blob: 8cc3e49818d84a07e6f076065719c961cf49e1fe [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/convert_argb.h"
#include <string.h> // for memset()
#include "libyuv/cpu_id.h"
#include "libyuv/format_conversion.h"
#ifdef HAVE_JPEG
#include "libyuv/mjpeg_decoder.h"
#endif
#include "libyuv/rotate_argb.h"
#include "libyuv/video_common.h"
#include "source/row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// Copy ARGB with optional flipping
int ARGBCopy(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
CopyPlane(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
width * 4, height);
return 0;
}
// Convert I444 to ARGB.
int I444ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*I444ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I444ToARGBRow_C;
#if defined(HAS_I444TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I444ToARGBRow = I444ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
I444ToARGBRow = I444ToARGBRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I444ToARGBRow = I444ToARGBRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height; ++y) {
I444ToARGBRow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I422 to ARGB.
int I422ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*I422ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I422ToARGBRow_C;
#if defined(HAS_I422TOARGBROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I422ToARGBRow = I422ToARGBRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
I422ToARGBRow = I422ToARGBRow_NEON;
}
}
#elif defined(HAS_I422TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I422ToARGBRow = I422ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
I422ToARGBRow = I422ToARGBRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I422ToARGBRow = I422ToARGBRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height; ++y) {
I422ToARGBRow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I411 to ARGB.
int I411ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*I411ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I411ToARGBRow_C;
#if defined(HAS_I411TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I411ToARGBRow = I411ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
I411ToARGBRow = I411ToARGBRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I411ToARGBRow = I411ToARGBRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height; ++y) {
I411ToARGBRow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I400 to ARGB.
int I400ToARGB_Reference(const uint8* src_y, int src_stride_y,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_y || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*YToARGBRow)(const uint8* y_buf,
uint8* rgb_buf,
int width) = YToARGBRow_C;
#if defined(HAS_YTOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
YToARGBRow = YToARGBRow_SSE2;
}
#endif
for (int y = 0; y < height; ++y) {
YToARGBRow(src_y, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
}
return 0;
}
// Convert I400 to ARGB.
int I400ToARGB(const uint8* src_y, int src_stride_y,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_y || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
void (*I400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int pix) =
I400ToARGBRow_C;
#if defined(HAS_I400TOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(src_y, 8) && IS_ALIGNED(src_stride_y, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I400ToARGBRow = I400ToARGBRow_SSE2;
}
#endif
for (int y = 0; y < height; ++y) {
I400ToARGBRow(src_y, dst_argb, width);
src_y += src_stride_y;
dst_argb += dst_stride_argb;
}
return 0;
}
int ABGRToARGB(const uint8* src_abgr, int src_stride_abgr,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_abgr || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_abgr = src_abgr + (height - 1) * src_stride_abgr;
src_stride_abgr = -src_stride_abgr;
}
void (*ABGRToARGBRow)(const uint8* src_abgr, uint8* dst_argb, int pix) =
ABGRToARGBRow_C;
#if defined(HAS_ABGRTOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_abgr, 16) && IS_ALIGNED(src_stride_abgr, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ABGRToARGBRow = ABGRToARGBRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
ABGRToARGBRow(src_abgr, dst_argb, width);
src_abgr += src_stride_abgr;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert BGRA to ARGB.
int BGRAToARGB(const uint8* src_bgra, int src_stride_bgra,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_bgra || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_bgra = src_bgra + (height - 1) * src_stride_bgra;
src_stride_bgra = -src_stride_bgra;
}
void (*BGRAToARGBRow)(const uint8* src_bgra, uint8* dst_argb, int pix) =
BGRAToARGBRow_C;
#if defined(HAS_BGRATOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
BGRAToARGBRow = BGRAToARGBRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
BGRAToARGBRow(src_bgra, dst_argb, width);
src_bgra += src_stride_bgra;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert RAW to ARGB.
int RAWToARGB(const uint8* src_raw, int src_stride_raw,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_raw || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_raw = src_raw + (height - 1) * src_stride_raw;
src_stride_raw = -src_stride_raw;
}
void (*RAWToARGBRow)(const uint8* src_raw, uint8* dst_argb, int pix) =
RAWToARGBRow_C;
#if defined(HAS_RAWTOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
RAWToARGBRow = RAWToARGBRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
RAWToARGBRow(src_raw, dst_argb, width);
src_raw += src_stride_raw;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert RGB24 to ARGB.
