blob: a7866c5dd3bb5a30e61cc259023e18ad3f924296 [file] [log] [blame]
/*
* cl_fisheye_handler.cpp - CL fisheye handler
*
* Copyright (c) 2016 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Wind Yuan <feng.yuan@intel.com>
*/
#include "cl_utils.h"
#include "cl_fisheye_handler.h"
#include "cl_device.h"
#define XCAM_LSC_ARRAY_SIZE 64
static const float max_gray_threshold = 220.0f;
static const float min_gray_threshold = 80.0f;
static const float lsc_array[XCAM_LSC_ARRAY_SIZE] = {
1.000000f, 1.000150f, 1.000334f, 1.000523f, 1.000761f, 1.001317f, 1.002109f, 1.003472f,
1.004502f, 1.008459f, 1.011816f, 1.014686f, 1.016767f, 1.018425f, 1.020455f, 1.022125f,
1.023080f, 1.025468f, 1.029810f, 1.035422f, 1.041943f, 1.047689f, 1.054206f, 1.059395f,
1.063541f, 1.068729f, 1.074158f, 1.082766f, 1.088606f, 1.095224f, 1.102773f, 1.112865f,
1.117108f, 1.132849f, 1.140659f, 1.147847f, 1.157544f, 1.165002f, 1.175248f, 1.181730f,
1.196203f, 1.205452f, 1.216974f, 1.236338f, 1.251963f, 1.269212f, 1.293479f, 1.311051f,
1.336007f, 1.357711f, 1.385124f, 1.409937f, 1.448611f, 1.473716f, 1.501837f, 1.525721f,
1.555186f, 1.602372f, 1.632105f, 1.698443f, 1.759641f, 1.836303f, 1.939085f, 2.066358f
};
namespace XCam {
#define DEFAULT_FISHEYE_TABLE_SCALE 8.0f
enum {
KernelFisheye2GPS,
KernelFisheyeTable,
KernelLSCTable
};
const XCamKernelInfo kernel_fisheye_info[] = {
{
"kernel_fisheye_2_gps",
#include "kernel_fisheye.clx"
, 0,
},
{
"kernel_fisheye_table",
#include "kernel_fisheye.clx"
, 0,
},
{
"kernel_lsc_table",
#include "kernel_fisheye.clx"
, 0,
},
};
CLFisheye2GPSKernel::CLFisheye2GPSKernel (
const SmartPtr<CLContext> &context, SmartPtr<CLFisheyeHandler> &handler)
: CLImageKernel (context)
, _handler (handler)
{
XCAM_ASSERT (handler.ptr ());
}
XCamReturn
CLFisheye2GPSKernel::prepare_arguments (CLArgList &args, CLWorkSize &work_size)
{
SmartPtr<CLImage> input_y = _handler->get_input_image (NV12PlaneYIdx);
SmartPtr<CLImage> input_uv = _handler->get_input_image (NV12PlaneUVIdx);
SmartPtr<CLImage> output_y = _handler->get_output_image (NV12PlaneYIdx);
SmartPtr<CLImage> output_uv = _handler->get_output_image (NV12PlaneUVIdx);
const CLImageDesc &input_y_desc = input_y->get_image_desc ();
const CLImageDesc &outuv_desc = output_uv->get_image_desc ();
FisheyeInfo fisheye_info;
float input_y_size[2];
float out_center[2]; //width/height
float radian_per_pixel[2];
input_y_size[0] = input_y_desc.width;
input_y_size[1] = input_y_desc.height;
uint32_t dst_w, dst_h;
float dst_range_x, dst_range_y;
_handler->get_output_size (dst_w, dst_h);
out_center[0] = (float)dst_w / 2.0f;
out_center[1] = (float)dst_h / 2.0f;
_handler->get_dst_range (dst_range_x, dst_range_y);
radian_per_pixel[0] = degree2radian (dst_range_x) / (float)dst_w;
radian_per_pixel[1] = degree2radian (dst_range_y) / (float)dst_h;
fisheye_info = _handler->get_fisheye_info ();
fisheye_info.wide_angle = degree2radian (fisheye_info.wide_angle);
fisheye_info.rotate_angle = degree2radian (fisheye_info.rotate_angle);
XCAM_LOG_DEBUG ("@CLFisheye2GPSKernel input size(%d, %d), out_center:(%d, %d), range:(%d,%d)",
(int)input_y_size[0], (int)input_y_size[1],
(int)out_center[0], (int)out_center[1],
(int)dst_range_x, (int)dst_range_y);
args.push_back (new CLMemArgument (input_y));
args.push_back (new CLMemArgument (input_uv));
args.push_back (new CLArgumentTArray<float, 2> (input_y_size));
args.push_back (new CLArgumentT<FisheyeInfo> (fisheye_info));
args.push_back (new CLMemArgument (output_y));
args.push_back (new CLMemArgument (output_uv));
args.push_back (new CLArgumentTArray<float, 2> (out_center));
args.push_back (new CLArgumentTArray<float, 2> (radian_per_pixel));
work_size.dim = XCAM_DEFAULT_IMAGE_DIM;
work_size.local[0] = 16;
work_size.local[1] = 4;
work_size.global[0] = XCAM_ALIGN_UP (outuv_desc.width, work_size.local[0]);
work_size.global[1] = XCAM_ALIGN_UP (outuv_desc.height, work_size.local[1]);
return XCAM_RETURN_NO_ERROR;
}
CLFisheyeHandler::CLFisheyeHandler (const SmartPtr<CLContext> &context, SurroundMode surround_mode, bool use_map, bool need_lsc)
: CLImageHandler (context, "CLFisheyeHandler")
, _output_width (0)
, _output_height (0)
, _range_longitude (180.0f)
, _range_latitude (180.0f)
, _map_factor (DEFAULT_FISHEYE_TABLE_SCALE)
, _use_map (use_map)
, _need_lsc (need_lsc ? 1 : 0)
, _lsc_array_size (0)
, _lsc_array (NULL)
, _surround_mode (surround_mode)
{
xcam_mem_clear (_gray_threshold);
}
CLFisheyeHandler::~CLFisheyeHandler()
{
if (_lsc_array)
xcam_free (_lsc_array);
}
void
CLFisheyeHandler::set_output_size (uint32_t width, uint32_t height)
{
_output_width = width;
_output_height = height;
}
void
CLFisheyeHandler::get_output_size (uint32_t &width, uint32_t &height) const
{
width = _output_width;
height = _output_height;
}
void
CLFisheyeHandler::set_dst_range (float longitude, float latitude)
{
_range_longitude = longitude;
_range_latitude = latitude;
}
void
CLFisheyeHandler::get_dst_range (float &longitude, float &latitude) const
{
longitude = _range_longitude;
latitude = _range_latitude;
}
void
CLFisheyeHandler::set_fisheye_info (const FisheyeInfo &info)
{
_fisheye_info = info;
}
void
CLFisheyeHandler::set_lsc_table (float *table, uint32_t table_size)
{
if (_lsc_array)
xcam_free (_lsc_array);
_lsc_array_size = table_size;
_lsc_array = (float *) xcam_malloc0 (_lsc_array_size * sizeof (float));
XCAM_ASSERT (_lsc_array);
memcpy (_lsc_array, table, _lsc_array_size * sizeof (float));
}
void
CLFisheyeHandler::set_lsc_gray_threshold (float min_threshold, float max_threshold)
{
_gray_threshold[0] = min_threshold;
_gray_threshold[1] = max_threshold;
}
XCamReturn
CLFisheyeHandler::prepare_buffer_pool_video_info (
const VideoBufferInfo &input,
VideoBufferInfo &output)
{
XCAM_FAIL_RETURN (
WARNING, input.format == V4L2_PIX_FMT_NV12, XCAM_RETURN_ERROR_PARAM,
"CLFisheyeHandler(%s) input buffer format(%s) is not supported, try NV12",
get_name (), xcam_fourcc_to_string (input.format));
if (!_output_width || !_output_height) {
return XCAM_RETURN_ERROR_PARAM;
}
XCAM_FAIL_RETURN (
WARNING, _output_width && _output_height, XCAM_RETURN_ERROR_PARAM,
"CLFisheyeHandler output size(%d, %d) should > 0",
_output_width, _output_height);
output.init (
input.format, _output_width, _output_height,
XCAM_ALIGN_UP (_output_width, 16), XCAM_ALIGN_UP (_output_height, 16));
return XCAM_RETURN_NO_ERROR;
}
XCamReturn
CLFisheyeHandler::prepare_parameters (SmartPtr<VideoBuffer> &input, SmartPtr<VideoBuffer> &output)
{
const VideoBufferInfo &in_info = input->get_video_info ();
const VideoBufferInfo &out_info = output->get_video_info ();
SmartPtr<CLContext> context = get_context ();
uint32_t input_image_w = XCAM_ALIGN_DOWN (in_info.width, 2);
uint32_t input_image_h = XCAM_ALIGN_DOWN (in_info.height, 2);
XCAM_FAIL_RETURN (
WARNING, _fisheye_info.is_valid (), XCAM_RETURN_ERROR_PARAM,
"CLFisheyeHandler fisheye info is not valid, please check");
CLImageDesc cl_desc;
cl_desc.format.image_channel_data_type = CL_UNORM_INT8;
cl_desc.format.image_channel_order = CL_R;
cl_desc.width = input_image_w;
cl_desc.height = input_image_h;
cl_desc.row_pitch = in_info.strides[NV12PlaneYIdx];
_input[NV12PlaneYIdx] = convert_to_climage (context, input, cl_desc, in_info.offsets[NV12PlaneYIdx]);
cl_desc.format.image_channel_data_type = CL_UNORM_INT8;
cl_desc.format.image_channel_order = CL_RG;
cl_desc.width = input_image_w / 2;
cl_desc.height = input_image_h / 2;
cl_desc.row_pitch = in_info.strides[NV12PlaneUVIdx];
_input[NV12PlaneUVIdx] = convert_to_climage (context, input, cl_desc, in_info.offsets[NV12PlaneUVIdx]);
if (_use_map) {
cl_desc.format.image_channel_data_type = CL_UNSIGNED_INT16;
cl_desc.format.image_channel_order = CL_RGBA;
cl_desc.width = XCAM_ALIGN_DOWN (out_info.width, 8) / 8; //CL_RGBA * CL_UNSIGNED_INT16 = 8
cl_desc.height = XCAM_ALIGN_DOWN (out_info.height, 2);
cl_desc.row_pitch = out_info.strides[NV12PlaneYIdx];
_output[NV12PlaneYIdx] = convert_to_climage (context, output, cl_desc, out_info.offsets[NV12PlaneYIdx]);
cl_desc.height /= 2;
cl_desc.row_pitch = out_info.strides[NV12PlaneUVIdx];
_output[NV12PlaneUVIdx] = convert_to_climage (context, output, cl_desc, out_info.offsets[NV12PlaneUVIdx]);
} else {
cl_desc.format.image_channel_data_type = CL_UNSIGNED_INT8;
cl_desc.format.image_channel_order = CL_RGBA;
cl_desc.width = XCAM_ALIGN_DOWN (out_info.width, 4) / 4; //CL_RGBA * CL_UNSIGNED_INT8 = 4
cl_desc.height = XCAM_ALIGN_DOWN (out_info.height, 2);
cl_desc.row_pitch = out_info.strides[NV12PlaneYIdx];
_output[NV12PlaneYIdx] = convert_to_climage (context, output, cl_desc, out_info.offsets[NV12PlaneYIdx]);
cl_desc.height /= 2;
cl_desc.row_pitch = out_info.strides[NV12PlaneUVIdx];
_output[NV12PlaneUVIdx] = convert_to_climage (context, output, cl_desc, out_info.offsets[NV12PlaneUVIdx]);
}
XCAM_ASSERT (
_input[NV12PlaneYIdx].ptr () && _input[NV12PlaneYIdx]->is_valid () &&
_input[NV12PlaneUVIdx].ptr () && _input[NV12PlaneUVIdx]->is_valid () &&
_output[NV12PlaneYIdx].ptr () && _output[NV12PlaneYIdx]->is_valid () &&
_output[NV12PlaneUVIdx].ptr () && _output[NV12PlaneUVIdx]->is_valid ());
if (_use_map && !_geo_table.ptr ()) {
generate_fisheye_table (input_image_w, input_image_h, _fisheye_info);
}
if (!_lsc_table.ptr () && _need_lsc)
generate_lsc_table (input_image_w, input_image_h, _fisheye_info);
return XCAM_RETURN_NO_ERROR;
}
SmartPtr<CLImage>
CLFisheyeHandler::create_cl_image (
uint32_t width, uint32_t height, cl_channel_order order, cl_channel_type type)
{
CLImageDesc cl_desc;
cl_desc.format.image_channel_data_type = type;
cl_desc.format.image_channel_order = order;
cl_desc.width = width;
cl_desc.height = height;
SmartPtr<CLContext> context = get_context ();
XCAM_ASSERT (context.ptr ());
SmartPtr<CLImage> image = new CLImage2D (context, cl_desc);
XCAM_FAIL_RETURN (
ERROR, image.ptr () && image->is_valid (),
NULL, "[%s] create cl image failed", get_name ());
return image;
}
#if 0
static void
dump_geo_table (SmartPtr<CLImage> table)
{
const CLImageDesc &desc = table->get_image_desc ();
void *ptr = NULL;
size_t origin[3] = {0, 0, 0};
size_t region[3] = {desc.width, desc.height, 1};
size_t row_pitch;
size_t slice_pitch;
char name[1024];
snprintf (name, 1024, "geo_table_x_%dx%d.x", desc.width, desc.height);
FILE *fp = fopen (name, "wb");
XCamReturn ret = table->enqueue_map (ptr, origin, region, &row_pitch, &slice_pitch, CL_MAP_READ);
XCAM_ASSERT (ret == XCAM_RETURN_NO_ERROR);
for (uint32_t i = 0; i < desc.height; ++i) {
float * line = (float*)((uint8_t*)ptr + row_pitch * i);
for (uint32_t j = 0; j < desc.width; ++j) {
float *buf = line + j * 4;
if (i == 120)
printf ("%.02f,", *buf);
uint8_t val = *buf * 255;
fwrite (&val, sizeof (val), 1, fp);
}
}
printf ("\n");
fclose (fp);
table->enqueue_unmap (ptr);
}
#endif
XCamReturn
CLFisheyeHandler::generate_fisheye_table (
uint32_t fisheye_width, uint32_t fisheye_height, const FisheyeInfo &fisheye_info)
{
SmartPtr<CLContext> context = get_context ();
XCAM_ASSERT (context.ptr ());
SmartPtr<CLKernel> table_kernel = new CLKernel (context, "fisheye_table_temp");
XCAM_FAIL_RETURN (
ERROR, table_kernel->build_kernel (kernel_fisheye_info[KernelFisheyeTable], NULL) == XCAM_RETURN_NO_ERROR,
XCAM_RETURN_ERROR_CL, "[%s] build fisheye table kernel failed", get_name ());
float longitude, latitude;
get_dst_range (longitude, latitude);
XCAM_FAIL_RETURN (
ERROR, longitude > 0.0f && latitude > 0.0f,
XCAM_RETURN_ERROR_PARAM, "[%s] dest latitude and longitude were not set", get_name ());
uint32_t output_width, output_height;
get_output_size (output_width, output_height);
uint32_t table_width, table_height;
table_width = output_width / _map_factor;
table_width = XCAM_ALIGN_UP (table_width, 4);
table_height = output_height / _map_factor;
table_height = XCAM_ALIGN_UP (table_height, 2);
_geo_table = create_cl_image (table_width, table_height, CL_RGBA, CL_FLOAT);
XCAM_FAIL_RETURN (
ERROR, _geo_table.ptr () && _geo_table->is_valid (),
XCAM_RETURN_ERROR_MEM, "[%s] check geo map buffer failed", get_name ());
if(_surround_mode == BowlView) {
BowlDataConfig bowl_data_config = get_bowl_config();
IntrinsicParameter intrinsic_param = get_intrinsic_param();
ExtrinsicParameter extrinsic_param = get_extrinsic_param();
SurViewFisheyeDewarp::MapTable map_table(table_width * table_height * 2);
PolyFisheyeDewarp fd;
fd.set_intrinsic_param(intrinsic_param);
fd.set_extrinsic_param(extrinsic_param);
fd.fisheye_dewarp(map_table, table_width, table_height, output_width, output_height, bowl_data_config);
float *map_ptr = NULL;
size_t origin[3] = {0, 0, 0};
size_t region[3] = {table_width, table_height, 1};
size_t row_pitch;
size_t slice_pitch;
XCamReturn ret = _geo_table->enqueue_map ((void *&)map_ptr, origin, region, &row_pitch, &slice_pitch, CL_MAP_WRITE);
XCAM_FAIL_RETURN (ERROR, xcam_ret_is_ok (ret), ret, "CLFisheyeHandler mesh table failed in enqueue_map");
for (uint32_t row = 0; row < table_height; row++) {
for(uint32_t col = 0; col < table_width; col++) {
map_ptr[row * row_pitch / 4 + col * 4] = map_table[row * table_width + col].x / fisheye_width;
map_ptr[row * row_pitch / 4 + col * 4 + 1] = map_table[row * table_width + col].y / fisheye_height;
}
}
_geo_table->enqueue_unmap ((void *&)map_ptr);
} else {
CLArgList args;
CLWorkSize work_size;
FisheyeInfo fisheye_arg1 = fisheye_info;
fisheye_arg1.wide_angle = degree2radian (fisheye_info.wide_angle);
fisheye_arg1.rotate_angle = degree2radian (fisheye_info.rotate_angle);
args.push_back (new CLArgumentT<FisheyeInfo> (fisheye_arg1));
float fisheye_image_size[2];
fisheye_image_size[0] = fisheye_width;
fisheye_image_size[1] = fisheye_height;
args.push_back (new CLArgumentTArray<float, 2> (fisheye_image_size));
args.push_back (new CLMemArgument (_geo_table));
float radian_per_pixel[2];
radian_per_pixel[0] = degree2radian (longitude / table_width);
radian_per_pixel[1] = degree2radian (latitude / table_height);
args.push_back (new CLArgumentTArray<float, 2> (radian_per_pixel));
float table_center[2];
table_center[0] = table_width / 2.0f;
table_center[1] = table_height / 2.0f;
args.push_back (new CLArgumentTArray<float, 2> (table_center));
work_size.dim = 2;
work_size.local[0] = 8;
work_size.local[1] = 4;
work_size.global[0] = XCAM_ALIGN_UP (table_width, work_size.local[0]);
work_size.global[1] = XCAM_ALIGN_UP (table_height, work_size.local[1]);
XCAM_FAIL_RETURN (
ERROR, table_kernel->set_arguments (args, work_size) == XCAM_RETURN_NO_ERROR,
XCAM_RETURN_ERROR_CL, "kernel_fisheye_table set arguments failed");
XCAM_FAIL_RETURN (
ERROR, table_kernel->execute (table_kernel, true) == XCAM_RETURN_NO_ERROR,
XCAM_RETURN_ERROR_CL, "[%s] execute kernel_fisheye_table failed", get_name ());
}
//dump_geo_table (_geo_table);
return XCAM_RETURN_NO_ERROR;
}
void
CLFisheyeHandler::ensure_lsc_params ()
{
if (_lsc_array)
return;
_lsc_array_size = XCAM_LSC_ARRAY_SIZE;
_lsc_array = (float *) xcam_malloc0 (_lsc_array_size * sizeof (float));
XCAM_ASSERT (_lsc_array);
memcpy (_lsc_array, lsc_array, _lsc_array_size * sizeof (float));
_gray_threshold[1] = max_gray_threshold;
_gray_threshold[0] = min_gray_threshold;
}
XCamReturn
CLFisheyeHandler::generate_lsc_table (
uint32_t fisheye_width, uint32_t fisheye_height, FisheyeInfo &fisheye_info)
{
if (!_need_lsc) {
XCAM_LOG_WARNING ("lsc is not needed, don't generate lsc table");
return XCAM_RETURN_NO_ERROR;
}
if (!_geo_table.ptr ()) {
XCAM_LOG_ERROR ("generate lsc table failed, need generate fisheye table first");
return XCAM_RETURN_ERROR_MEM;
}
ensure_lsc_params ();
SmartPtr<CLContext> context = get_context ();
XCAM_ASSERT (context.ptr ());
SmartPtr<CLKernel> table_kernel = new CLKernel (context, "lsc_table");
XCAM_FAIL_RETURN (
ERROR, table_kernel->build_kernel (kernel_fisheye_info[KernelLSCTable], NULL) == XCAM_RETURN_NO_ERROR,
XCAM_RETURN_ERROR_CL, "[%s] build lsc table kernel failed", get_name ());
SmartPtr<CLBuffer> array_buf = new CLBuffer (
context, _lsc_array_size * sizeof (float),
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, _lsc_array);
xcam_free (_lsc_array);
CLImageDesc desc = _geo_table->get_image_desc ();
_lsc_table = create_cl_image (desc.width, desc.height, CL_R, CL_FLOAT);
XCAM_FAIL_RETURN (
ERROR, _lsc_table.ptr () && _lsc_table->is_valid (),
XCAM_RETURN_ERROR_MEM, "[%s] create lsc image failed", get_name ());
CLArgList args;
args.push_back (new CLMemArgument (_geo_table));
args.push_back (new CLMemArgument (_lsc_table));
args.push_back (new CLMemArgument (array_buf));
args.push_back (new CLArgumentT<uint32_t> (_lsc_array_size));
args.push_back (new CLArgumentT<FisheyeInfo> (fisheye_info));
float fisheye_image_size[2];
fisheye_image_size[0] = fisheye_width;
fisheye_image_size[1] = fisheye_height;
args.push_back (new CLArgumentTArray<float, 2> (fisheye_image_size));
CLWorkSize work_size;
work_size.dim = 2;
work_size.local[0] = 8;
work_size.local[1] = 4;
work_size.global[0] = XCAM_ALIGN_UP (desc.width, work_size.local[0]);
work_size.global[1] = XCAM_ALIGN_UP (desc.height, work_size.local[1]);
XCAM_FAIL_RETURN (
ERROR, table_kernel->set_arguments (args, work_size) == XCAM_RETURN_NO_ERROR,
XCAM_RETURN_ERROR_CL, "kernel_lsc_table set arguments failed");
XCAM_FAIL_RETURN (
ERROR, table_kernel->execute (table_kernel, true) == XCAM_RETURN_NO_ERROR,
XCAM_RETURN_ERROR_CL, "[%s] execute kernel_lsc_table failed", get_name ());
return XCAM_RETURN_NO_ERROR;
}
XCamReturn
CLFisheyeHandler::execute_done (SmartPtr<VideoBuffer> &output)
{
XCAM_UNUSED (output);
for (int i = 0; i < NV12PlaneMax; ++i) {
_input[i].release ();
_output[i].release ();
}
return XCAM_RETURN_NO_ERROR;
}
SmartPtr<CLImage>
CLFisheyeHandler::get_geo_input_image (NV12PlaneIdx index) {
return get_input_image(index);
}
SmartPtr<CLImage>
CLFisheyeHandler::get_geo_output_image (NV12PlaneIdx index) {
return get_output_image (index);
}
void
CLFisheyeHandler::get_geo_equivalent_out_size (float &width, float &height)
{
width = _output_width;
height = _output_height;
}
void
CLFisheyeHandler::get_geo_pixel_out_size (float &width, float &height)
{
width = _output_width;
height = _output_height;
}
SmartPtr<CLImage>
CLFisheyeHandler::get_lsc_table () {
XCAM_ASSERT (_lsc_table.ptr ());
return _lsc_table;
}
float*
CLFisheyeHandler::get_lsc_gray_threshold () {
return _gray_threshold;
}
static SmartPtr<CLImageKernel>
create_fishey_gps_kernel (const SmartPtr<CLContext> &context, SmartPtr<CLFisheyeHandler> handler)
{
SmartPtr<CLImageKernel> kernel = new CLFisheye2GPSKernel (context, handler);
XCAM_ASSERT (kernel.ptr ());
XCAM_FAIL_RETURN (
ERROR, kernel->build_kernel (kernel_fisheye_info[KernelFisheye2GPS], NULL) == XCAM_RETURN_NO_ERROR,
NULL, "build fisheye kernel failed");
return kernel;
}
SmartPtr<CLImageHandler>
create_fisheye_handler (const SmartPtr<CLContext> &context, SurroundMode surround_mode, bool use_map, bool need_lsc)
{
SmartPtr<CLFisheyeHandler> handler;
SmartPtr<CLImageKernel> kernel;
handler = new CLFisheyeHandler (context, surround_mode, use_map, need_lsc);
XCAM_ASSERT (handler.ptr ());
if (use_map) {
kernel = create_geo_map_kernel (context, handler, need_lsc);
} else {
kernel = create_fishey_gps_kernel (context, handler);
}
XCAM_FAIL_RETURN (
ERROR, kernel.ptr (), NULL, "Fisheye handler create kernel failed.");
handler->add_kernel (kernel);
return handler;
}
}