blob: c72895f2cf14dbd7a0f329e4ee9f7a812ea4ed9f [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "impd_type_def.h"
#include "impd_drc_extr_delta_coded_info.h"
#include "impd_drc_common.h"
#include "impd_drc_struct.h"
#include "impd_drc_interface.h"
#include "impd_drc_gain_dec.h"
#include "impd_drc_eq.h"
#define CONFIG_REAL_POLE 0
#define CONFIG_COMPLEX_POLE 1
#define CONFIG_REAL_ZERO_RADIUS_ONE 2
#define CONFIG_REAL_ZERO 3
#define CONFIG_GENERIC_ZERO 4
#define STEP_RATIO_F_LO 20.0f
#define STEP_RATIO_F_HI 24000.0f
#define STEP_RATIO_EQ_NODE_COUNT_MAX 33
#define FILTER_ELEMENT_FORMAT_POLE_ZERO 0
#define FILTER_ELEMENT_FORMAT_FIR 1
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif
WORD32 impd_derive_subband_center_freq(WORD32 eq_subband_gain_count,
WORD32 eq_subband_gain_format,
FLOAT32 sample_rate,
FLOAT32* subband_center_freq) {
WORD32 i;
FLOAT32 width, offset;
switch (eq_subband_gain_format) {
case GAINFORMAT_QMF32:
case GAINFORMAT_QMF64:
case GAINFORMAT_QMF128:
case GAINFORMAT_UNIFORM:
width = 0.5f * sample_rate / (FLOAT32)eq_subband_gain_count;
offset = 0.5f * width;
for (i = 0; i < eq_subband_gain_count; i++) {
subband_center_freq[i] = offset;
offset = offset + width;
}
break;
case GAINFORMAT_QMFHYBRID39:
case GAINFORMAT_QMFHYBRID71:
case GAINFORMAT_QMFHYBRID135:
return (UNEXPECTED_ERROR);
break;
default:
break;
}
return (0);
}
VOID impd_calc_fir_filt_response(WORD32 fir_order, WORD32 fir_symmetry,
FLOAT32* coeff, FLOAT32 frequency_radian,
FLOAT32* response) {
WORD32 m;
FLOAT32 sum = 0.0f;
WORD32 o2;
if ((fir_order & 0x1) == 0) {
o2 = fir_order / 2;
if (fir_symmetry == 0) {
/*ITTIAM: sum is been over written after the loop
None of the conformance streams with us entering this function*/
for (m = 1; m <= o2; m++) {
sum += coeff[o2 - m] * (FLOAT32)cos(m * frequency_radian);
}
sum += sum;
sum = coeff[o2];
} else {
for (m = 1; m <= o2; m++) {
sum += coeff[o2 - m] * (FLOAT32)sin(m * frequency_radian);
}
sum += sum;
}
} else {
o2 = (fir_order + 1) / 2;
if (fir_symmetry == 0) {
for (m = 1; m <= o2; m++) {
sum += coeff[o2 - m] * (FLOAT32)cos((m - 0.5f) * frequency_radian);
}
} else {
for (m = 1; m <= o2; m++) {
sum += coeff[o2 - m] * (FLOAT32)sin((m - 0.5f) * frequency_radian);
}
}
sum += sum;
}
*response = sum;
return;
}
VOID impd_calc_filt_ele_response(ia_unique_td_filt_element* element,
FLOAT32 frequency_radian, FLOAT32* response) {
WORD32 i;
FLOAT32 part_response, radius, angle_radian;
FLOAT64 total_response = 1.0;
if (element->eq_filter_format == FILTER_ELEMENT_FORMAT_POLE_ZERO) {
for (i = 0; i < element->bs_real_zero_radius_one_count; i++) {
part_response =
1.0f + 1.0f -
2.0f * 1.0f *
(FLOAT32)cos(frequency_radian - (FLOAT32)element->zero_sign[i]);
total_response *= part_response;
}
for (i = 0; i < element->real_zero_count; i++) {
if (element->real_zero_radius[i] < 0.0f) {
radius = -element->real_zero_radius[i];
angle_radian = (FLOAT32)M_PI;
} else {
radius = element->real_zero_radius[i];
angle_radian = 0.0f;
}
part_response =
1.0f + radius * radius -
2.0f * radius * (FLOAT32)cos(frequency_radian - angle_radian);
total_response *= part_response;
part_response =
1.0f + radius * radius -
2.0f * radius * (FLOAT32)cos(frequency_radian - angle_radian);
total_response *= part_response;
}
total_response = sqrt(total_response);
for (i = 0; i < element->generic_zero_count; i++) {
radius = element->generic_zero_radius[i];
part_response =
1.0f + radius * radius -
2.0f * radius *
(FLOAT32)cos(frequency_radian - element->generic_zero_angle[i]);
total_response *= part_response;
part_response =
1.0f + radius * radius -
2.0f * radius *
(FLOAT32)cos(frequency_radian - element->generic_zero_angle[i]);
total_response *= part_response;
}
for (i = 0; i < element->real_pole_count; i++) {
if (element->real_pole_radius[i] < 0.0f) {
radius = -element->real_pole_radius[i];
angle_radian = (FLOAT32)(-M_PI);
} else {
radius = element->real_pole_radius[i];
angle_radian = 0.0f;
}
part_response =
1 / (1.0f + radius * radius -
2.0f * radius * (FLOAT32)cos(frequency_radian - angle_radian));
total_response *= part_response;
}
for (i = 0; i < element->cmplx_pole_count; i++) {
part_response =
1 /
(1.0f + element->real_pole_radius[i] * element->real_pole_radius[i] -
2.0f * element->real_pole_radius[i] *
(FLOAT32)cos(frequency_radian - element->complex_pole_angle[i]));
total_response *= part_response * part_response;
}
} else {
impd_calc_fir_filt_response(element->fir_filt_order, element->fir_symmetry,
element->fir_coeff, frequency_radian,
&part_response);
total_response *= part_response;
}
*response = (FLOAT32)total_response;
return;
}
VOID impd_calc_filt_block_response(
ia_unique_td_filt_element* unique_td_filt_ele,
ia_filt_block_struct* str_filter_block, FLOAT32 frequency_radian,
FLOAT32* response) {
WORD32 i;
FLOAT32 part_response;
FLOAT64 total_response = 1.0;
for (i = 0; i < str_filter_block->filter_element_count; i++) {
ia_filt_ele_struct* str_filter_element =
&str_filter_block->str_filter_element[i];
impd_calc_filt_ele_response(
&(unique_td_filt_ele[str_filter_element->filt_ele_idx]),
frequency_radian, &part_response);
total_response *= part_response;
if (str_filter_element->filt_ele_gain_flag == 1) {
total_response *= pow(10.0f, 0.05f * str_filter_element->filt_ele_gain);
}
}
*response = (FLOAT32)total_response;
return;
}
WORD32 impd_calc_subband_gains_td_cascade(
ia_unique_td_filt_element* unique_td_filt_ele,
ia_filt_block_struct* str_filter_block,
ia_td_filter_cascade_struct* str_td_filter_cascade,
WORD32 eq_subband_gain_format, WORD32 eq_ch_group_count,
FLOAT32 sample_rate, WORD32 eq_frame_size_subband,
ia_subband_filt_struct* subband_filt) {
WORD32 i, err = 0, g, b;
FLOAT32 response, frequency_radian;
FLOAT32 subband_center_freq[256];
FLOAT64 total_response;
WORD32 eq_subband_gain_count = subband_filt->coeff_count;
err = impd_derive_subband_center_freq(eq_subband_gain_count,
eq_subband_gain_format, sample_rate,
subband_center_freq);
if (err) return (err);
for (g = 0; g < eq_ch_group_count; g++) {
for (b = 0; b < eq_subband_gain_count; b++) {
total_response =
pow(10.0f, 0.05f * str_td_filter_cascade->eq_cascade_gain[g]);
frequency_radian =
(FLOAT32)(2.0f * M_PI * subband_center_freq[b] / sample_rate);
for (i = 0;
i <
str_td_filter_cascade->str_filter_block_refs[g].filter_block_count;
i++) {
impd_calc_filt_block_response(
unique_td_filt_ele,
&(str_filter_block[str_td_filter_cascade->str_filter_block_refs[g]
.filter_block_index[i]]),
frequency_radian, &response);
total_response *= response;
}
subband_filt[g].subband_coeff[b] = (FLOAT32)total_response;
}
subband_filt[g].eq_frame_size_subband = eq_frame_size_subband;
}
return (0);
}
VOID impd_add_cascade(ia_cascade_align_group_struct* pstr_cascade_align_grp,
WORD32 c1, WORD32 c2, WORD32* done) {
WORD32 m, n;
*done = 0;
for (m = 0; m < pstr_cascade_align_grp->member_count; m++) {
if (pstr_cascade_align_grp->member_idx[m] == c1) {
for (n = 0; n < pstr_cascade_align_grp->member_count; n++) {
if (pstr_cascade_align_grp->member_idx[n] == c2) {
*done = 1;
}
}
if (*done == 0) {
pstr_cascade_align_grp
->member_idx[pstr_cascade_align_grp->member_count] = c2;
pstr_cascade_align_grp->member_count++;
*done = 1;
}
}
}
return;
}
VOID impd_calc_cascade_align_groups(
WORD32 eq_ch_group_count, WORD32 eq_phase_alignment_present,
WORD32 eq_phase_alignment[][EQ_CHANNEL_GROUP_COUNT_MAX],
WORD32* cascade_align_grp_cnt,
ia_cascade_align_group_struct* pstr_cascade_align_grp) {
WORD32 i, k, g, group_count, done;
group_count = 0;
if (eq_phase_alignment_present == 0) {
if (eq_ch_group_count > 1) {
for (i = 0; i < eq_ch_group_count; i++) {
pstr_cascade_align_grp[group_count].member_idx[i] = i;
}
pstr_cascade_align_grp[group_count].member_count = eq_ch_group_count;
group_count = 1;
}
} else {
for (i = 0; i < eq_ch_group_count; i++) {
for (k = i + 1; k < eq_ch_group_count; k++) {
if (eq_phase_alignment[i][k] == 1) {
done = 0;
for (g = 0; g < group_count; g++) {
impd_add_cascade(&pstr_cascade_align_grp[g], i, k, &done);
if (done == 0) {
impd_add_cascade(&pstr_cascade_align_grp[g], k, i, &done);
}
}
if (done == 0) {
pstr_cascade_align_grp[group_count].member_idx[0] = i;
pstr_cascade_align_grp[group_count].member_idx[1] = k;
pstr_cascade_align_grp[group_count].member_count = 2;
group_count++;
}
}
}
}
}
*cascade_align_grp_cnt = group_count;
return;
}
VOID impd_calc_phase_filt_params(
WORD32 config, FLOAT32 radius, FLOAT32 angle,
ia_ph_alignment_filt_struct* ph_alignment_filt) {
WORD32 channel;
FLOAT32 zReal, zImag;
FLOAT32 prod;
WORD32 section = ph_alignment_filt->section_count;
ia_filt_sect_struct* filt_section = &ph_alignment_filt->filt_section[section];
switch (config) {
case CONFIG_REAL_POLE:
ph_alignment_filt->gain *= (-radius);
filt_section->a1 = -radius;
filt_section->a2 = 0.0f;
filt_section->b1 = -1.0f / radius;
filt_section->b2 = 0.0f;
ph_alignment_filt->section_count++;
break;
case CONFIG_COMPLEX_POLE:
zReal = radius * (FLOAT32)cos(M_PI * angle);
zImag = radius * (FLOAT32)sin(M_PI * angle);
prod = zReal * zReal + zImag * zImag;
ph_alignment_filt->gain *= prod;
filt_section->a1 = -2.0f * zReal;
filt_section->a2 = prod;
filt_section->b1 = -2.0f * zReal / prod;
filt_section->b2 = 1.0f / prod;
ph_alignment_filt->section_count++;
break;
default:
break;
}
for (channel = 0; channel < EQ_CHANNEL_COUNT_MAX; channel++) {
filt_section->filt_sect_state[channel].in_state_1 = 0.0f;
filt_section->filt_sect_state[channel].in_state_2 = 0.0f;
filt_section->filt_sect_state[channel].out_state_1 = 0.0f;
filt_section->filt_sect_state[channel].out_state_2 = 0.0f;
}
return;
}
VOID impd_calc_phase_filt_delay(
ia_unique_td_filt_element* element,
ia_ph_alignment_filt_struct* ph_alignment_filt) {
WORD32 i, delay = 0, channel;
if (element->eq_filter_format == FILTER_ELEMENT_FORMAT_POLE_ZERO) {
if (element->bs_real_zero_radius_one_count == 0) {
delay = element->real_zero_count + 2 * element->generic_zero_count -
element->real_pole_count - 2 * element->cmplx_pole_count;
delay = max(0, delay);
ph_alignment_filt->validity_flag = 1;
}
}
ph_alignment_filt->audio_delay.delay = delay;
for (channel = 0; channel < EQ_CHANNEL_COUNT_MAX; channel++) {
for (i = 0; i < delay; i++) {
ph_alignment_filt->audio_delay.state[channel][i] = 0.0f;
}
}
return;
}
VOID impd_calc_phase_filt(ia_unique_td_filt_element* element,
WORD32 filt_ele_idx,
ia_matching_ph_filt_struct* matching_ph_filt) {
WORD32 i;
memset(matching_ph_filt, 0, sizeof(ia_matching_ph_filt_struct));
matching_ph_filt->gain = 1.0f;
if (element->eq_filter_format == FILTER_ELEMENT_FORMAT_POLE_ZERO) {
for (i = 0; i < element->real_pole_count; i++) {
impd_calc_phase_filt_params(CONFIG_REAL_POLE,
element->real_pole_radius[i], 0.0f,
matching_ph_filt);
}
for (i = 0; i < element->cmplx_pole_count; i++) {
impd_calc_phase_filt_params(
CONFIG_COMPLEX_POLE, element->complex_pole_radius[i],
element->complex_pole_angle[i], matching_ph_filt);
}
}
impd_calc_phase_filt_delay(element, matching_ph_filt);
matching_ph_filt->num_matches_filter = 1;
matching_ph_filt->matches_filter[0] = filt_ele_idx;
return;
}
WORD32 impd_calc_filt_params(ia_unique_td_filt_element* element,
ia_interm_filt_params_struct* interm_filt_params) {
FLOAT32 zReal;
FLOAT32* coeff;
// WORD32 offset_idx = 0;
WORD32 i;
WORD32 param_idx = 0;
ia_2nd_order_filt_params_struct* pstr_2nd_oder_filt_params =
&interm_filt_params->ord_2_filt_params_of_zeros[0];
for (i = 0; i < element->bs_real_zero_radius_one_count; i += 2) {
FLOAT32 radius = (FLOAT32)element->zero_sign[i + 0];
FLOAT32 angle = (FLOAT32)element->zero_sign[i + 1];
FLOAT32 angle1 = radius;
FLOAT32 angle2 = angle;
pstr_2nd_oder_filt_params->radius = 1.0f;
coeff = pstr_2nd_oder_filt_params->coeff;
if (angle1 != angle2) {
coeff[0] = 0.0f;
coeff[1] = -1.0f;
} else if (angle1 == 1.0f) {
coeff[0] = -2.0f;
coeff[1] = 1.0f;
} else {
coeff[0] = 2.0f;
coeff[1] = 1.0f;
}
pstr_2nd_oder_filt_params += 1;
param_idx += 1;
}
for (i = 0; i < element->real_zero_count; i++) {
FLOAT32 radius = element->real_zero_radius[i];
// FLOAT32 angle = 0.0f;
pstr_2nd_oder_filt_params->radius = radius;
if (fabs(radius) == 1.0f) {
return (-1);
} else {
coeff = pstr_2nd_oder_filt_params->coeff;
coeff[0] = -(radius + 1.0f / radius);
coeff[1] = 1.0f;
}
pstr_2nd_oder_filt_params += 1;
param_idx += 1;
}
for (i = 0; i < element->generic_zero_count; i++) {
FLOAT32 radius = element->generic_zero_radius[i];
FLOAT32 angle = element->generic_zero_angle[i];
zReal = radius * (FLOAT32)cos(M_PI * angle);
pstr_2nd_oder_filt_params->radius = radius;
coeff = pstr_2nd_oder_filt_params->coeff;
coeff[0] = -2.0f * zReal;
coeff[1] = radius * radius;
pstr_2nd_oder_filt_params += 1;
zReal = (FLOAT32)cos(M_PI * angle) / radius;
pstr_2nd_oder_filt_params->radius = radius;
coeff = pstr_2nd_oder_filt_params->coeff;
coeff[0] = -2.0f * zReal;
coeff[1] = 1.0f / (radius * radius);
pstr_2nd_oder_filt_params += 1;
param_idx += 2;
}
interm_filt_params->filter_param_count_of_zeros = param_idx;
param_idx = 0;
pstr_2nd_oder_filt_params =
&interm_filt_params->ord_2_filt_params_of_poles[0];
for (i = 0; i < element->real_pole_count; i++) {
FLOAT32 radius = element->real_pole_radius[i];
pstr_2nd_oder_filt_params->radius = radius;
coeff = pstr_2nd_oder_filt_params->coeff;
coeff[0] = -2.0f * radius;
coeff[1] = radius * radius;
param_idx += 1;
pstr_2nd_oder_filt_params += 1;
}
for (i = 0; i < element->cmplx_pole_count; i++) {
FLOAT32 radius = element->complex_pole_radius[i];
FLOAT32 angle = element->complex_pole_angle[i];
zReal = radius * (FLOAT32)cos(M_PI * angle);
pstr_2nd_oder_filt_params->radius = radius;
coeff = pstr_2nd_oder_filt_params->coeff;
coeff[0] = -2.0f * zReal;
coeff[1] = radius * radius;
pstr_2nd_oder_filt_params += 1;
pstr_2nd_oder_filt_params->radius = radius;
pstr_2nd_oder_filt_params->coeff[0] = coeff[0];
pstr_2nd_oder_filt_params->coeff[1] = coeff[1];
pstr_2nd_oder_filt_params += 1;
param_idx += 2;
}
interm_filt_params->filter_param_count_of_poles = param_idx;
return 0;
}
VOID impd_convert_fir_filt_params(WORD32 fir_filt_order, WORD32 fir_symmetry,
FLOAT32* fir_coeff,
ia_fir_filter_struct* fir_filter) {
WORD32 i, channel;
FLOAT32* coeff = fir_filter->coeff;
fir_filter->coeff_count = fir_filt_order + 1;
for (i = 0; i < fir_filt_order / 2 + 1; i++) {
coeff[i] = fir_coeff[i];
}
if (fir_symmetry == 1) {
for (i = 0; i < (fir_filt_order + 1) / 2; i++) {
coeff[fir_filt_order - i] = -coeff[i];
}
if ((fir_filt_order & 1) == 0) {
coeff[fir_filt_order / 2] = 0.0f;
}
} else {
for (i = 0; i < (fir_filt_order + 1) / 2; i++) {
coeff[fir_filt_order - i] = coeff[i];
}
}
for (channel = 0; channel < EQ_CHANNEL_COUNT_MAX; channel++) {
for (i = 0; i < fir_filt_order + 1; i++) {
fir_filter->state[channel][i] = 0.0f;
}
}
return;
}
WORD32 impd_calc_filt_params_all(
ia_unique_td_filt_element* element,
ia_interm_filt_params_struct* interm_filt_params) {
WORD32 err = 0;
interm_filt_params->filter_format = element->eq_filter_format;
if (element->eq_filter_format == FILTER_ELEMENT_FORMAT_POLE_ZERO) {
err = impd_calc_filt_params(element, interm_filt_params);
if (err) return err;
} else {
interm_filt_params->filter_param_count_of_zeros = 0;
interm_filt_params->filter_param_count_of_poles = 0;
impd_convert_fir_filt_params(element->fir_filt_order, element->fir_symmetry,
element->fir_coeff,
&interm_filt_params->fir_filter);
}
return (0);
}
VOID impd_calc_eq_filt_elements(
ia_interm_filt_params_struct* interm_filt_params,
ia_eq_filt_ele_struct* eq_filt_element) {
WORD32 i, poles_idx, zeros_idx, pole_order = 0, section, channel;
WORD32 poles_over[REAL_POLE_COUNT_MAX + COMPLEX_POLE_COUNT_MAX];
WORD32 zeros_over[REAL_ZERO_COUNT_MAX + COMPLEX_ZERO_COUNT_MAX];
FLOAT32 max_radius, diff_radius;
WORD32 coeff_count;
FLOAT32* coeff;
for (i = 0; i < REAL_POLE_COUNT_MAX + COMPLEX_POLE_COUNT_MAX; i++) {
poles_over[i] = 0;
}
for (i = 0; i < REAL_ZERO_COUNT_MAX + COMPLEX_ZERO_COUNT_MAX; i++) {
zeros_over[i] = 0;
}
section = 0;
do {
max_radius = -1.0;
poles_idx = -1;
for (i = 0; i < interm_filt_params->filter_param_count_of_poles; i++) {
if (poles_over[i] == 0) {
if (interm_filt_params->filter_format == 0) {
if (max_radius <
fabs(interm_filt_params->ord_2_filt_params_of_poles[i].radius)) {
max_radius = (FLOAT32)fabs(
interm_filt_params->ord_2_filt_params_of_poles[i].radius);
poles_idx = i;
if (interm_filt_params->ord_2_filt_params_of_poles[i].coeff[1] !=
0.0f) {
pole_order = 2;
} else {
pole_order = 1;
}
}
}
}
}
if (poles_idx >= 0) {
diff_radius = 10.0f;
zeros_idx = -1;
for (i = 0; i < interm_filt_params->filter_param_count_of_zeros; i++) {
if (zeros_over[i] == 0) {
if (interm_filt_params->filter_format == 0) {
if (pole_order == 2) {
if (interm_filt_params->ord_2_filt_params_of_zeros[i].coeff[1] !=
0.0f) {
if (diff_radius >
fabs(fabs(interm_filt_params->ord_2_filt_params_of_zeros[i]
.radius) -
max_radius)) {
diff_radius = (FLOAT32)fabs(
fabs(interm_filt_params->ord_2_filt_params_of_zeros[i]
.radius) -
max_radius);
zeros_idx = i;
}
}
} else {
if (interm_filt_params->ord_2_filt_params_of_zeros[i].coeff[1] ==
0.0f) {
if (diff_radius >
(FLOAT32)(fabs(
fabs(interm_filt_params->ord_2_filt_params_of_zeros[i]
.radius) -
max_radius))) {
diff_radius = (FLOAT32)(fabs(
fabs(interm_filt_params->ord_2_filt_params_of_zeros[i]
.radius) -
max_radius));
zeros_idx = i;
}
}
}
}
}
}
if (zeros_idx == -1) {
for (i = 0; i < interm_filt_params->filter_param_count_of_zeros; i++) {
if (zeros_over[i] == 0) {
if (interm_filt_params->filter_format == 0) {
if (pole_order == 2) {
if (interm_filt_params->ord_2_filt_params_of_zeros[i]
.coeff[1] == 0.0f) {
if (diff_radius >
(FLOAT32)(fabs(
fabs(interm_filt_params->ord_2_filt_params_of_zeros[i]
.radius) -
max_radius))) {
diff_radius = (FLOAT32)(fabs(
fabs(interm_filt_params->ord_2_filt_params_of_zeros[i]
.radius) -
max_radius));
zeros_idx = i;
}
}
} else {
if (interm_filt_params->ord_2_filt_params_of_zeros[i]
.coeff[1] != 0.0f) {
if (diff_radius >
(FLOAT32)(fabs(
fabs(interm_filt_params->ord_2_filt_params_of_zeros[i]
.radius) -
max_radius))) {
diff_radius = (FLOAT32)(fabs(
fabs(interm_filt_params->ord_2_filt_params_of_zeros[i]
.radius) -
max_radius));
zeros_idx = i;
}
}
}
}
}
}
}
eq_filt_element->pstr_pole_zero_filt.filt_section[section].a1 =
interm_filt_params->ord_2_filt_params_of_poles[poles_idx].coeff[0];
eq_filt_element->pstr_pole_zero_filt.filt_section[section].a2 =
interm_filt_params->ord_2_filt_params_of_poles[poles_idx].coeff[1];
if (zeros_idx >= 0) {
eq_filt_element->pstr_pole_zero_filt.filt_section[section].b1 =
interm_filt_params->ord_2_filt_params_of_zeros[zeros_idx].coeff[0];
eq_filt_element->pstr_pole_zero_filt.filt_section[section].b2 =
interm_filt_params->ord_2_filt_params_of_zeros[zeros_idx].coeff[1];
} else {
eq_filt_element->pstr_pole_zero_filt.filt_section[section].b1 = 0.0f;
eq_filt_element->pstr_pole_zero_filt.filt_section[section].b2 = 0.0f;
eq_filt_element->pstr_pole_zero_filt.audio_delay.delay++;
}
for (channel = 0; channel < EQ_CHANNEL_COUNT_MAX; channel++) {
eq_filt_element->pstr_pole_zero_filt.filt_section[section]
.filt_sect_state[channel]
.in_state_1 = 0.0f;
eq_filt_element->pstr_pole_zero_filt.filt_section[section]
.filt_sect_state[channel]
.in_state_2 = 0.0f;
eq_filt_element->pstr_pole_zero_filt.filt_section[section]
.filt_sect_state[channel]
.out_state_1 = 0.0f;
eq_filt_element->pstr_pole_zero_filt.filt_section[section]
.filt_sect_state[channel]
.out_state_2 = 0.0f;
}
if (zeros_idx >= 0) zeros_over[zeros_idx] = 1;
if (poles_idx >= 0) poles_over[poles_idx] = 1;
section++;
}
} while (poles_idx >= 0);
eq_filt_element->pstr_pole_zero_filt.section_count = section;
coeff_count = 1;
coeff = eq_filt_element->pstr_pole_zero_filt.fir_filter.coeff;
coeff[0] = 1.0f;
for (i = 0; i < interm_filt_params->filter_param_count_of_zeros; i++) {
if (zeros_over[i] == 0) {
if (interm_filt_params->filter_format == 0) {
WORD32 k;
FLOAT32 b1, b2;
b1 = interm_filt_params->ord_2_filt_params_of_zeros[i].coeff[0];
b2 = interm_filt_params->ord_2_filt_params_of_zeros[i].coeff[1];
coeff_count += 2;
k = coeff_count - 1;
coeff[k] = b2 * coeff[k - 2];
k--;
if (k > 1) {
coeff[k] = b1 * coeff[k - 1] + b2 * coeff[k - 2];
k--;
for (; k > 1; k--) {
coeff[k] += b1 * coeff[k - 1] + b2 * coeff[k - 2];
}
coeff[1] += b1 * coeff[0];
} else {
coeff[1] = b1 * coeff[0];
}
}
}
zeros_over[i] = 1;
}
if (coeff_count > 1) {
eq_filt_element->pstr_pole_zero_filt.filt_coeffs_flag = 1;
eq_filt_element->pstr_pole_zero_filt.fir_filter.coeff_count = coeff_count;
} else {
eq_filt_element->pstr_pole_zero_filt.filt_coeffs_flag = 0;
eq_filt_element->pstr_pole_zero_filt.fir_filter.coeff_count = 0;
}
return;
}
WORD32 impd_calc_filt_block(ia_unique_td_filt_element* unique_td_filt_ele,
ia_filt_block_struct* str_filter_block,
ia_eq_filt_block_struct* pstr_eq_filt_block) {
WORD32 i, k, err;
ia_interm_filt_params_struct interm_filt_params;
ia_matching_ph_filt_struct matching_ph_filt[FILTER_ELEMENT_COUNT_MAX];
for (i = 0; i < str_filter_block->filter_element_count; i++) {
if ((unique_td_filt_ele[str_filter_block->str_filter_element[i]
.filt_ele_idx]
.eq_filter_format == FILTER_ELEMENT_FORMAT_FIR) &&
(str_filter_block->filter_element_count > 1)) {
return (-1);
}
}
for (i = 0; i < str_filter_block->filter_element_count; i++) {
ia_eq_filt_ele_struct* eq_filt_element =
&pstr_eq_filt_block->eq_filt_element[i];
ia_filt_ele_struct* str_filter_element =
&str_filter_block->str_filter_element[i];
WORD32 filterIndex = str_filter_element->filt_ele_idx;
if (unique_td_filt_ele[filterIndex].eq_filter_format ==
FILTER_ELEMENT_FORMAT_POLE_ZERO) {
err = impd_calc_filt_params_all(&(unique_td_filt_ele[filterIndex]),
&interm_filt_params);
if (err) return (err);
impd_calc_eq_filt_elements(&interm_filt_params, eq_filt_element);
eq_filt_element->format = FILTER_ELEMENT_FORMAT_POLE_ZERO;
} else {
impd_convert_fir_filt_params(
unique_td_filt_ele[filterIndex].fir_filt_order,
unique_td_filt_ele[filterIndex].fir_symmetry,
unique_td_filt_ele[filterIndex].fir_coeff,
&eq_filt_element->fir_filter);
eq_filt_element->format = FILTER_ELEMENT_FORMAT_FIR;
}
if (str_filter_element->filt_ele_gain_flag == 1) {
eq_filt_element->elementGainLinear =
(FLOAT32)(pow(10.0f, 0.05f * str_filter_element->filt_ele_gain));
} else {
eq_filt_element->elementGainLinear = 1.0f;
}
for (k = 0; k < unique_td_filt_ele[filterIndex].real_zero_count; k++) {
if (unique_td_filt_ele[filterIndex].real_zero_radius[k] > 0.0f) {
eq_filt_element->elementGainLinear =
-eq_filt_element->elementGainLinear;
}
}
impd_calc_phase_filt(&(unique_td_filt_ele[filterIndex]), i,
&matching_ph_filt[i]);
}
pstr_eq_filt_block->element_count = str_filter_block->filter_element_count;
pstr_eq_filt_block->matching_ph_filt_ele_0 = matching_ph_filt[0];
return (0);
}
VOID impd_calc_cascade_phase_align_filt(
ia_td_filter_cascade_struct* str_td_filter_cascade, WORD32 ch_group_cnt) {
// WORD32 err = 0;
WORD32 cascade_align_grp_cnt = 0;
ia_cascade_align_group_struct
pstr_cascade_align_grp[EQ_CHANNEL_GROUP_COUNT_MAX / 2];
impd_calc_cascade_align_groups(
ch_group_cnt, str_td_filter_cascade->eq_phase_alignment_present,
str_td_filter_cascade->eq_phase_alignment, &cascade_align_grp_cnt,
pstr_cascade_align_grp);
return;
}
WORD32 impd_calc_filt_cascade(
ia_unique_td_filt_element* unique_td_filt_ele,
ia_filt_block_struct* str_filter_block,
ia_td_filter_cascade_struct* str_td_filter_cascade, WORD32 ch_group_cnt,
ia_filt_cascade_td_struct filt_cascade_td[]) {
WORD32 i, err, g;
for (g = 0; g < ch_group_cnt; g++) {
for (i = 0;
i < str_td_filter_cascade->str_filter_block_refs[g].filter_block_count;
i++) {
err = impd_calc_filt_block(
unique_td_filt_ele,
&(str_filter_block[str_td_filter_cascade->str_filter_block_refs[g]
.filter_block_index[i]]),
&(filt_cascade_td[g].pstr_eq_filt_block[i]));
if (err) return (err);
}
filt_cascade_td[g].block_count = i;
filt_cascade_td[g].cascade_gain_linear = (FLOAT32)(
pow(10.0f, 0.05f * str_td_filter_cascade->eq_cascade_gain[g]));
}
impd_calc_cascade_phase_align_filt(str_td_filter_cascade, ch_group_cnt);
return (0);
}
VOID impd_calc_subband_eq(ia_eq_subband_gain_vector* str_eq_subband_gain_vector,
WORD32 eq_subband_gain_count,
ia_subband_filt_struct* subband_filt) {
WORD32 i;
for (i = 0; i < eq_subband_gain_count; i++) {
subband_filt->subband_coeff[i] =
str_eq_subband_gain_vector->eq_subband_gain[i];
}
subband_filt->coeff_count = eq_subband_gain_count;
return;
}
FLOAT32 impd_decode_eq_node_freq(WORD32 eq_node_freq_idx) {
/*((FLOAT32)((log10(STEP_RATIO_F_HI) / log10(STEP_RATIO_F_LO) - 1.0f) /
* (STEP_RATIO_EQ_NODE_COUNT_MAX - 1.0f)))*/
FLOAT32 step_ratio = 0.0739601809794f;
return (
(FLOAT32)(pow(STEP_RATIO_F_LO, 1.0f + eq_node_freq_idx * step_ratio)));
}
FLOAT32 impd_calc_warp_freq_delta(FLOAT32 fsubband, FLOAT32 node_freq,
WORD32 eq_node_freq_idx) {
/*((FLOAT32)((log10(STEP_RATIO_F_HI) / log10(STEP_RATIO_F_LO) - 1.0f) /
* (STEP_RATIO_EQ_NODE_COUNT_MAX - 1.0f)))*/
FLOAT32 step_ratio = 0.0739601809794f;
return ((FLOAT32)((log10(fsubband) / log10(node_freq) - 1.0f) / step_ratio -
(FLOAT32)eq_node_freq_idx));
}
VOID impd_interpolate_eq_gain(WORD32 band_step, FLOAT32 left_gain,
FLOAT32 right_gain, FLOAT32 left_slope,
FLOAT32 right_slope, FLOAT32 f,
FLOAT32* interpolated_gain) {
FLOAT32 k1, k2, a, b, c, d;
FLOAT32 inv_band_step = (FLOAT32)(1.0 / (FLOAT32)band_step);
FLOAT32 inv_band_step_sqr = inv_band_step * inv_band_step;
k1 = (right_gain - left_gain) * inv_band_step_sqr;
left_slope = (FLOAT32)(left_slope / 3.128f);
right_slope = (FLOAT32)(right_slope / 3.128f);
k2 = right_slope + left_slope;
a = inv_band_step * (inv_band_step * k2 - 2.0f * k1);
b = 3.0f * k1 - inv_band_step * (k2 + left_slope);
c = left_slope;
d = left_gain;
*interpolated_gain = (((a * f + b) * f + c) * f) + d;
return;
}
WORD32 impd_interpolate_subband_spline(
ia_eq_subband_gain_spline_struct* str_eq_subband_gain_spline,
WORD32 eq_subband_gain_count, WORD32 eq_subband_gain_format,
FLOAT32 sample_rate, ia_subband_filt_struct* subband_filt) {
WORD32 b, n, err;
FLOAT32 eq_gain[32];
WORD32 eq_node_freq_idx[32];
FLOAT32 eq_node_freq[32];
FLOAT32 subband_center_freq[256];
WORD32 num_eq_nodes = str_eq_subband_gain_spline->num_eq_nodes;
FLOAT32* eq_slope = str_eq_subband_gain_spline->eq_slope;
WORD32* eq_freq_delta = str_eq_subband_gain_spline->eq_freq_delta;
FLOAT32 eq_gain_initial = str_eq_subband_gain_spline->eq_gain_initial;
FLOAT32* eq_gain_delta = str_eq_subband_gain_spline->eq_gain_delta;
FLOAT32* subband_coeff = subband_filt->subband_coeff;
WORD32 max_eq_node_idx = 32;
eq_gain[0] = eq_gain_initial;
eq_node_freq_idx[0] = 0;
eq_node_freq[0] = impd_decode_eq_node_freq(eq_node_freq_idx[0]);
for (n = 1; n < num_eq_nodes; n++) {
eq_gain[n] = eq_gain[n - 1] + eq_gain_delta[n];
eq_node_freq_idx[n] = eq_node_freq_idx[n - 1] + eq_freq_delta[n];
eq_node_freq[n] = impd_decode_eq_node_freq(eq_node_freq_idx[n]);
}
if ((eq_node_freq[num_eq_nodes - 1] < sample_rate * 0.5f) &&
(eq_node_freq_idx[num_eq_nodes - 1] < max_eq_node_idx)) {
eq_slope[num_eq_nodes] = 0;
eq_gain[num_eq_nodes] = eq_gain[num_eq_nodes - 1];
eq_freq_delta[num_eq_nodes] =
max_eq_node_idx - eq_node_freq_idx[num_eq_nodes - 1];
eq_node_freq_idx[num_eq_nodes] = max_eq_node_idx;
eq_node_freq[num_eq_nodes] =
impd_decode_eq_node_freq(eq_node_freq_idx[num_eq_nodes]);
num_eq_nodes += 1;
}
err = impd_derive_subband_center_freq(eq_subband_gain_count,
eq_subband_gain_format, sample_rate,
subband_center_freq);
if (err) return (err);
for (n = 0; n < num_eq_nodes - 1; n++) {
for (b = 0; b < eq_subband_gain_count; b++) {
FLOAT32 fSub;
fSub = max(subband_center_freq[b], eq_node_freq[0]);
fSub = min(fSub, eq_node_freq[num_eq_nodes - 1]);
if ((fSub >= eq_node_freq[n]) && (fSub <= eq_node_freq[n + 1])) {
FLOAT32 warpedDeltaFreq = impd_calc_warp_freq_delta(
fSub, eq_node_freq[0], eq_node_freq_idx[n]);
FLOAT32 gEqSubbandDb;
impd_interpolate_eq_gain(eq_freq_delta[n + 1], eq_gain[n],
eq_gain[n + 1], eq_slope[n], eq_slope[n + 1],
warpedDeltaFreq, &gEqSubbandDb);
subband_coeff[b] = (FLOAT32)pow(2.0, gEqSubbandDb / 6.0f);
}
}
}
subband_filt->coeff_count = eq_subband_gain_count;
return (0);
}
WORD32 impd_calc_subband_gains(ia_eq_coeff_struct* str_eq_coeff,
WORD32 eq_ch_group_count,
WORD32* subband_gains_index, FLOAT32 sample_rate,
WORD32 eq_frame_size_subband,
ia_subband_filt_struct* subband_filt) {
WORD32 g, err;
WORD32 eq_subband_gain_representation =
str_eq_coeff->eq_subband_gain_representation;
WORD32 eq_subband_gain_count = str_eq_coeff->eq_subband_gain_count;
WORD32 eq_subband_gain_format = str_eq_coeff->eq_subband_gain_format;
for (g = 0; g < eq_ch_group_count; g++) {
if (eq_subband_gain_representation == 1) {
err = impd_interpolate_subband_spline(
&(str_eq_coeff->str_eq_subband_gain_spline[subband_gains_index[g]]),
eq_subband_gain_count, eq_subband_gain_format, sample_rate,
&(subband_filt[g]));
if (err) return (err);
} else {
impd_calc_subband_eq(
&(str_eq_coeff->str_eq_subband_gain_vector[subband_gains_index[g]]),
eq_subband_gain_count, &(subband_filt[g]));
}
subband_filt[g].eq_frame_size_subband = eq_frame_size_subband;
}
return (0);
}
VOID impd_calc_filt_sect_delay(WORD32 section_count,
ia_filt_sect_struct* filt_section,
FLOAT32* delay) {
WORD32 i;
FLOAT32 d = 0.0f;
for (i = 0; i < section_count; i++) {
if (filt_section[i].b2 != 0.0f) {
d += 1.0f;
} else if (filt_section[i].b1 != 0.0f) {
d += 0.5f;
}
}
*delay = d;
return;
}
VOID impd_get_eq_set_delay(ia_eq_set_struct* eq_set, WORD32* cascade_delay) {
FLOAT32 delay, sect_delay;
WORD32 k, g, b;
delay = 0;
g = eq_set->eq_ch_group_of_channel[0];
if (g >= 0) {
switch (eq_set->domain) {
case EQ_FILTER_DOMAIN_TIME: {
ia_filt_cascade_td_struct* filt_cascade_td =
&eq_set->filt_cascade_td[g];
for (b = 0; b < filt_cascade_td->block_count; b++) {
ia_eq_filt_ele_struct* eq_filt_element =
&filt_cascade_td->pstr_eq_filt_block[b].eq_filt_element[0];
switch (eq_filt_element->format) {
case FILTER_ELEMENT_FORMAT_POLE_ZERO:
impd_calc_filt_sect_delay(
eq_filt_element->pstr_pole_zero_filt.section_count,
eq_filt_element->pstr_pole_zero_filt.filt_section,
&sect_delay);
delay += sect_delay;
if (eq_filt_element->pstr_pole_zero_filt.filt_coeffs_flag) {
delay += 0.5f * (eq_filt_element->pstr_pole_zero_filt.fir_filter
.coeff_count -
1);
}
break;
case FILTER_ELEMENT_FORMAT_FIR:
delay += 0.5f * (eq_filt_element->fir_filter.coeff_count - 1);
break;
default:
break;
}
for (k = 0; k < eq_filt_element->num_ph_align_filt; k++) {
ia_ph_alignment_filt_struct* ph_alignment_filt =
&eq_filt_element->ph_alignment_filt[k];
impd_calc_filt_sect_delay(ph_alignment_filt->section_count,
ph_alignment_filt->filt_section,
&sect_delay);
delay += sect_delay;
}
}
for (b = 0; b < filt_cascade_td->num_ph_align_filt; b++) {
ia_ph_alignment_filt_struct* ph_alignment_filt =
&filt_cascade_td->ph_alignment_filt[b];
impd_calc_filt_sect_delay(ph_alignment_filt->section_count,
ph_alignment_filt->filt_section,
&sect_delay);
delay += sect_delay;
}
} break;
case EQ_FILTER_DOMAIN_SUBBAND:
case EQ_FILTER_DOMAIN_NONE:
default:
break;
}
}
*cascade_delay = (WORD32)delay;
return;
}
WORD32 impd_derive_eq_set(ia_eq_coeff_struct* str_eq_coeff,
ia_eq_instructions_struct* str_eq_instructions,
FLOAT32 sample_rate, WORD32 drc_frame_size,
WORD32 sub_band_domain_mode,
ia_eq_set_struct* eq_set) {
WORD32 err, i, eq_frame_size_subband;
eq_set->domain = EQ_FILTER_DOMAIN_NONE;
if (sub_band_domain_mode == SUBBAND_DOMAIN_MODE_OFF) {
if (str_eq_instructions->td_filter_cascade_present == 1) {
err = impd_calc_filt_cascade(
str_eq_coeff->unique_td_filt_ele, str_eq_coeff->str_filter_block,
&str_eq_instructions->str_td_filter_cascade,
str_eq_instructions->eq_ch_group_count, eq_set->filt_cascade_td);
if (err) return (err);
}
eq_set->domain |= EQ_FILTER_DOMAIN_TIME;
}
if (sub_band_domain_mode != SUBBAND_DOMAIN_MODE_OFF) {
switch (sub_band_domain_mode) {
case SUBBAND_DOMAIN_MODE_QMF64:
if (str_eq_coeff->eq_subband_gain_count !=
AUDIO_CODEC_SUBBAND_COUNT_QMF64) {
return (-1);
}
eq_frame_size_subband =
drc_frame_size / AUDIO_CODEC_SUBBAND_DOWNSAMPLING_FACTOR_QMF64;
break;
case SUBBAND_DOMAIN_MODE_QMF71:
if (str_eq_coeff->eq_subband_gain_count !=
AUDIO_CODEC_SUBBAND_COUNT_QMF71) {
return (-1);
}
eq_frame_size_subband =
drc_frame_size / AUDIO_CODEC_SUBBAND_DOWNSAMPLING_FACTOR_QMF71;
break;
case SUBBAND_DOMAIN_MODE_STFT256:
if (str_eq_coeff->eq_subband_gain_count !=
AUDIO_CODEC_SUBBAND_COUNT_STFT256) {
return (-1);
}
eq_frame_size_subband =
drc_frame_size / AUDIO_CODEC_SUBBAND_DOWNSAMPLING_FACTOR_STFT256;
break;
default:
return (-1);
break;
}
if (str_eq_instructions->subband_gains_present == 1) {
err = impd_calc_subband_gains(
str_eq_coeff, str_eq_instructions->eq_ch_group_count,
str_eq_instructions->subband_gains_index, sample_rate,
eq_frame_size_subband, eq_set->subband_filt);
if (err) return (err);
} else {
if (str_eq_instructions->td_filter_cascade_present == 1) {
err = impd_calc_subband_gains_td_cascade(
str_eq_coeff->unique_td_filt_ele, str_eq_coeff->str_filter_block,
&str_eq_instructions->str_td_filter_cascade,
str_eq_coeff->eq_subband_gain_format,
str_eq_instructions->eq_ch_group_count, sample_rate,
eq_frame_size_subband, eq_set->subband_filt);
if (err) return (err);
}
}
eq_set->domain |= EQ_FILTER_DOMAIN_SUBBAND;
}
eq_set->audio_num_chan = str_eq_instructions->eq_channel_count;
eq_set->eq_ch_group_count = str_eq_instructions->eq_ch_group_count;
for (i = 0; i < str_eq_instructions->eq_channel_count; i++) {
eq_set->eq_ch_group_of_channel[i] =
str_eq_instructions->eq_ch_group_of_channel[i];
}
return (0);
}
VOID impd_process_filt_sect(
ia_filt_sect_struct filt_section[EQ_FILTER_SECTION_COUNT_MAX],
WORD32 channel, FLOAT32* audio_out, WORD32 section_count) {
WORD32 i;
for (i = 0; i < section_count; i++) {
ia_filt_sect_state_struct* filt_sect_state =
&filt_section[i].filt_sect_state[channel];
FLOAT32 audio_in = *audio_out;
*audio_out = audio_in + filt_section[i].b1 * filt_sect_state->in_state_1 +
filt_section[i].b2 * filt_sect_state->in_state_2 -
filt_section[i].a1 * filt_sect_state->out_state_1 -
filt_section[i].a2 * filt_sect_state->out_state_2;
filt_sect_state->in_state_2 = filt_sect_state->in_state_1;
filt_sect_state->in_state_1 = audio_in;
filt_sect_state->out_state_2 = filt_sect_state->out_state_1;
filt_sect_state->out_state_1 = *audio_out;
}
return;
}
VOID impd_fir_filt_process(ia_fir_filter_struct* fir_filter, WORD32 channel,
FLOAT32 audio_in, FLOAT32* audio_out) {
WORD32 i;
FLOAT32* coeff = fir_filter->coeff;
FLOAT32* state = fir_filter->state[channel];
FLOAT32 sum;
sum = coeff[0] * audio_in;
for (i = 1; i < fir_filter->coeff_count; i++) {
sum += coeff[i] * state[i - 1];
}
*audio_out = sum;
for (i = fir_filter->coeff_count - 2; i > 0; i--) {
state[i] = state[i - 1];
}
state[0] = audio_in;
return;
}
VOID impd_audio_delay_process(ia_audio_delay_struct* audio_delay,
WORD32 channel, FLOAT32 audio_in,
FLOAT32* ptr_audio_out) {
WORD32 i;
FLOAT32* state = audio_delay->state[channel];
if (audio_delay->delay > 0) {
*ptr_audio_out = state[audio_delay->delay - 1];
for (i = audio_delay->delay - 1; i > 0; i--) {
state[i] = state[i - 1];
}
state[0] = audio_in;
} else {
*ptr_audio_out = audio_in;
}
return;
}
VOID impd_pole_zero_filt_process(ia_pole_zero_filt_struct* pstr_pole_zero_filt,
WORD32 channel, FLOAT32 audio_in,
FLOAT32* ptr_audio_out) {
FLOAT32 inp = audio_in;
FLOAT32 out = inp;
impd_process_filt_sect(pstr_pole_zero_filt->filt_section, channel, &out,
pstr_pole_zero_filt->section_count);
inp = out;
if (pstr_pole_zero_filt->filt_coeffs_flag == 1) {
impd_fir_filt_process(&pstr_pole_zero_filt->fir_filter, channel, inp, &out);
inp = out;
}
impd_audio_delay_process(&pstr_pole_zero_filt->audio_delay, channel, inp,
&out);
*ptr_audio_out = out;
return;
}
VOID impd_phase_align_filt_process(
ia_ph_alignment_filt_struct* ph_alignment_filt, WORD32 channel,
FLOAT32* ptr_audio_out) {
FLOAT32 audio_in = *ptr_audio_out;
FLOAT32 inp = audio_in;
FLOAT32 out = inp;
impd_process_filt_sect(ph_alignment_filt->filt_section, channel, &out,
ph_alignment_filt->section_count);
inp = out;
impd_audio_delay_process(&ph_alignment_filt->audio_delay, channel, inp, &out);
*ptr_audio_out = out * ph_alignment_filt->gain;
return;
}
VOID impd_eq_filt_element_process(
ia_eq_filt_block_struct str_eq_filt_block[EQ_FILTER_BLOCK_COUNT_MAX],
WORD32 channel, FLOAT32 audio_in, FLOAT32* ptr_audio_out,
WORD32 block_count) {
WORD32 i;
FLOAT32 inp = audio_in;
FLOAT32 out = inp;
WORD32 k, j;
WORD32 element_count;
for (j = 0; j < block_count; j++) {
FLOAT32 sum = 0.0f;
element_count = str_eq_filt_block[j].element_count;
for (k = 0; k < element_count; k++) {
switch (str_eq_filt_block[j].eq_filt_element[k].format) {
case FILTER_ELEMENT_FORMAT_POLE_ZERO:
impd_pole_zero_filt_process(
&str_eq_filt_block[j].eq_filt_element[k].pstr_pole_zero_filt,
channel, inp, &out);
break;
case FILTER_ELEMENT_FORMAT_FIR:
impd_fir_filt_process(
&str_eq_filt_block[j].eq_filt_element[k].fir_filter, channel, inp,
&out);
break;
default:
break;
}
out *= str_eq_filt_block[j].eq_filt_element[k].elementGainLinear;
for (i = 0; i < str_eq_filt_block[j].eq_filt_element[k].num_ph_align_filt;
i++) {
inp = out;
impd_phase_align_filt_process(
&str_eq_filt_block[j].eq_filt_element[k].ph_alignment_filt[i],
channel, &out);
}
sum += out;
}
inp = sum;
}
*ptr_audio_out = inp;
return;
}
WORD32 impd_process_eq_set_time_domain(ia_eq_set_struct* pstr_eq_set,
WORD32 channel, FLOAT32* ptr_audio_in,
FLOAT32* ptr_audio_out,
WORD32 frame_size) {
WORD32 i, j, g = 0;
if (pstr_eq_set == NULL) return 0;
g = pstr_eq_set->eq_ch_group_of_channel[channel];
if (g < 0) return 0;
for (i = 0; i < frame_size; i++) {
impd_eq_filt_element_process(
(pstr_eq_set->filt_cascade_td[g].pstr_eq_filt_block), channel,
ptr_audio_in[i], &ptr_audio_out[i],
pstr_eq_set->filt_cascade_td[g].block_count);
for (j = 0; j < pstr_eq_set->filt_cascade_td[g].num_ph_align_filt; j++) {
impd_phase_align_filt_process(
&pstr_eq_set->filt_cascade_td[g].ph_alignment_filt[j], channel,
&ptr_audio_out[i]);
}
ptr_audio_out[i] =
ptr_audio_out[i] * pstr_eq_set->filt_cascade_td[g].cascade_gain_linear;
}
return 0;
}