int RGB24ToARGB(const uint8* src_rgb24, int src_stride_rgb24,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_rgb24 || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24;
src_stride_rgb24 = -src_stride_rgb24;
}
void (*RGB24ToARGBRow)(const uint8* src_rgb24, uint8* dst_argb, int pix) =
RGB24ToARGBRow_C;
#if defined(HAS_RGB24TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
RGB24ToARGBRow = RGB24ToARGBRow_SSSE3;
}
#endif
for (int y = 0; y < height; ++y) {
RGB24ToARGBRow(src_rgb24, dst_argb, width);
src_rgb24 += src_stride_rgb24;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert RGB565 to ARGB.
int RGB565ToARGB(const uint8* src_rgb565, int src_stride_rgb565,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_rgb565 || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_rgb565 = src_rgb565 + (height - 1) * src_stride_rgb565;
src_stride_rgb565 = -src_stride_rgb565;
}
void (*RGB565ToARGBRow)(const uint8* src_rgb565, uint8* dst_argb, int pix) =
RGB565ToARGBRow_C;
#if defined(HAS_RGB565TOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
RGB565ToARGBRow = RGB565ToARGBRow_SSE2;
}
#endif
for (int y = 0; y < height; ++y) {
RGB565ToARGBRow(src_rgb565, dst_argb, width);
src_rgb565 += src_stride_rgb565;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert ARGB1555 to ARGB.
int ARGB1555ToARGB(const uint8* src_argb1555, int src_stride_argb1555,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb1555 || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb1555 = src_argb1555 + (height - 1) * src_stride_argb1555;
src_stride_argb1555 = -src_stride_argb1555;
}
void (*ARGB1555ToARGBRow)(const uint8* src_argb1555, uint8* dst_argb,
int pix) = ARGB1555ToARGBRow_C;
#if defined(HAS_ARGB1555TOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGB1555ToARGBRow = ARGB1555ToARGBRow_SSE2;
}
#endif
for (int y = 0; y < height; ++y) {
ARGB1555ToARGBRow(src_argb1555, dst_argb, width);
src_argb1555 += src_stride_argb1555;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert ARGB4444 to ARGB.
int ARGB4444ToARGB(const uint8* src_argb4444, int src_stride_argb4444,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb4444 || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb4444 = src_argb4444 + (height - 1) * src_stride_argb4444;
src_stride_argb4444 = -src_stride_argb4444;
}
void (*ARGB4444ToARGBRow)(const uint8* src_argb4444, uint8* dst_argb,
int pix) = ARGB4444ToARGBRow_C;
#if defined(HAS_ARGB4444TOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGB4444ToARGBRow = ARGB4444ToARGBRow_SSE2;
}
#endif
for (int y = 0; y < height; ++y) {
ARGB4444ToARGBRow(src_argb4444, dst_argb, width);
src_argb4444 += src_stride_argb4444;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert NV12 to ARGB.
int NV12ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_y || !src_uv || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*NV12ToARGBRow)(const uint8* y_buf,
const uint8* uv_buf,
uint8* rgb_buf,
int width) = NV12ToARGBRow_C;
#if defined(HAS_NV12TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
NV12ToARGBRow = NV12ToARGBRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
NV12ToARGBRow = NV12ToARGBRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height; ++y) {
NV12ToARGBRow(src_y, src_uv, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
if (y & 1) {
src_uv += src_stride_uv;
}
}
return 0;
}
// Convert NV21 to ARGB.
int NV21ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_vu, int src_stride_vu,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_y || !src_vu || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*NV21ToARGBRow)(const uint8* y_buf,
const uint8* vu_buf,
uint8* rgb_buf,
int width) = NV21ToARGBRow_C;
#if defined(HAS_NV21TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
NV21ToARGBRow = NV21ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
NV21ToARGBRow = NV21ToARGBRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
NV21ToARGBRow = NV21ToARGBRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height; ++y) {
NV21ToARGBRow(src_y, src_vu, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
if (y & 1) {
src_vu += src_stride_vu;
}
}
return 0;
}
// Convert M420 to ARGB.
int M420ToARGB(const uint8* src_m420, int src_stride_m420,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_m420 || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*NV12ToARGBRow)(const uint8* y_buf,
const uint8* uv_buf,
uint8* rgb_buf,
int width) = NV12ToARGBRow_C;
#if defined(HAS_NV12TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
NV12ToARGBRow = NV12ToARGBRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
NV12ToARGBRow = NV12ToARGBRow_SSSE3;
}
}
}
#endif
for (int y = 0; y < height - 1; y += 2) {
NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, width);
NV12ToARGBRow(src_m420 + src_stride_m420, src_m420 + src_stride_m420 * 2,
dst_argb + dst_stride_argb, width);
dst_argb += dst_stride_argb * 2;
src_m420 += src_stride_m420 * 3;
}
if (height & 1) {
NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, width);
}
return 0;
}
// Convert YUY2 to ARGB.
int YUY2ToARGB(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_yuy2 || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
src_stride_yuy2 = -src_stride_yuy2;
}
void (*YUY2ToUV422Row)(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v,
int pix) = YUY2ToUV422Row_C;
void (*YUY2ToYRow)(const uint8* src_yuy2,
uint8* dst_y, int pix) = YUY2ToYRow_C;
#if defined(HAS_YUY2TOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
if (width > 16) {
YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2;
YUY2ToYRow = YUY2ToYRow_Any_SSE2;
}
if (IS_ALIGNED(width, 16)) {
YUY2ToUV422Row = YUY2ToUV422Row_Unaligned_SSE2;
YUY2ToYRow = YUY2ToYRow_Unaligned_SSE2;
if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) {
YUY2ToUV422Row = YUY2ToUV422Row_SSE2;
YUY2ToYRow = YUY2ToYRow_SSE2;
}
}
}
#endif
void (*I422ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* argb_buf,
int width) = I422ToARGBRow_C;
#if defined(HAS_I422TOARGBROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I422ToARGBRow = I422ToARGBRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
I422ToARGBRow = I422ToARGBRow_NEON;
}
}
#elif defined(HAS_I422TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I422ToARGBRow = I422ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I422ToARGBRow = I422ToARGBRow_SSSE3;
}
}
#endif
SIMD_ALIGNED(uint8 rowy[kMaxStride]);
SIMD_ALIGNED(uint8 rowu[kMaxStride]);
SIMD_ALIGNED(uint8 rowv[kMaxStride]);
for (int y = 0; y < height; ++y) {
YUY2ToUV422Row(src_yuy2, rowu, rowv, width);
YUY2ToYRow(src_yuy2, rowy, width);
I422ToARGBRow(rowy, rowu, rowv, dst_argb, width);
src_yuy2 += src_stride_yuy2;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert UYVY to ARGB.
int UYVYToARGB(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_uyvy || !dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
src_stride_uyvy = -src_stride_uyvy;
}
void (*UYVYToUV422Row)(const uint8* src_uyvy, uint8* dst_u, uint8* dst_v,
int pix) = UYVYToUV422Row_C;
void (*UYVYToYRow)(const uint8* src_uyvy,
uint8* dst_y, int pix) = UYVYToYRow_C;
#if defined(HAS_UYVYTOYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
if (width > 16) {
UYVYToUV422Row = UYVYToUV422Row_Any_SSE2;
UYVYToYRow = UYVYToYRow_Any_SSE2;
}
if (IS_ALIGNED(width, 16)) {
UYVYToUV422Row = UYVYToUV422Row_Unaligned_SSE2;
UYVYToYRow = UYVYToYRow_Unaligned_SSE2;
if (IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16)) {
UYVYToUV422Row = UYVYToUV422Row_SSE2;
UYVYToYRow = UYVYToYRow_SSE2;
}
}
}
#endif
void (*I422ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* argb_buf,
int width) = I422ToARGBRow_C;
#if defined(HAS_I422TOARGBROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
I422ToARGBRow = I422ToARGBRow_Any_NEON;
if (IS_ALIGNED(width, 16)) {
I422ToARGBRow = I422ToARGBRow_NEON;
}
}
#elif defined(HAS_I422TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && width >= 8) {
I422ToARGBRow = I422ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I422ToARGBRow = I422ToARGBRow_SSSE3;
}
}
#endif
SIMD_ALIGNED(uint8 rowy[kMaxStride]);
SIMD_ALIGNED(uint8 rowu[kMaxStride]);
SIMD_ALIGNED(uint8 rowv[kMaxStride]);
for (int y = 0; y < height; ++y) {
UYVYToUV422Row(src_uyvy, rowu, rowv, width);
UYVYToYRow(src_uyvy, rowy, width);
I422ToARGBRow(rowy, rowu, rowv, dst_argb, width);
src_uyvy += src_stride_uyvy;
dst_argb += dst_stride_argb;
}
return 0;
}
#ifdef HAVE_JPEG
struct ARGBBuffers {
uint8* argb;
int argb_stride;
int w;
int h;
};
static void JpegI420ToARGB(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
I420ToARGB(data[0], strides[0],
data[1], strides[1],
data[2], strides[2],
dest->argb, dest->argb_stride,
dest->w, rows);
dest->argb += rows * dest->argb_stride;
dest->h -= rows;
}
static void JpegI422ToARGB(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
I422ToARGB(data[0], strides[0],
data[1], strides[1],
data[2], strides[2],
dest->argb, dest->argb_stride,
dest->w, rows);
dest->argb += rows * dest->argb_stride;
dest->h -= rows;
}
static void JpegI444ToARGB(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
I444ToARGB(data[0], strides[0],
data[1], strides[1],
data[2], strides[2],
dest->argb, dest->argb_stride,
dest->w, rows);
dest->argb += rows * dest->argb_stride;
dest->h -= rows;
}
static void JpegI411ToARGB(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
I411ToARGB(data[0], strides[0],
data[1], strides[1],
data[2], strides[2],
dest->argb, dest->argb_stride,
dest->w, rows);
dest->argb += rows * dest->argb_stride;
dest->h -= rows;
}
static void JpegI400ToARGB(void* opaque,
const uint8* const* data,
const int* strides,
int rows) {
ARGBBuffers* dest = static_cast<ARGBBuffers*>(opaque);
I400ToARGB(data[0], strides[0],
dest->argb, dest->argb_stride,
dest->w, rows);
dest->argb += rows * dest->argb_stride;
dest->h -= rows;
}
// MJPG (Motion JPeg) to ARGB
// TODO(fbarchard): review w and h requirement. dw and dh may be enough.
int MJPGToARGB(const uint8* sample,
size_t sample_size,
uint8* argb, int argb_stride,
int w, int h,
int dw, int dh) {
if (sample_size == kUnknownDataSize) {
// ERROR: MJPEG frame size unknown
return -1;
}
// TODO(fbarchard): Port to C
MJpegDecoder mjpeg_decoder;
bool ret = mjpeg_decoder.LoadFrame(sample, sample_size);
if (ret && (mjpeg_decoder.GetWidth() != w ||
mjpeg_decoder.GetHeight() != h)) {
// ERROR: MJPEG frame has unexpected dimensions
mjpeg_decoder.UnloadFrame();
return 1; // runtime failure
}
if (ret) {
ARGBBuffers bufs = { argb, argb_stride, dw, dh };
// YUV420
if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceYCbCr &&
mjpeg_decoder.GetNumComponents() == 3 &&
mjpeg_decoder.GetVertSampFactor(0) == 2 &&
mjpeg_decoder.GetHorizSampFactor(0) == 2 &&
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegI420ToARGB, &bufs, dw, dh);
// YUV422
} else if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceYCbCr &&
mjpeg_decoder.GetNumComponents() == 3 &&
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
mjpeg_decoder.GetHorizSampFactor(0) == 2 &&
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegI422ToARGB, &bufs, dw, dh);
// YUV444
} else if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceYCbCr &&
mjpeg_decoder.GetNumComponents() == 3 &&
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
mjpeg_decoder.GetHorizSampFactor(0) == 1 &&
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegI444ToARGB, &bufs, dw, dh);
// YUV411
} else if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceYCbCr &&
mjpeg_decoder.GetNumComponents() == 3 &&
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
mjpeg_decoder.GetHorizSampFactor(0) == 4 &&
mjpeg_decoder.GetVertSampFactor(1) == 1 &&
mjpeg_decoder.GetHorizSampFactor(1) == 1 &&
mjpeg_decoder.GetVertSampFactor(2) == 1 &&
mjpeg_decoder.GetHorizSampFactor(2) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegI411ToARGB, &bufs, dw, dh);
// YUV400
} else if (mjpeg_decoder.GetColorSpace() ==
MJpegDecoder::kColorSpaceGrayscale &&
mjpeg_decoder.GetNumComponents() == 1 &&
mjpeg_decoder.GetVertSampFactor(0) == 1 &&
mjpeg_decoder.GetHorizSampFactor(0) == 1) {
ret = mjpeg_decoder.DecodeToCallback(&JpegI400ToARGB, &bufs, dw, dh);
} else {
// TODO(fbarchard): Implement conversion for any other colorspace/sample
// factors that occur in practice. 411 is supported by libjpeg
// ERROR: Unable to convert MJPEG frame because format is not supported
mjpeg_decoder.UnloadFrame();
return 1;
}
}
return 0;
}
#endif
// Convert camera sample to I420 with cropping, rotation and vertical flip.
// src_width is used for source stride computation
// src_height is used to compute location of planes, and indicate inversion
// sample_size is measured in bytes and is the size of the frame.
// With MJPEG it is the compressed size of the frame.
int ConvertToARGB(const uint8* sample, size_t sample_size,
uint8* dst_argb, int argb_stride,
int crop_x, int crop_y,
int src_width, int src_height,
int dst_width, int dst_height,
RotationMode rotation,
uint32 format) {
if (dst_argb == NULL || sample == NULL ||
src_width <= 0 || dst_width <= 0 ||
src_height == 0 || dst_height == 0) {
return -1;
}
int aligned_src_width = (src_width + 1) & ~1;
const uint8* src;
const uint8* src_uv;
int abs_src_height = (src_height < 0) ? -src_height : src_height;
int inv_dst_height = (dst_height < 0) ? -dst_height : dst_height;
if (src_height < 0) {
inv_dst_height = -inv_dst_height;
}
int r = 0;
// One pass rotation is available for some formats. For the rest, convert
// to I420 (with optional vertical flipping) into a temporary I420 buffer,
// and then rotate the I420 to the final destination buffer.
// For in-place conversion, if destination dst_argb is same as source sample,
// also enable temporary buffer.
bool need_buf = (rotation && format != FOURCC_ARGB) || dst_argb == sample;
uint8* tmp_argb = dst_argb;
int tmp_argb_stride = argb_stride;
uint8* buf = NULL;
int abs_dst_height = (dst_height < 0) ? -dst_height : dst_height;
if (need_buf) {
int argb_size = dst_width * abs_dst_height * 4;
buf = new uint8[argb_size];
if (!buf) {
return 1; // Out of memory runtime error.
}
dst_argb = buf;
argb_stride = dst_width;
}
switch (format) {
// Single plane formats
case FOURCC_YUY2:
src = sample + (aligned_src_width * crop_y + crop_x) * 2;
r = YUY2ToARGB(src, aligned_src_width * 2,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_UYVY:
src = sample + (aligned_src_width * crop_y + crop_x) * 2;
r = UYVYToARGB(src, aligned_src_width * 2,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
// case FOURCC_V210:
// stride is multiple of 48 pixels (128 bytes).
// pixels come in groups of 6 = 16 bytes
// src = sample + (aligned_src_width + 47) / 48 * 128 * crop_y +
// crop_x / 6 * 16;
// r = V210ToARGB(src, (aligned_src_width + 47) / 48 * 128,
// dst_argb, argb_stride,
// dst_width, inv_dst_height);
// break;
case FOURCC_24BG:
src = sample + (src_width * crop_y + crop_x) * 3;
r = RGB24ToARGB(src, src_width * 3,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RAW:
src = sample + (src_width * crop_y + crop_x) * 3;
r = RAWToARGB(src, src_width * 3,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_ARGB:
src = sample + (src_width * crop_y + crop_x) * 4;
r = ARGBToARGB(src, src_width * 4,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_BGRA:
src = sample + (src_width * crop_y + crop_x) * 4;
r = BGRAToARGB(src, src_width * 4,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_ABGR:
src = sample + (src_width * crop_y + crop_x) * 4;
r = ABGRToARGB(src, src_width * 4,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RGBP:
src = sample + (src_width * crop_y + crop_x) * 2;
r = RGB565ToARGB(src, src_width * 2,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RGBO:
src = sample + (src_width * crop_y + crop_x) * 2;
r = ARGB1555ToARGB(src, src_width * 2,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_R444:
src = sample + (src_width * crop_y + crop_x) * 2;
r = ARGB4444ToARGB(src, src_width * 2,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
// TODO(fbarchard): Support cropping Bayer by odd numbers
// by adjusting fourcc.
case FOURCC_BGGR:
src = sample + (src_width * crop_y + crop_x);
r = BayerBGGRToARGB(src, src_width,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_GBRG:
src = sample + (src_width * crop_y + crop_x);
r = BayerGBRGToARGB(src, src_width,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_GRBG:
src = sample + (src_width * crop_y + crop_x);
r = BayerGRBGToARGB(src, src_width,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RGGB:
src = sample + (src_width * crop_y + crop_x);
r = BayerRGGBToARGB(src, src_width,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_I400:
src = sample + src_width * crop_y + crop_x;
r = I400ToARGB(src, src_width,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
// Biplanar formats
case FOURCC_NV12:
src = sample + (src_width * crop_y + crop_x);
src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x;
r = NV12ToARGB(src, src_width,
src_uv, aligned_src_width,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_NV21:
src = sample + (src_width * crop_y + crop_x);
src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x;
// Call NV12 but with u and v parameters swapped.
r = NV21ToARGB(src, src_width,
src_uv, aligned_src_width,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
case FOURCC_M420:
src = sample + (src_width * crop_y) * 12 / 8 + crop_x;
r = M420ToARGB(src, src_width,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
// case FOURCC_Q420:
// src = sample + (src_width + aligned_src_width * 2) * crop_y + crop_x;
// src_uv = sample + (src_width + aligned_src_width * 2) * crop_y +
// src_width + crop_x * 2;
// r = Q420ToARGB(src, src_width * 3,
// src_uv, src_width * 3,
// dst_argb, argb_stride,
// dst_width, inv_dst_height);
// break;
// Triplanar formats
case FOURCC_I420:
case FOURCC_YV12: {
const uint8* src_y = sample + (src_width * crop_y + crop_x);
const uint8* src_u;
const uint8* src_v;
int halfwidth = (src_width + 1) / 2;
int halfheight = (abs_src_height + 1) / 2;
if (format == FOURCC_I420) {
src_u = sample + src_width * abs_src_height +
(halfwidth * crop_y + crop_x) / 2;
src_v = sample + src_width * abs_src_height +
halfwidth * (halfheight + crop_y / 2) + crop_x / 2;
} else {
src_v = sample + src_width * abs_src_height +
(halfwidth * crop_y + crop_x) / 2;
src_u = sample + src_width * abs_src_height +
halfwidth * (halfheight + crop_y / 2) + crop_x / 2;
}
r = I420ToARGB(src_y, src_width,
src_u, halfwidth,
src_v, halfwidth,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
}
case FOURCC_I422:
case FOURCC_YV16: {
const uint8* src_y = sample + src_width * crop_y + crop_x;
const uint8* src_u;
const uint8* src_v;
int halfwidth = (src_width + 1) / 2;
if (format == FOURCC_I422) {
src_u = sample + src_width * abs_src_height +
halfwidth * crop_y + crop_x / 2;
src_v = sample + src_width * abs_src_height +
halfwidth * (abs_src_height + crop_y) + crop_x / 2;
} else {
src_v = sample + src_width * abs_src_height +
halfwidth * crop_y + crop_x / 2;
src_u = sample + src_width * abs_src_height +
halfwidth * (abs_src_height + crop_y) + crop_x / 2;
}
r = I422ToARGB(src_y, src_width,
src_u, halfwidth,
src_v, halfwidth,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
}
case FOURCC_I444:
case FOURCC_YV24: {
const uint8* src_y = sample + src_width * crop_y + crop_x;
const uint8* src_u;
const uint8* src_v;
if (format == FOURCC_I444) {
src_u = sample + src_width * (abs_src_height + crop_y) + crop_x;
src_v = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x;
} else {
src_v = sample + src_width * (abs_src_height + crop_y) + crop_x;
src_u = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x;
}
r = I444ToARGB(src_y, src_width,
src_u, src_width,
src_v, src_width,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
}
case FOURCC_I411: {
int quarterwidth = (src_width + 3) / 4;
const uint8* src_y = sample + src_width * crop_y + crop_x;
const uint8* src_u = sample + src_width * abs_src_height +
quarterwidth * crop_y + crop_x / 4;
const uint8* src_v = sample + src_width * abs_src_height +
quarterwidth * (abs_src_height + crop_y) + crop_x / 4;
r = I411ToARGB(src_y, src_width,
src_u, quarterwidth,
src_v, quarterwidth,
dst_argb, argb_stride,
dst_width, inv_dst_height);
break;
}
#ifdef HAVE_JPEG
case FOURCC_MJPG:
r = MJPGToARGB(sample, sample_size,
dst_argb, argb_stride,
src_width, abs_src_height, dst_width, inv_dst_height);
break;
#endif
default:
r = -1; // unknown fourcc - return failure code.
}
if (need_buf) {
if (!r) {
r = ARGBRotate(dst_argb, argb_stride,
tmp_argb, tmp_argb_stride,
dst_width, abs_dst_height, rotation);
}
delete buf;
}
return r;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif