src_yuy2,
uint8* dst_y, int pix) = YUY2ToYRow_C;
#if defined(HAS_YUY2TOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
if (width > 16) {
YUY2ToUVRow = YUY2ToUVRow_Any_SSE2;
YUY2ToYRow = YUY2ToYRow_Any_SSE2;
}
if (IS_ALIGNED(width, 16)) {
YUY2ToUVRow = YUY2ToUVRow_Unaligned_SSE2;
YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2;
if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) {
YUY2ToUVRow = YUY2ToUVRow_SSE2;
YUY2ToYRow = YUY2ToYRow_SSE2;
}
}
}
#endif
void (*I420ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* argb_buf,
int width) = I420ToARGBRow_C;
#if defined(HAS_I420TOARGBROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I420ToARGBRow = I420ToARGBRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
I420ToARGBRow = I420ToARGBRow_NEON;
}
}
#elif defined(HAS_I420TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I420ToARGBRow = I420ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I420ToARGBRow = I420ToARGBRow_SSSE3;
}
}
#endif
SIMD_ALIGNED(uint8 rowy[kMaxStride]);
SIMD_ALIGNED(uint8 rowu[kMaxStride]);
SIMD_ALIGNED(uint8 rowv[kMaxStride]);
for (int y = 0; y < height; ++y) {
YUY2ToUVRow(src_yuy2, src_stride_yuy2, rowu, rowv, width);
YUY2ToYRow(src_yuy2, rowy, width);
I420ToARGBRow(rowy, rowu, rowv, dst_argb, width);
src_yuy2 += src_stride_yuy2;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert NV12 to RGB565.
int NV12ToRGB565(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_rgb, int dst_stride_rgb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_rgb = dst_rgb + (height - 1) * dst_stride_rgb;
dst_stride_rgb = -dst_stride_rgb;
}
void (*I420ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I420ToARGBRow_C;
#if defined(HAS_I420TOARGBROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I420ToARGBRow = I420ToARGBRow_NEON;
}
#elif defined(HAS_I420TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
I420ToARGBRow = I420ToARGBRow_SSSE3;
}
#endif
SIMD_ALIGNED(uint8 row[kMaxStride]);
void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int pix) =
ARGBToRGB565Row_C;
#if defined(HAS_ARGBTORGB565ROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) {
ARGBToRGB565Row = ARGBToRGB565Row_SSE2;
}
#endif
int halfwidth = (width + 1) >> 1;
void (*SplitUV)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix) =
SplitUV_C;
#if defined(HAS_SPLITUV_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SplitUV = SplitUV_NEON;
}
#elif defined(HAS_SPLITUV_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(src_uv, 16) && IS_ALIGNED(src_stride_uv, 16)) {
SplitUV = SplitUV_SSE2;
}
#endif
SIMD_ALIGNED(uint8 rowuv[kMaxStride * 2]);
for (int y = 0; y < height; ++y) {
if ((y & 1) == 0) {
// Copy a row of UV.
SplitUV(src_uv, rowuv, rowuv + kMaxStride, halfwidth);
src_uv += src_stride_uv;
}
I420ToARGBRow(src_y, rowuv, rowuv + kMaxStride, row, width);
ARGBToRGB565Row(row, dst_rgb, width);
dst_rgb += dst_stride_rgb;
src_y += src_stride_y;
}
return 0;
}
// SetRow8 writes 'count' bytes using a 32 bit value repeated
// SetRow32 writes 'count' words using a 32 bit value repeated
#if !defined(YUV_DISABLE_ASM) && defined(__ARM_NEON__)
#define HAS_SETROW_NEON
static void SetRow8_NEON(uint8* dst, uint32 v32, int count) {
asm volatile (
"vdup.u32 q0, %2 \n" // duplicate 4 ints
"1: \n"
"subs %1, %1, #16 \n" // 16 bytes per loop
"vst1.u32 {q0}, [%0]! \n" // store
"bgt 1b \n"
: "+r"(dst), // %0
"+r"(count) // %1
: "r"(v32) // %2
: "q0", "memory", "cc");
}
// TODO(fbarchard): Make fully assembler
static void SetRows32_NEON(uint8* dst, uint32 v32, int width,
int dst_stride, int height) {
for (int y = 0; y < height; ++y) {
SetRow8_NEON(dst, v32, width << 2);
dst += dst_stride;
}
}
#elif !defined(YUV_DISABLE_ASM) && defined(_M_IX86)
#define HAS_SETROW_X86
__declspec(naked) __declspec(align(16))
static void SetRow8_X86(uint8* dst, uint32 v32, int count) {
__asm {
mov edx, edi
mov edi, [esp + 4] // dst
mov eax, [esp + 8] // v32
mov ecx, [esp + 12] // count
shr ecx, 2
rep stosd
mov edi, edx
ret
}
}
__declspec(naked) __declspec(align(16))
static void SetRows32_X86(uint8* dst, uint32 v32, int width,
int dst_stride, int height) {
__asm {
push esi
push edi
push ebp
mov edi, [esp + 12 + 4] // dst
mov eax, [esp + 12 + 8] // v32
mov ebp, [esp + 12 + 12] // width
mov edx, [esp + 12 + 16] // dst_stride
mov esi, [esp + 12 + 20] // height
lea ecx, [ebp * 4]
sub edx, ecx // stride - width * 4
align 16
convertloop:
mov ecx, ebp
rep stosd
add edi, edx
sub esi, 1
jg convertloop
pop ebp
pop edi
pop esi
ret
}
}
#elif !defined(YUV_DISABLE_ASM) && (defined(__x86_64__) || defined(__i386__))
#define HAS_SETROW_X86
static void SetRow8_X86(uint8* dst, uint32 v32, int width) {
size_t width_tmp = static_cast<size_t>(width);
asm volatile (
"shr $0x2,%1 \n"
"rep stosl \n"
: "+D"(dst), // %0
"+c"(width_tmp) // %1
: "a"(v32) // %2
: "memory", "cc");
}
static void SetRows32_X86(uint8* dst, uint32 v32, int width,
int dst_stride, int height) {
for (int y = 0; y < height; ++y) {
size_t width_tmp = static_cast<size_t>(width);
uint32* d = reinterpret_cast<uint32*>(dst);
asm volatile (
"rep stosl \n"
: "+D"(d), // %0
"+c"(width_tmp) // %1
: "a"(v32) // %2
: "memory", "cc");
dst += dst_stride;
}
}
#endif
static void SetRow8_C(uint8* dst, uint32 v8, int count) {
#ifdef _MSC_VER
for (int x = 0; x < count; ++x) {
dst[x] = v8;
}
#else
memset(dst, v8, count);
#endif
}
static void SetRows32_C(uint8* dst, uint32 v32, int width,
int dst_stride, int height) {
for (int y = 0; y < height; ++y) {
uint32* d = reinterpret_cast<uint32*>(dst);
for (int x = 0; x < width; ++x) {
d[x] = v32;
}
dst += dst_stride;
}
}
void SetPlane(uint8* dst_y, int dst_stride_y,
int width, int height,
uint32 value) {
void (*SetRow)(uint8* dst, uint32 value, int pix) = SetRow8_C;
#if defined(HAS_SETROW_NEON)
if (TestCpuFlag(kCpuHasNEON) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
SetRow = SetRow8_NEON;
}
#endif
#if defined(HAS_SETROW_X86)
if (TestCpuFlag(kCpuHasX86) && IS_ALIGNED(width, 4)) {
SetRow = SetRow8_X86;
}
#endif
#if defined(HAS_SETROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
SetRow = SetRow8_SSE2;
}
#endif
uint32 v32 = value | (value << 8) | (value << 16) | (value << 24);
// Set plane
for (int y = 0; y < height; ++y) {
SetRow(dst_y, v32, width);
dst_y += dst_stride_y;
}
}
// Draw a rectangle into I420
int I420Rect(uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int x, int y,
int width, int height,
int value_y, int value_u, int value_v) {
if (!dst_y || !dst_u || !dst_v ||
width <= 0 || height <= 0 ||
x < 0 || y < 0 ||
value_y < 0 || value_y > 255 ||
value_u < 0 || value_u > 255 ||
value_v < 0 || value_v > 255) {
return -1;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
uint8* start_y = dst_y + y * dst_stride_y + x;
uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2);
uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2);
SetPlane(start_y, dst_stride_y, width, height, value_y);
SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u);
SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v);
return 0;
}
// Draw a rectangle into ARGB
int ARGBRect(uint8* dst_argb, int dst_stride_argb,
int dst_x, int dst_y,
int width, int height,
uint32 value) {
if (!dst_argb ||
width <= 0 || height <= 0 ||
dst_x < 0 || dst_y < 0) {
return -1;
}
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
#if defined(HAS_SETROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
SetRows32_NEON(dst, value, width, dst_stride_argb, height);
return 0;
}
#endif
#if defined(HAS_SETROW_X86)
if (TestCpuFlag(kCpuHasX86)) {
SetRows32_X86(dst, value, width, dst_stride_argb, height);
return 0;
}
#endif
SetRows32_C(dst, value, width, dst_stride_argb, height);
return 0;
}
// Convert unattentuated ARGB to preattenuated ARGB.
// An unattenutated ARGB alpha blend uses the formula
// p = a * f + (1 - a) * b
// where
// p is output pixel
// f is foreground pixel
// b is background pixel
// a is alpha value from foreground pixel
// An preattenutated ARGB alpha blend uses the formula
// p = f + (1 - a) * b
// where
// f is foreground pixel premultiplied by alpha
int ARGBAttenuate(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBAttenuateRow_C;
#if defined(HAS_ARGBATTENUATE_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBAttenuateRow = ARGBAttenuateRow_SSE2;
}
#endif
#if defined(HAS_ARGBATTENUATE_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBAttenuateRow = ARGBAttenuateRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
ARGBAttenuateRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert preattentuated ARGB to unattenuated ARGB.
int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb,
int width) = ARGBUnattenuateRow_C;
#if defined(HAS_ARGBUNATTENUATE_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2;
}
#endif
for (int y = 0; y < height; ++y) {
ARGBUnattenuateRow(src_argb, dst_argb, width);
src_argb += src_stride_argb;
dst_argb += dst_stride_argb;
}
return 0;
}
// AddRow is useful for summing up rows of an image, when implementing a
// box filter or blur effect.
AddRow GetAddRow(uint16* dst, int width) {
AddRow AddRowF = AddRow_C;
#if defined(HAS_ADDROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(dst, 16) && IS_ALIGNED(width, 16)) {
AddRowF = AddRow_SSE2;
}
#endif
return AddRowF;
}
// SubRow is useful when a sum of rows exists and the caller wants to
// remove a row and add a new row without recomputing the full sum of rows.
AddRow GetSubRow(uint16* dst, int width) {
AddRow SubRowF = SubRow_C;
#if defined(HAS_ADDROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(dst, 16) && IS_ALIGNED(width, 16)) {
SubRowF = SubRow_SSE2;
}
#endif
return SubRowF;
}
// Make a rectangle of ARGB gray scale.
int ARGBGray(uint8* dst_argb, int dst_stride_argb,
int dst_x, int dst_y,
int width, int height) {
if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
return -1;
}
void (*ARGBGrayRow)(uint8* dst_argb, int width) = ARGBGrayRow_C;
#if defined(HAS_ARGBGRAYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBGrayRow = ARGBGrayRow_SSSE3;
}
#endif
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
for (int y = 0; y < height; ++y) {
ARGBGrayRow(dst, width);
dst += dst_stride_argb;
}
return 0;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif