blob: dff15397e885b32ae7cc6d0581d656a52b0b37c9 [file] [log] [blame]
// Copyright (c) 2010 The WebM project authors. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
#include "mkvparser.hpp"
#include <cassert>
#include <cstring>
#include <new>
mkvparser::IMkvReader::~IMkvReader()
{
}
void mkvparser::GetVersion(int& major, int& minor, int& build, int& revision)
{
major = 1;
minor = 0;
build = 0;
revision = 2;
}
long long mkvparser::ReadUInt(IMkvReader* pReader, long long pos, long& len)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(pos < available);
assert((available - pos) >= 1); //assume here max u-int len is 8
unsigned char b;
hr = pReader->Read(pos, 1, &b);
if (hr < 0)
return hr;
assert(hr == 0L);
if (b & 0x80) //1000 0000
{
len = 1;
b &= 0x7F; //0111 1111
}
else if (b & 0x40) //0100 0000
{
len = 2;
b &= 0x3F; //0011 1111
}
else if (b & 0x20) //0010 0000
{
len = 3;
b &= 0x1F; //0001 1111
}
else if (b & 0x10) //0001 0000
{
len = 4;
b &= 0x0F; //0000 1111
}
else if (b & 0x08) //0000 1000
{
len = 5;
b &= 0x07; //0000 0111
}
else if (b & 0x04) //0000 0100
{
len = 6;
b &= 0x03; //0000 0011
}
else if (b & 0x02) //0000 0010
{
len = 7;
b &= 0x01; //0000 0001
}
else
{
assert(b & 0x01); //0000 0001
len = 8;
b = 0; //0000 0000
}
assert((available - pos) >= len);
long long result = b;
++pos;
for (long i = 1; i < len; ++i)
{
hr = pReader->Read(pos, 1, &b);
if (hr < 0)
return hr;
assert(hr == 0L);
result <<= 8;
result |= b;
++pos;
}
return result;
}
long long mkvparser::GetUIntLength(
IMkvReader* pReader,
long long pos,
long& len)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
if (pos >= available)
return pos; //too few bytes available
unsigned char b;
hr = pReader->Read(pos, 1, &b);
if (hr < 0)
return hr;
assert(hr == 0L);
if (b == 0) //we can't handle u-int values larger than 8 bytes
return E_FILE_FORMAT_INVALID;
unsigned char m = 0x80;
len = 1;
while (!(b & m))
{
m >>= 1;
++len;
}
return 0; //success
}
long long mkvparser::SyncReadUInt(
IMkvReader* pReader,
long long pos,
long long stop,
long& len)
{
assert(pReader);
if (pos >= stop)
return E_FILE_FORMAT_INVALID;
unsigned char b;
long hr = pReader->Read(pos, 1, &b);
if (hr < 0)
return hr;
if (hr != 0L)
return E_BUFFER_NOT_FULL;
if (b == 0) //we can't handle u-int values larger than 8 bytes
return E_FILE_FORMAT_INVALID;
unsigned char m = 0x80;
len = 1;
while (!(b & m))
{
m >>= 1;
++len;
}
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
long long result = b & (~m);
++pos;
for (int i = 1; i < len; ++i)
{
hr = pReader->Read(pos, 1, &b);
if (hr < 0)
return hr;
if (hr != 0L)
return E_BUFFER_NOT_FULL;
result <<= 8;
result |= b;
++pos;
}
return result;
}
long long mkvparser::UnserializeUInt(
IMkvReader* pReader,
long long pos,
long long size)
{
assert(pReader);
assert(pos >= 0);
assert(size > 0);
assert(size <= 8);
long long result = 0;
for (long long i = 0; i < size; ++i)
{
unsigned char b;
const long hr = pReader->Read(pos, 1, &b);
if (hr < 0)
return hr;
result <<= 8;
result |= b;
++pos;
}
return result;
}
float mkvparser::Unserialize4Float(
IMkvReader* pReader,
long long pos)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
assert((pos + 4) <= available);
float result;
unsigned char* const p = (unsigned char*)&result;
unsigned char* q = p + 4;
for (;;)
{
hr = pReader->Read(pos, 1, --q);
assert(hr == 0L);
if (q == p)
break;
++pos;
}
return result;
}
double mkvparser::Unserialize8Double(
IMkvReader* pReader,
long long pos)
{
assert(pReader);
assert(pos >= 0);
double result;
unsigned char* const p = (unsigned char*)&result;
unsigned char* q = p + 8;
for (;;)
{
const long hr = pReader->Read(pos, 1, --q);
assert(hr == 0L);
if (q == p)
break;
++pos;
}
return result;
}
signed char mkvparser::Unserialize1SInt(
IMkvReader* pReader,
long long pos)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr == 0);
assert(available <= total);
assert(pos < available);
signed char result;
hr = pReader->Read(pos, 1, (unsigned char*)&result);
assert(hr == 0);
return result;
}
short mkvparser::Unserialize2SInt(
IMkvReader* pReader,
long long pos)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
assert((pos + 2) <= available);
short result;
unsigned char* const p = (unsigned char*)&result;
unsigned char* q = p + 2;
for (;;)
{
hr = pReader->Read(pos, 1, --q);
assert(hr == 0L);
if (q == p)
break;
++pos;
}
return result;
}
bool mkvparser::Match(
IMkvReader* pReader,
long long& pos,
unsigned long id_,
long long& val)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
if ((unsigned long)id != id_)
return false;
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert(size <= 8);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
pos += len; //consume length of size of payload
val = UnserializeUInt(pReader, pos, size);
assert(val >= 0);
pos += size; //consume size of payload
return true;
}
bool mkvparser::Match(
IMkvReader* pReader,
long long& pos,
unsigned long id_,
char*& val)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
if ((unsigned long)id != id_)
return false;
pos += len; //consume id
const long long size_ = ReadUInt(pReader, pos, len);
assert(size_ >= 0);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
pos += len; //consume length of size of payload
assert((pos + size_) <= available);
const size_t size = static_cast<size_t>(size_);
val = new char[size+1];
for (size_t i = 0; i < size; ++i)
{
char c;
hr = pReader->Read(pos + i, 1, (unsigned char*)&c);
assert(hr == 0L);
val[i] = c;
if (c == '\0')
break;
}
val[size] = '\0';
pos += size_; //consume size of payload
return true;
}
bool mkvparser::Match(
IMkvReader* pReader,
long long& pos,
unsigned long id_,
unsigned char*& buf,
size_t& buflen)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
if ((unsigned long)id != id_)
return false;
pos += len; //consume id
const long long size_ = ReadUInt(pReader, pos, len);
assert(size_ >= 0);
assert(len > 0);
assert(len <= 8);
assert((pos + len) <= available);
pos += len; //consume length of size of payload
assert((pos + size_) <= available);
const long buflen_ = static_cast<long>(size_);
buf = new (std::nothrow) unsigned char[buflen_];
assert(buf); //TODO
hr = pReader->Read(pos, buflen_, buf);
assert(hr == 0L);
buflen = buflen_;
pos += size_; //consume size of payload
return true;
}
bool mkvparser::Match(
IMkvReader* pReader,
long long& pos,
unsigned long id_,
double& val)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
long idlen;
const long long id = ReadUInt(pReader, pos, idlen);
assert(id >= 0); //TODO
if ((unsigned long)id != id_)
return false;
long sizelen;
const long long size = ReadUInt(pReader, pos + idlen, sizelen);
switch (size)
{
case 4:
case 8:
break;
default:
return false;
}
pos += idlen + sizelen; //consume id and size fields
assert((pos + size) <= available);
if (size == 4)
val = Unserialize4Float(pReader, pos);
else
{
assert(size == 8);
val = Unserialize8Double(pReader, pos);
}
pos += size; //consume size of payload
return true;
}
bool mkvparser::Match(
IMkvReader* pReader,
long long& pos,
unsigned long id_,
short& val)
{
assert(pReader);
assert(pos >= 0);
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0);
assert((pos + len) <= available);
if ((unsigned long)id != id_)
return false;
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size <= 2);
assert((pos + len) <= available);
pos += len; //consume length of size of payload
assert((pos + size) <= available);
//TODO:
// Generalize this to work for any size signed int
if (size == 1)
val = Unserialize1SInt(pReader, pos);
else
val = Unserialize2SInt(pReader, pos);
pos += size; //consume size of payload
return true;
}
namespace mkvparser
{
EBMLHeader::EBMLHeader():
m_docType(NULL)
{
}
EBMLHeader::~EBMLHeader()
{
delete[] m_docType;
}
long long EBMLHeader::Parse(
IMkvReader* pReader,
long long& pos)
{
assert(pReader);
long long total, available;
long hr = pReader->Length(&total, &available);
if (hr < 0)
return hr;
pos = 0;
long long end = (1024 < available)? 1024: available;
for (;;)
{
unsigned char b = 0;
while (pos < end)
{
hr = pReader->Read(pos, 1, &b);
if (hr < 0)
return hr;
if (b == 0x1A)
break;
++pos;
}
if (b != 0x1A)
{
if ((pos >= 1024) ||
(available >= total) ||
((total - available) < 5))
return -1;
return available + 5; //5 = 4-byte ID + 1st byte of size
}
if ((total - pos) < 5)
return E_FILE_FORMAT_INVALID;
if ((available - pos) < 5)
return pos + 5; //try again later
long len;
const long long result = ReadUInt(pReader, pos, len);
if (result < 0) //error
return result;
if (result == 0x0A45DFA3) //ReadId masks-off length indicator bits
{
assert(len == 4);
pos += len;
break;
}
++pos; //throw away just the 0x1A byte, and try again
}
long len;
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return result;
if (result > 0) //need more data
return result;
assert(len > 0);
assert(len <= 8);
if ((total - pos) < len)
return E_FILE_FORMAT_INVALID;
if ((available - pos) < len)
return pos + len; //try again later
result = ReadUInt(pReader, pos, len);
if (result < 0) //error
return result;
pos += len; //consume u-int
if ((total - pos) < result)
return E_FILE_FORMAT_INVALID;
if ((available - pos) < result)
return pos + result;
end = pos + result;
m_version = 1;
m_readVersion = 1;
m_maxIdLength = 4;
m_maxSizeLength = 8;
m_docTypeVersion = 1;
m_docTypeReadVersion = 1;
while (pos < end)
{
if (Match(pReader, pos, 0x0286, m_version))
;
else if (Match(pReader, pos, 0x02F7, m_readVersion))
;
else if (Match(pReader, pos, 0x02F2, m_maxIdLength))
;
else if (Match(pReader, pos, 0x02F3, m_maxSizeLength))
;
else if (Match(pReader, pos, 0x0282, m_docType))
;
else if (Match(pReader, pos, 0x0287, m_docTypeVersion))
;
else if (Match(pReader, pos, 0x0285, m_docTypeReadVersion))
;
else
{
result = ReadUInt(pReader, pos, len);
assert(result > 0);
assert(len > 0);
assert(len <= 8);
pos += len;
assert(pos < end);
result = ReadUInt(pReader, pos, len);
assert(result >= 0);
assert(len > 0);
assert(len <= 8);
pos += len + result;
assert(pos <= end);
}
}
assert(pos == end);
return 0;
}
Segment::Segment(
IMkvReader* pReader,
long long start,
long long size) :
m_pReader(pReader),
m_start(start),
m_size(size),
m_pos(start),
m_pInfo(NULL),
m_pTracks(NULL),
m_pCues(NULL),
m_clusters(NULL),
m_clusterCount(0),
m_clusterSize(0)
{
}
Segment::~Segment()
{
Cluster** i = m_clusters;
Cluster** j = m_clusters + m_clusterCount;
while (i != j)
{
Cluster* const p = *i++;
assert(p);
delete p;
}
delete[] m_clusters;
delete m_pTracks;
delete m_pInfo;
delete m_pCues;
}
long long Segment::CreateInstance(
IMkvReader* pReader,
long long pos,
Segment*& pSegment)
{
assert(pReader);
assert(pos >= 0);
pSegment = NULL;
long long total, available;
long hr = pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
//I would assume that in practice this loop would execute
//exactly once, but we allow for other elements (e.g. Void)
//to immediately follow the EBML header. This is fine for
//the source filter case (since the entire file is available),
//but in the splitter case over a network we should probably
//just give up early. We could for example decide only to
//execute this loop a maximum of, say, 10 times.
while (pos < total)
{
//Read ID
long len;
long long result = GetUIntLength(pReader, pos, len);
if (result) //error, or too few available bytes
return result;
if ((pos + len) > total)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
//TODO: if we liberalize the behavior of ReadUInt, we can
//probably eliminate having to use GetUIntLength here.
const long long id = ReadUInt(pReader, pos, len);
if (id < 0) //error
return id;
pos += len; //consume ID
//Read Size
result = GetUIntLength(pReader, pos, len);
if (result) //error, or too few available bytes
return result;
if ((pos + len) > total)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
//TODO: if we liberalize the behavior of ReadUInt, we can
//probably eliminate having to use GetUIntLength here.
const long long size = ReadUInt(pReader, pos, len);
if (size < 0)
return size;
pos += len; //consume length of size of element
//Pos now points to start of payload
if ((pos + size) > total)
return E_FILE_FORMAT_INVALID;
if (id == 0x08538067) //Segment ID
{
pSegment = new Segment(pReader, pos, size);
assert(pSegment); //TODO
return 0; //success
}
pos += size; //consume payload
}
assert(pos == total);
pSegment = new Segment(pReader, pos, 0);
assert(pSegment); //TODO
return 0; //success (sort of)
}
long long Segment::ParseHeaders()
{
//Outermost (level 0) segment object has been constructed,
//and pos designates start of payload. We need to find the
//inner (level 1) elements.
long long total, available;
long hr = m_pReader->Length(&total, &available);
assert(hr >= 0);
assert(available <= total);
const long long stop = m_start + m_size;
assert(stop <= total);
assert(m_pos <= stop);
bool bQuit = false;
while ((m_pos < stop) && !bQuit)
{
long long pos = m_pos;
long len;
long long result = GetUIntLength(m_pReader, pos, len);
if (result) //error, or too few available bytes
return result;
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
const long long idpos = pos;
const long long id = ReadUInt(m_pReader, idpos, len);
if (id < 0) //error
return id;
pos += len; //consume ID
//Read Size
result = GetUIntLength(m_pReader, pos, len);
if (result) //error, or too few available bytes
return result;
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
if ((pos + len) > available)
return pos + len;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0)
return size;
pos += len; //consume length of size of element
//Pos now points to start of payload
if ((pos + size) > stop)
return E_FILE_FORMAT_INVALID;
//We read EBML elements either in total or nothing at all.
if ((pos + size) > available)
return pos + size;
if (id == 0x0549A966) //Segment Info ID
{
assert(m_pInfo == NULL);
m_pInfo = new SegmentInfo(this, pos, size);
assert(m_pInfo); //TODO
}
else if (id == 0x0654AE6B) //Tracks ID
{
assert(m_pTracks == NULL);
m_pTracks = new Tracks(this, pos, size);
assert(m_pTracks); //TODO
}
else if (id == 0x0C53BB6B) //Cues ID
{
assert(m_pCues == NULL);
m_pCues = new Cues(this, pos, size);
assert(m_pCues); //TODO
}
else if (id == 0x0F43B675) //Cluster ID
{
bQuit = true;
}
m_pos = pos + size; //consume payload
}
assert(m_pos <= stop);
if (m_pInfo == NULL)
return E_FILE_FORMAT_INVALID;
if (m_pTracks == NULL)
return E_FILE_FORMAT_INVALID;
//TODO: require Cues too?
return 0; //success
}
long Segment::ParseCluster(Cluster*& pCluster, long long& pos_) const
{
pCluster = NULL;
pos_ = -1;
const long long stop = m_start + m_size;
assert(m_pos <= stop);
long long pos = m_pos;
long long off = -1;
while (pos < stop)
{
long len;
const long long idpos = pos;
const long long id = SyncReadUInt(m_pReader, pos, stop, len);
if (id < 0) //error
return static_cast<long>(id);
if (id == 0)
return E_FILE_FORMAT_INVALID;
pos += len; //consume id
assert(pos < stop);
const long long size = SyncReadUInt(m_pReader, pos, stop, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume size
assert(pos <= stop);
if (size == 0) //weird
continue;
//pos now points to start of payload
pos += size; //consume payload
assert(pos <= stop);
if (id == 0x0F43B675) //Cluster ID
{
off = idpos - m_start; // >= 0 means we found a cluster
break;
}
}
assert(pos <= stop);
//Indicate to caller how much of file has been consumed. This is
//used later in AddCluster to adjust the current parse position
//(the value cached in the segment object itself) to the
//file position value just past the cluster we parsed.
if (off < 0) //we did not found any more clusters
{
pos_ = stop; //pos_ >= 0 here means EOF (cluster is NULL)
return 0; //TODO: confirm this return value
}
//We found a cluster. Now read something, to ensure that it is
//fully loaded in the network cache.
if (pos >= stop) //we parsed the entire segment
{
//We did find a cluster, but it was very last element in the segment.
//Our preference is that the loop above runs 1 1/2 times:
//the first pass finds the cluster, and the second pass
//finds the element the follows the cluster. In this case, however,
//we reached the end of the file without finding another element,
//so we didn't actually read anything yet associated with "end of the
//cluster". And we must perform an actual read, in order
//to guarantee that all of the data that belongs to this
//cluster has been loaded into the network cache. So instead
//of reading the next element that follows the cluster, we
//read the last byte of the cluster (which is also the last
//byte in the file).
//Read the last byte of the file. (Reading 0 bytes at pos
//might work too -- it would depend on how the reader is
//implemented. Here we take the more conservative approach,
//since this makes fewer assumptions about the network
//reader abstraction.)
unsigned char b;
const int result = m_pReader->Read(pos - 1, 1, &b);
assert(result == 0);
pos_ = stop;
}
else
{
long len;
const long long idpos = pos;
const long long id = SyncReadUInt(m_pReader, pos, stop, len);
if (id < 0) //error
return static_cast<long>(id);
if (id == 0)
return E_BUFFER_NOT_FULL;
pos += len; //consume id
assert(pos < stop);
const long long size = SyncReadUInt(m_pReader, pos, stop, len);
if (size < 0) //error
return static_cast<long>(size);
pos_ = idpos;
}
//We found a cluster, and it has been completely loaded into the
//network cache. (We can guarantee this because we actually read
//the EBML tag that follows the cluster, or, if we reached EOF,
//because we actually read the last byte of the cluster).
Segment* const this_ = const_cast<Segment*>(this);
pCluster = Cluster::Parse(this_, m_clusterCount, off);
assert(pCluster);
assert(pCluster->m_index == m_clusterCount);
return 0;
}
bool Segment::AddCluster(Cluster* pCluster, long long pos)
{
assert(pos >= m_start);
const long long stop = m_start + m_size;
assert(pos <= stop);
if (pCluster)
{
AppendCluster(pCluster);
assert(m_clusters);
assert(m_clusterSize > pCluster->m_index);
assert(m_clusters[pCluster->m_index] == pCluster);
}
m_pos = pos; //m_pos >= stop is now we know we have all clusters
return (pos >= stop);
}
void Segment::AppendCluster(Cluster* pCluster)
{
assert(pCluster);
size_t& size = m_clusterSize;
assert(size >= m_clusterCount);
const size_t idx = pCluster->m_index;
assert(idx == m_clusterCount);
if (idx < size)
{
m_clusters[idx] = pCluster;
++m_clusterCount;
return;
}
size_t n;
if (size > 0)
n = 2 * size;
else if (m_pInfo == 0)
n = 2048;
else
{
const long long ns = m_pInfo->GetDuration();
if (ns <= 0)
n = 2048;
else
{
const long long sec = (ns + 999999999LL) / 1000000000LL;
n = static_cast<size_t>(sec);
}
}
Cluster** const qq = new Cluster*[n];
Cluster** q = qq;
Cluster** p = m_clusters;
Cluster** const pp = p + m_clusterCount;
while (p != pp)
*q++ = *p++;
delete[] m_clusters;
m_clusters = qq;
size = n;
m_clusters[idx] = pCluster;
++m_clusterCount;
}
long Segment::Load()
{
assert(m_clusters == NULL);
assert(m_clusterSize == 0);
assert(m_clusterCount == 0);
//Outermost (level 0) segment object has been constructed,
//and pos designates start of payload. We need to find the
//inner (level 1) elements.
const long long stop = m_start + m_size;
#ifdef _DEBUG //TODO: this is really Microsoft-specific
{
long long total, available;
long hr = m_pReader->Length(&total, &available);
assert(hr >= 0);
assert(available >= total);
assert(stop <= total);
}
#endif
while (m_pos < stop)
{
long long pos = m_pos;
long len;
long long result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
const long long idpos = pos;
const long long id = ReadUInt(m_pReader, idpos, len);
if (id < 0) //error
return static_cast<long>(id);
pos += len; //consume ID
//Read Size
result = GetUIntLength(m_pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if ((pos + len) > stop)
return E_FILE_FORMAT_INVALID;
const long long size = ReadUInt(m_pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume length of size of element
//Pos now points to start of payload
if ((pos + size) > stop)
return E_FILE_FORMAT_INVALID;
if (id == 0x0F43B675) //Cluster ID
{
const size_t idx = m_clusterCount;
const long long off = idpos - m_start;
Cluster* const pCluster = Cluster::Parse(this, idx, off);
assert(pCluster);
assert(pCluster->m_index == idx);
AppendCluster(pCluster);
assert(m_clusters);
assert(m_clusterSize > idx);
assert(m_clusters[idx] == pCluster);
}
else if (id == 0x0C53BB6B) //Cues ID
{
assert(m_pCues == NULL);
m_pCues = new Cues(this, pos, size);
assert(m_pCues); //TODO
}
else if (id == 0x0549A966) //SegmentInfo ID
{
assert(m_pInfo == NULL);
m_pInfo = new SegmentInfo(this, pos, size);
assert(m_pInfo);
}
else if (id == 0x0654AE6B) //Tracks ID
{
assert(m_pTracks == NULL);
m_pTracks = new Tracks(this, pos, size);
assert(m_pTracks); //TODO
}
m_pos = pos + size; //consume payload
}
assert(m_pos >= stop);
if (m_pInfo == NULL)
return E_FILE_FORMAT_INVALID; //TODO: ignore this case?
if (m_pTracks == NULL)
return E_FILE_FORMAT_INVALID;
if (m_clusters == NULL) //TODO: ignore this case?
return E_FILE_FORMAT_INVALID;
//TODO: decide whether we require Cues element
//if (m_pCues == NULL)
// return E_FILE_FORMAT_INVALID;
return 0;
}
//#if 0
//void Segment::ParseSeekHead(long long start, long long size_, size_t* pIndex)
//{
// long long pos = start;
// const long long stop = start + size_;
//
// while (pos < stop)
// {
// long len;
//
// const long long id = ReadUInt(m_pReader, pos, len);
// assert(id >= 0); //TODO
// assert((pos + len) <= stop);
//
// pos += len; //consume ID
//
// const long long size = ReadUInt(m_pReader, pos, len);
// assert(size >= 0);
// assert((pos + len) <= stop);
//
// pos += len; //consume Size field
// assert((pos + size) <= stop);
//
// if (id == 0x0DBB) //SeekEntry ID
// ParseSeekEntry(pos, size, pIndex);
//
// pos += size; //consume payload
// assert(pos <= stop);
// }
//
// assert(pos == stop);
//}
//
//
//void Segment::ParseSecondarySeekHead(long long off, size_t* pIndex)
//{
// assert(off >= 0);
// assert(off < m_size);
//
// long long pos = m_start + off;
// const long long stop = m_start + m_size;
//
// long len;
//
// long long result = GetUIntLength(m_pReader, pos, len);
// assert(result == 0);
// assert((pos + len) <= stop);
//
// const long long idpos = pos;
//
// const long long id = ReadUInt(m_pReader, idpos, len);
// assert(id == 0x014D9B74); //SeekHead ID
//
// pos += len; //consume ID
// assert(pos < stop);
//
// //Read Size
//
// result = GetUIntLength(m_pReader, pos, len);
// assert(result == 0);
// assert((pos + len) <= stop);
//
// const long long size = ReadUInt(m_pReader, pos, len);
// assert(size >= 0);
//
// pos += len; //consume length of size of element
// assert((pos + size) <= stop);
//
// //Pos now points to start of payload
//
// ParseSeekHead(pos, size, pIndex);
//}
//
//void Segment::ParseSeekEntry(
// long long start,
// long long size_,
// size_t* pIndex)
//{
// long long pos = start;
//
// const long long stop = start + size_;
//
// long len;
//
// const long long seekIdId = ReadUInt(m_pReader, pos, len);
// //seekIdId;
// assert(seekIdId == 0x13AB); //SeekID ID
// assert((pos + len) <= stop);
//
// pos += len; //consume id
//
// const long long seekIdSize = ReadUInt(m_pReader, pos, len);
// assert(seekIdSize >= 0);
// assert((pos + len) <= stop);
//
// pos += len; //consume size
//
// const long long seekId = ReadUInt(m_pReader, pos, len); //payload
// assert(seekId >= 0);
// assert(len == seekIdSize);
// assert((pos + len) <= stop);
//
// pos += seekIdSize; //consume payload
//
// const long long seekPosId = ReadUInt(m_pReader, pos, len);
// //seekPosId;
// assert(seekPosId == 0x13AC); //SeekPos ID
// assert((pos + len) <= stop);
//
// pos += len; //consume id
//
// const long long seekPosSize = ReadUInt(m_pReader, pos, len);
// assert(seekPosSize >= 0);
// assert((pos + len) <= stop);
//
// pos += len; //consume size
// assert((pos + seekPosSize) <= stop);
//
// const long long seekOff = UnserializeUInt(m_pReader, pos, seekPosSize);
// assert(seekOff >= 0);
// assert(seekOff < m_size);
//
// pos += seekPosSize; //consume payload
// assert(pos == stop);
//
// const long long seekPos = m_start + seekOff;
// assert(seekPos < (m_start + m_size));
//
// if (seekId == 0x0F43B675) //cluster id
// {
// if (pIndex == NULL)
// ++m_clusterCount;
// else
// {
// assert(m_clusters);
// assert(m_clusterCount > 0);
//
// size_t& index = *pIndex;
// assert(index < m_clusterCount);
//
// Cluster*& pCluster = m_clusters[index];
//
// pCluster = Cluster::Parse(this, index, seekOff);
// assert(pCluster); //TODO
//
// ++index;
// }
// }
// else if (seekId == 0x014D9B74) //SeekHead ID
// {
// ParseSecondarySeekHead(seekOff, pIndex);
// }
//}
//#endif
Cues::Cues(Segment* pSegment, long long start_, long long size_) :
m_pSegment(pSegment),
m_start(start_),
m_size(size_),
m_cue_points(NULL),
m_cue_points_count(0)
{
IMkvReader* const pReader = m_pSegment->m_pReader;
const long long stop = m_start + m_size;
long long pos = m_start;
//First count the cue points
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; //consume Size field
assert((pos + size) <= stop);
if (id == 0x3B) //CuePoint ID
++m_cue_points_count;
pos += size; //consume payload
assert(pos <= stop);
}
assert(m_cue_points_count > 0);
m_cue_points = new CuePoint[m_cue_points_count];
//Now parse the cue points
CuePoint* pCP = m_cue_points;
pos = m_start;
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; //consume Size field
assert((pos + size) <= stop);
if (id == 0x3B) //CuePoint ID
{
CuePoint& cp = *pCP++;
cp.Parse(pReader, pos, size);
}
pos += size; //consume payload
assert(pos <= stop);
}
assert(pos == stop);
assert(size_t(pCP - m_cue_points) == m_cue_points_count);
}
Cues::~Cues()
{
delete[] m_cue_points;
}
bool Cues::Find(
long long time_ns,
const Track* pTrack,
const CuePoint*& pCP,
const CuePoint::TrackPosition*& pTP) const
{
assert(time_ns >= 0);
assert(pTrack);
if ((m_cue_points == NULL) || (m_cue_points_count == 0))
return false;
const CuePoint* const ii = m_cue_points;
const CuePoint* i = ii;
const CuePoint* const jj = ii + m_cue_points_count;
const CuePoint* j = jj;
pCP = i;
if (time_ns <= pCP->GetTime(m_pSegment))
{
pTP = pCP->Find(pTrack);
return (pTP != NULL);
}
while (i < j)
{
//INVARIANT:
//[ii, i) <= time_ns
//[i, j) ?
//[j, jj) > time_ns
const CuePoint* const k = i + (j - i) / 2;
assert(k < jj);
const long long t = k->GetTime(m_pSegment);
if (t <= time_ns)
i = k + 1;
else
j = k;
assert(i <= j);
}
assert(i == j);
assert(i > ii);
assert(i <= jj);
pCP = i - 1;
assert(pCP->GetTime(m_pSegment) <= time_ns);
pTP = pCP->Find(pTrack);
return (pTP != NULL);
}
bool Cues::FindNext(
long long time_ns,
const Track* pTrack,
const CuePoint*& pCP,
const CuePoint::TrackPosition*& pTP) const
{
pCP = 0;
pTP = 0;
if ((m_cue_points == NULL) || (m_cue_points_count == 0)) //weird
return false;
const CuePoint* const ii = m_cue_points;
const CuePoint* i = ii;
const CuePoint* const jj = ii + m_cue_points_count;
const CuePoint* j = jj;
while (i < j)
{
//INVARIANT:
//[ii, i) <= time_ns
//[i, j) ?
//[j, jj) > time_ns
const CuePoint* const k = i + (j - i) / 2;
assert(k < jj);
const long long t = k->GetTime(m_pSegment);
if (t <= time_ns)
i = k + 1;
else
j = k;
assert(i <= j);
}
assert(i == j);
assert(i <= jj);
if (i >= jj) //time_ns is greater than max cue point
return false;
pCP = i;
assert(pCP->GetTime(m_pSegment) > time_ns);
pTP = pCP->Find(pTrack);
return (pTP != NULL);
}
CuePoint::CuePoint() :
m_track_positions(NULL),
m_track_positions_count(0)
{
}
CuePoint::~CuePoint()
{
delete[] m_track_positions;
}
void CuePoint::Parse(IMkvReader* pReader, long long start_, long long size_)
{
assert(m_track_positions == NULL);
assert(m_track_positions_count == 0);
const long long stop = start_ + size_;
long long pos = start_;
m_timecode = -1;
//First count number of track positions
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; //consume Size field
assert((pos + size) <= stop);
if (id == 0x33) //CueTime ID
m_timecode = UnserializeUInt(pReader, pos, size);
else if (id == 0x37) //CueTrackPosition(s) ID
++m_track_positions_count;
pos += size; //consume payload
assert(pos <= stop);
}
assert(m_timecode >= 0);
assert(m_track_positions_count > 0);
m_track_positions = new TrackPosition[m_track_positions_count];
//Now parse track positions
TrackPosition* p = m_track_positions;
pos = start_;
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; //consume Size field
assert((pos + size) <= stop);
if (id == 0x37) //CueTrackPosition(s) ID
{
TrackPosition& tp = *p++;
tp.Parse(pReader, pos, size);
}
pos += size; //consume payload
assert(pos <= stop);
}
assert(size_t(p - m_track_positions) == m_track_positions_count);
}
void CuePoint::TrackPosition::Parse(
IMkvReader* pReader,
long long start_,
long long size_)
{
const long long stop = start_ + size_;
long long pos = start_;
m_track = -1;
m_pos = -1;
m_block = 1; //default
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len; //consume Size field
assert((pos + size) <= stop);
if (id == 0x77) //CueTrack ID
m_track = UnserializeUInt(pReader, pos, size);
else if (id == 0x71) //CueClusterPos ID
m_pos = UnserializeUInt(pReader, pos, size);
else if (id == 0x1378) //CueBlockNumber
m_block = UnserializeUInt(pReader, pos, size);
pos += size; //consume payload
assert(pos <= stop);
}
assert(m_track > 0);
assert(m_pos >= 0);
assert(m_block > 0);
}
const CuePoint::TrackPosition* CuePoint::Find(const Track* pTrack) const
{
assert(pTrack);
const long long n = pTrack->GetNumber();
const TrackPosition* i = m_track_positions;
const TrackPosition* const j = i + m_track_positions_count;
while (i != j)
{
const TrackPosition& p = *i++;
if (p.m_track == n)
return &p;
}
return NULL; //no matching track number found
}
long long CuePoint::GetTimeCode() const
{
return m_timecode;
}
long long CuePoint::GetTime(Segment* pSegment) const
{
assert(pSegment);
const SegmentInfo* const pInfo = pSegment->GetInfo();
assert(pInfo);
const long long scale = pInfo->GetTimeCodeScale();
assert(scale >= 1);
const long long time = scale * m_timecode;
return time;
}
long long Segment::Unparsed() const
{
const long long stop = m_start + m_size;
const long long result = stop - m_pos;
assert(result >= 0);
return result;
}
Cluster* Segment::GetFirst()
{
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return &m_eos;
Cluster* const pCluster = m_clusters[0];
assert(pCluster);
return pCluster;
}
Cluster* Segment::GetLast()
{
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return &m_eos;
const size_t idx = m_clusterCount - 1;
Cluster* const pCluster = m_clusters[idx];
assert(pCluster);
return pCluster;
}
unsigned long Segment::GetCount() const
{
//TODO: m_clusterCount should not be long long.
return static_cast<unsigned long>(m_clusterCount);
}
Cluster* Segment::GetNext(const Cluster* pCurr)
{
assert(pCurr);
assert(pCurr != &m_eos);
assert(m_clusters);
assert(m_clusterCount > 0);
size_t idx = pCurr->m_index;
assert(idx < m_clusterCount);
assert(pCurr == m_clusters[idx]);
idx++;
if (idx >= m_clusterCount)
return &m_eos;
Cluster* const pNext = m_clusters[idx];
assert(pNext);
return pNext;
}
Cluster* Segment::GetCluster(long long time_ns)
{
if ((m_clusters == NULL) || (m_clusterCount <= 0))
return &m_eos;
{
Cluster* const pCluster = m_clusters[0];
assert(pCluster);
assert(pCluster->m_index == 0);
if (time_ns <= pCluster->GetTime())
return pCluster;
}
//Binary search of cluster array
size_t i = 0;
size_t j = m_clusterCount;
while (i < j)
{
//INVARIANT:
//[0, i) <= time_ns
//[i, j) ?
//[j, m_clusterCount) > time_ns
const size_t k = i + (j - i) / 2;
assert(k < m_clusterCount);
Cluster* const pCluster = m_clusters[k];
assert(pCluster);
assert(pCluster->m_index == k);
const long long t = pCluster->GetTime();
if (t <= time_ns)
i = k + 1;
else
j = k;
assert(i <= j);
}
assert(i == j);
assert(i > 0);
assert(i <= m_clusterCount);
const size_t k = i - 1;
Cluster* const pCluster = m_clusters[k];
assert(pCluster);
assert(pCluster->m_index == k);
assert(pCluster->GetTime() <= time_ns);
return pCluster;
}
void Segment::GetCluster(
long long time_ns,
Track* pTrack,
Cluster*& pCluster,
const BlockEntry*& pBlockEntry)
{
assert(pTrack);
if ((m_clusters == NULL) || (m_clusterCount <= 0))
{
pCluster = &m_eos;
pBlockEntry = pTrack->GetEOS();
return;
}
Cluster** const i = m_clusters;
assert(i);
{
pCluster = *i;
assert(pCluster);
assert(pCluster->m_index == 0);
assert(pCluster->m_pSegment == this);
if (time_ns <= pCluster->GetTime())
{
pBlockEntry = pCluster->GetEntry(pTrack);
return;
}
}
Cluster** const j = i + m_clusterCount;
if (pTrack->GetType() == 2) //audio
{
//TODO: we could decide to use cues for this, as we do for video.
//But we only use it for video because looking around for a keyframe
//can get expensive. Audio doesn't require anything special we a
//straight cluster search is good enough (we assume).
Cluster** lo = i;
Cluster** hi = j;
while (lo < hi)
{
//INVARIANT:
//[i, lo) <= time_ns
//[lo, hi) ?
//[hi, j) > time_ns
Cluster** const mid = lo + (hi - lo) / 2;
assert(mid < hi);
Cluster* const pCluster = *mid;
assert(pCluster);
assert(pCluster->m_index == size_t(mid - m_clusters));
assert(pCluster->m_pSegment == this);
const long long t = pCluster->GetTime();
if (t <= time_ns)
lo = mid + 1;
else
hi = mid;
assert(lo <= hi);
}
assert(lo == hi);
assert(lo > i);
assert(lo <= j);
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
pBlockEntry = pCluster->GetEntry(pTrack);
return;
}
assert(pTrack->GetType() == 1); //video
if (SearchCues(time_ns, pTrack, pCluster, pBlockEntry))
return;
Cluster** lo = i;
Cluster** hi = j;
while (lo < hi)
{
//INVARIANT:
//[i, lo) <= time_ns
//[lo, hi) ?
//[hi, j) > time_ns
Cluster** const mid = lo + (hi - lo) / 2;
assert(mid < hi);
Cluster* const pCluster = *mid;
assert(pCluster);
const long long t = pCluster->GetTime();
if (t <= time_ns)
lo = mid + 1;
else
hi = mid;
assert(lo <= hi);
}
assert(lo == hi);
assert(lo > i);
assert(lo <= j);
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
{
pBlockEntry = pCluster->GetEntry(pTrack);
assert(pBlockEntry);
if (!pBlockEntry->EOS()) //found a keyframe
{
const Block* const pBlock = pBlockEntry->GetBlock();
assert(pBlock);
//TODO: this isn't necessarily the keyframe we want,
//since there might another keyframe on this same
//cluster with a greater timecode that but that is
//still less than the requested time. For now we
//simply return the first keyframe we find.
if (pBlock->GetTime(pCluster) <= time_ns)
return;
}
}
const VideoTrack* const pVideo = static_cast<VideoTrack*>(pTrack);
while (lo != i)
{
pCluster = *--lo;
assert(pCluster);
assert(pCluster->GetTime() <= time_ns);
pBlockEntry = pCluster->GetMaxKey(pVideo);
assert(pBlockEntry);
if (!pBlockEntry->EOS())
return;
}
//weird: we're on the first cluster, but no keyframe found
//should never happen but we must return something anyway
pCluster = &m_eos;
pBlockEntry = pTrack->GetEOS();
}
bool Segment::SearchCues(
long long time_ns_,
Track* pTrack,
Cluster*& pCluster,
const BlockEntry*& pBlockEntry)
{
if (m_pCues == 0)
return false;
if ((m_clusters == NULL) || (m_clusterCount == 0))
return false;
//TODO:
//search among cuepoints for time
//if time is less then what's already loaded then
// return that cluster and we're done
//else (time is greater than what's loaded)
// if time isn't "too far into the future" then
// pre-load the necessary clusters
// return that cluster and we're done
// else
// find (earlier) cue point corresponding to something
// already loaded in cache, and return that
const size_t last_idx = m_clusterCount - 1;
Cluster* const pLastCluster = m_clusters[last_idx];
assert(pLastCluster);
assert(pLastCluster->m_index == last_idx);
assert(pLastCluster->m_pos);
const long long last_pos_ = pLastCluster->m_pos;
const long long last_pos = last_pos_ * ((last_pos_ < 0) ? -1 : 1);
last_pos;
const long long last_ns = pLastCluster->GetTime();
long long time_ns;
if (Unparsed() <= 0) //all clusters loaded
time_ns = time_ns_;
else if (time_ns_ < last_ns)
time_ns = time_ns_;
else
time_ns = last_ns;
const CuePoint* pCP;
const CuePoint::TrackPosition* pTP;
if (!m_pCues->Find(time_ns, pTrack, pCP, pTP))
return false; //weird
assert(pCP);
assert(pTP);
assert(pTP->m_track == pTrack->GetNumber());
assert(pTP->m_pos <= last_pos);
//We have the cue point and track position we want,
//so we now need to search for the cluster having
//the indicated position.
Cluster** const ii = m_clusters;
Cluster** i = ii;
Cluster* const pFirstCluster = *i;
assert(pFirstCluster);
const long long first_pos_ = pFirstCluster->m_pos;
const long long first_pos = first_pos_ * ((first_pos_ < 0) ? -1 : 1);
first_pos;
assert(pTP->m_pos >= first_pos);
Cluster** const jj = ii + m_clusterCount;
Cluster** j = jj;
assert(j > i);
for (;;)
{
//INVARIANT:
//[0, i) < pTP->m_pos
//[i, j) ?
//[j, jj) > pTP->m_pos
Cluster** const k = i + (j - i) / 2;
assert(k < jj);
pCluster = *k;
assert(pCluster);
const long long pos_ = pCluster->m_pos;
assert(pos_);
const long long pos = pos_ * ((pos_ < 0) ? -1 : 1);
if (pos < pTP->m_pos)
i = k + 1;
else if (pos > pTP->m_pos)
j = k;
else
{
pBlockEntry = pCluster->GetEntry(*pCP, *pTP);
assert(pBlockEntry);
return true;
}
assert(i < j);
}
}
Tracks* Segment::GetTracks() const
{
return m_pTracks;
}
const SegmentInfo* Segment::GetInfo() const
{
return m_pInfo;
}
long long Segment::GetDuration() const
{
assert(m_pInfo);
return m_pInfo->GetDuration();
}
SegmentInfo::SegmentInfo(Segment* pSegment, long long start, long long size_) :
m_pSegment(pSegment),
m_start(start),
m_size(size_),
m_pMuxingAppAsUTF8(NULL),
m_pWritingAppAsUTF8(NULL),
m_pTitleAsUTF8(NULL)
{
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = start;
const long long stop = start + size_;
m_timecodeScale = 1000000;
m_duration = 0;
while (pos < stop)
{
if (Match(pReader, pos, 0x0AD7B1, m_timecodeScale))
assert(m_timecodeScale > 0);
else if (Match(pReader, pos, 0x0489, m_duration))
assert(m_duration >= 0);
else if (Match(pReader, pos, 0x0D80, m_pMuxingAppAsUTF8)) //[4D][80]
assert(m_pMuxingAppAsUTF8);
else if (Match(pReader, pos, 0x1741, m_pWritingAppAsUTF8)) //[57][41]
assert(m_pWritingAppAsUTF8);
else if (Match(pReader, pos, 0x3BA9, m_pTitleAsUTF8)) //[7B][A9]
assert(m_pTitleAsUTF8);
else
{
long len;
const long long id = ReadUInt(pReader, pos, len);
//id;
assert(id >= 0);
assert((pos + len) <= stop);
pos += len; //consume id
assert((stop - pos) > 0);
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0);
assert((pos + len) <= stop);
pos += len + size; //consume size and payload
assert(pos <= stop);
}
}
assert(pos == stop);
}
SegmentInfo::~SegmentInfo()
{
if (m_pMuxingAppAsUTF8)
{
delete[] m_pMuxingAppAsUTF8;
m_pMuxingAppAsUTF8 = NULL;
}
if (m_pWritingAppAsUTF8)
{
delete[] m_pWritingAppAsUTF8;
m_pWritingAppAsUTF8 = NULL;
}
if (m_pTitleAsUTF8)
{
delete[] m_pTitleAsUTF8;
m_pTitleAsUTF8 = NULL;
}
}
long long SegmentInfo::GetTimeCodeScale() const
{
return m_timecodeScale;
}
long long SegmentInfo::GetDuration() const
{
assert(m_duration >= 0);
assert(m_timecodeScale >= 1);
const double dd = double(m_duration) * double(m_timecodeScale);
const long long d = static_cast<long long>(dd);
return d;
}
const char* SegmentInfo::GetMuxingAppAsUTF8() const
{
return m_pMuxingAppAsUTF8;
}
const char* SegmentInfo::GetWritingAppAsUTF8() const
{
return m_pWritingAppAsUTF8;
}
const char* SegmentInfo::GetTitleAsUTF8() const
{
return m_pTitleAsUTF8;
}
Track::Track(Segment* pSegment, const Info& i) :
m_pSegment(pSegment),
m_info(i)
{
}
Track::~Track()
{
Info& info = const_cast<Info&>(m_info);
info.Clear();
}
Track::Info::Info():
type(-1),
number(-1),
uid(-1),
nameAsUTF8(NULL),
codecId(NULL),
codecPrivate(NULL),
codecPrivateSize(0),
codecNameAsUTF8(NULL)
{
}
void Track::Info::Clear()
{
delete[] nameAsUTF8;
nameAsUTF8 = NULL;
delete[] codecId;
codecId = NULL;
delete[] codecPrivate;
codecPrivate = NULL;
codecPrivateSize = 0;
delete[] codecNameAsUTF8;
codecNameAsUTF8 = NULL;
}
const BlockEntry* Track::GetEOS() const
{
return &m_eos;
}
long long Track::GetType() const
{
return m_info.type;
}
long long Track::GetNumber() const
{
return m_info.number;
}
const char* Track::GetNameAsUTF8() const
{
return m_info.nameAsUTF8;
}
const char* Track::GetCodecNameAsUTF8() const
{
return m_info.codecNameAsUTF8;
}
const char* Track::GetCodecId() const
{
return m_info.codecId;
}
const unsigned char* Track::GetCodecPrivate(size_t& size) const
{
size = m_info.codecPrivateSize;
return m_info.codecPrivate;
}
long Track::GetFirst(const BlockEntry*& pBlockEntry) const
{
Cluster* pCluster = m_pSegment->GetFirst();
//If Segment::GetFirst returns NULL, then this must be a network
//download, and we haven't loaded any clusters yet. In this case,
//returning NULL from Track::GetFirst means the same thing.
for (int i = 0; i < 100; ++i) //arbitrary upper bound
{
if ((pCluster == NULL) || pCluster->EOS())
{
if (m_pSegment->Unparsed() <= 0) //all clusters have been loaded
{
pBlockEntry = GetEOS();
return 1;
}
pBlockEntry = 0;
return E_BUFFER_NOT_FULL;
}
pBlockEntry = pCluster->GetFirst();
while (pBlockEntry)
{
const Block* const pBlock = pBlockEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() == m_info.number)
return 0;
pBlockEntry = pCluster->GetNext(pBlockEntry);
}
pCluster = m_pSegment->GetNext(pCluster);
}
//NOTE: if we get here, it means that we didn't find a block with
//a matching track number. We interpret that as an error (which
//might be too conservative).
pBlockEntry = GetEOS(); //so we can return a non-NULL value
return 1L;
}
long Track::GetNext(
const BlockEntry* pCurrEntry,
const BlockEntry*& pNextEntry) const
{
assert(pCurrEntry);
assert(!pCurrEntry->EOS()); //?
const Block* const pCurrBlock = pCurrEntry->GetBlock();
assert(pCurrBlock->GetTrackNumber() == m_info.number);
Cluster* pCluster = pCurrEntry->GetCluster();
assert(pCluster);
assert(!pCluster->EOS());
pNextEntry = pCluster->GetNext(pCurrEntry);
for (int i = 0; i < 100; ++i) //arbitrary upper bound to search
{
while (pNextEntry)
{
const Block* const pNextBlock = pNextEntry->GetBlock();
assert(pNextBlock);
if (pNextBlock->GetTrackNumber() == m_info.number)
return 0;
pNextEntry = pCluster->GetNext(pNextEntry);
}
pCluster = m_pSegment->GetNext(pCluster);
if ((pCluster == NULL) || pCluster->EOS())
{
if (m_pSegment->Unparsed() <= 0) //all clusters have been loaded
{
pNextEntry = GetEOS();
return 1;
}
//TODO: there is a potential O(n^2) problem here: we tell the
//caller to (pre)load another cluster, which he does, but then he
//calls GetNext again, which repeats the same search. This is
//a pathological case, since the only way it can happen is if
//there exists a long sequence of clusters none of which contain a
// block from this track. One way around this problem is for the
//caller to be smarter when he loads another cluster: don't call
//us back until you have a cluster that contains a block from this
//track. (Of course, that's not cheap either, since our caller
//would have to scan the each cluster as it's loaded, so that
//would just push back the problem.)
pNextEntry = NULL;
return E_BUFFER_NOT_FULL;
}
pNextEntry = pCluster->GetFirst();
}
//NOTE: if we get here, it means that we didn't find a block with
//a matching track number after lots of searching, so we give
//up trying.
pNextEntry = GetEOS(); //so we can return a non-NULL value
return 1;
}
Track::EOSBlock::EOSBlock()
{
}
bool Track::EOSBlock::EOS() const
{
return true;
}
Cluster* Track::EOSBlock::GetCluster() const
{
return NULL;
}
size_t Track::EOSBlock::GetIndex() const
{
return 0;
}
const Block* Track::EOSBlock::GetBlock() const
{
return NULL;
}
bool Track::EOSBlock::IsBFrame() const
{
return false;
}
VideoTrack::VideoTrack(Segment* pSegment, const Info& i) :
Track(pSegment, i),
m_width(-1),
m_height(-1),
m_rate(-1)
{
assert(i.type == 1);
assert(i.number > 0);
IMkvReader* const pReader = pSegment->m_pReader;
const Settings& s = i.settings;
assert(s.start >= 0);
assert(s.size >= 0);
long long pos = s.start;
assert(pos >= 0);
const long long stop = pos + s.size;
while (pos < stop)
{
#ifdef _DEBUG
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO: handle error case
assert((pos + len) <= stop);
#endif
if (Match(pReader, pos, 0x30, m_width))
;
else if (Match(pReader, pos, 0x3A, m_height))
;
else if (Match(pReader, pos, 0x0383E3, m_rate))
;
else
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO: handle error case
assert((pos + len) <= stop);
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0); //TODO: handle error case
assert((pos + len) <= stop);
pos += len; //consume length of size
assert((pos + size) <= stop);
//pos now designates start of payload
pos += size; //consume payload
assert(pos <= stop);
}
}
return;
}
bool VideoTrack::VetEntry(const BlockEntry* pBlockEntry) const
{
assert(pBlockEntry);
const Block* const pBlock = pBlockEntry->GetBlock();
assert(pBlock);
assert(pBlock->GetTrackNumber() == m_info.number);
return pBlock->IsKey();
}
long long VideoTrack::GetWidth() const
{
return m_width;
}
long long VideoTrack::GetHeight() const
{
return m_height;
}
double VideoTrack::GetFrameRate() const
{
return m_rate;
}
AudioTrack::AudioTrack(Segment* pSegment, const Info& i) :
Track(pSegment, i),
m_rate(0.0),
m_channels(0),
m_bitDepth(-1)
{
assert(i.type == 2);
assert(i.number > 0);
IMkvReader* const pReader = pSegment->m_pReader;
const Settings& s = i.settings;
assert(s.start >= 0);
assert(s.size >= 0);
long long pos = s.start;
assert(pos >= 0);
const long long stop = pos + s.size;
while (pos < stop)
{
#ifdef _DEBUG
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO: handle error case
assert((pos + len) <= stop);
#endif
if (Match(pReader, pos, 0x35, m_rate))
;
else if (Match(pReader, pos, 0x1F, m_channels))
;
else if (Match(pReader, pos, 0x2264, m_bitDepth))
;
else
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO: handle error case
assert((pos + len) <= stop);
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0); //TODO: handle error case
assert((pos + len) <= stop);
pos += len; //consume length of size
assert((pos + size) <= stop);
//pos now designates start of payload
pos += size; //consume payload
assert(pos <= stop);
}
}
return;
}
bool AudioTrack::VetEntry(const BlockEntry* pBlockEntry) const
{
assert(pBlockEntry);
const Block* const pBlock = pBlockEntry->GetBlock();
assert(pBlock);
assert(pBlock->GetTrackNumber() == m_info.number);
return true;
}
double AudioTrack::GetSamplingRate() const
{
return m_rate;
}
long long AudioTrack::GetChannels() const
{
return m_channels;
}
long long AudioTrack::GetBitDepth() const
{
return m_bitDepth;
}
Tracks::Tracks(Segment* pSegment, long long start, long long size_) :
m_pSegment(pSegment),
m_start(start),
m_size(size_),
m_trackEntries(NULL),
m_trackEntriesEnd(NULL)
{
long long stop = m_start + m_size;
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos1 = m_start;
int count = 0;
while (pos1 < stop)
{
long len;
const long long id = ReadUInt(pReader, pos1, len);
assert(id >= 0);
assert((pos1 + len) <= stop);
pos1 += len; //consume id
const long long size = ReadUInt(pReader, pos1, len);
assert(size >= 0);
assert((pos1 + len) <= stop);
pos1 += len; //consume length of size
//pos now desinates start of element
if (id == 0x2E) //TrackEntry ID
++count;
pos1 += size; //consume payload
assert(pos1 <= stop);
}
if (count <= 0)
return;
m_trackEntries = new Track*[count];
m_trackEntriesEnd = m_trackEntries;
long long pos = m_start;
while (pos < stop)
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0);
assert((pos + len) <= stop);
pos += len; //consume id
const long long size1 = ReadUInt(pReader, pos, len);
assert(size1 >= 0);
assert((pos + len) <= stop);
pos += len; //consume length of size
//pos now desinates start of element
if (id == 0x2E) //TrackEntry ID
ParseTrackEntry(pos, size1, *m_trackEntriesEnd++);
pos += size1; //consume payload
assert(pos <= stop);
}
}
unsigned long Tracks::GetTracksCount() const
{
const ptrdiff_t result = m_trackEntriesEnd - m_trackEntries;
assert(result >= 0);
return static_cast<unsigned long>(result);
}
void Tracks::ParseTrackEntry(
long long start,
long long size,
Track*& pTrack)
{
IMkvReader* const pReader = m_pSegment->m_pReader;
long long pos = start;
const long long stop = start + size;
Track::Info i;
Track::Settings videoSettings;
videoSettings.start = -1;
Track::Settings audioSettings;
audioSettings.start = -1;
while (pos < stop)
{
#ifdef _DEBUG
long len;
const long long id = ReadUInt(pReader, pos, len);
len;
id;
#endif
if (Match(pReader, pos, 0x57, i.number))
assert(i.number > 0);
else if (Match(pReader, pos, 0x33C5, i.uid))
;
else if (Match(pReader, pos, 0x03, i.type))
;
else if (Match(pReader, pos, 0x136E, i.nameAsUTF8))
assert(i.nameAsUTF8);
else if (Match(pReader, pos, 0x06, i.codecId))
;
else if (Match(pReader,
pos,
0x23A2,
i.codecPrivate,
i.codecPrivateSize))
;
else if (Match(pReader, pos, 0x058688, i.codecNameAsUTF8))
assert(i.codecNameAsUTF8);
else
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO: handle error case
assert((pos + len) <= stop);
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0); //TODO: handle error case
assert((pos + len) <= stop);
pos += len; //consume length of size
const long long start = pos;
pos += size; //consume payload
assert(pos <= stop);
if (id == 0x60)
{
videoSettings.start = start;
videoSettings.size = size;
}
else if (id == 0x61)
{
audioSettings.start = start;
audioSettings.size = size;
}
}
}
assert(pos == stop);
//TODO: propertly vet info.number, to ensure both its existence,
//and that it is unique among all tracks.
assert(i.number > 0);
//TODO: vet settings, to ensure that video settings (0x60)
//were specified when type = 1, and that audio settings (0x61)
//were specified when type = 2.
if (i.type == 1) //video
{
assert(audioSettings.start < 0);
assert(videoSettings.start >= 0);
i.settings = videoSettings;
VideoTrack* const t = new VideoTrack(m_pSegment, i);
assert(t); //TODO
pTrack = t;
}
else if (i.type == 2) //audio
{
assert(videoSettings.start < 0);
assert(audioSettings.start >= 0);
i.settings = audioSettings;
AudioTrack* const t = new AudioTrack(m_pSegment, i);
assert(t); //TODO
pTrack = t;
}
else
{
// for now we do not support other track types yet.
// TODO: support other track types
i.Clear();
pTrack = NULL;
}
return;
}
Tracks::~Tracks()
{
Track** i = m_trackEntries;
Track** const j = m_trackEntriesEnd;
while (i != j)
{
Track* const pTrack = *i++;
delete pTrack;
}
delete[] m_trackEntries;
}
Track* Tracks::GetTrackByNumber(unsigned long tn_) const
{
const long long tn = tn_;
Track** i = m_trackEntries;
Track** const j = m_trackEntriesEnd;
while (i != j)
{
Track* const pTrack = *i++;
if (pTrack == NULL)
continue;
if (tn == pTrack->GetNumber())
return pTrack;
}
return NULL; //not found
}
Track* Tracks::GetTrackByIndex(unsigned long idx) const
{
const ptrdiff_t count = m_trackEntriesEnd - m_trackEntries;
if (idx >= static_cast<unsigned long>(count))
return NULL;
return m_trackEntries[idx];
}
void Cluster::Load()
{
assert(m_pSegment);
assert(m_pos);
assert(m_size);
if (m_pos > 0) //loaded
{
assert(m_size > 0);
assert(m_timecode >= 0);
return;
}
assert(m_pos < 0); //not loaded yet
assert(m_size < 0);
assert(m_timecode < 0);
IMkvReader* const pReader = m_pSegment->m_pReader;
m_pos *= -1; //relative to segment
long long pos = m_pSegment->m_start + m_pos; //absolute
long len;
const long long id_ = ReadUInt(pReader, pos, len);
assert(id_ >= 0);
assert(id_ == 0x0F43B675); //Cluster ID
pos += len; //consume id
const long long size_ = ReadUInt(pReader, pos, len);
assert(size_ >= 0);
pos += len; //consume size
m_size = size_;
const long long stop = pos + size_;
long long timecode = -1;
while (pos < stop)
{
if (Match(pReader, pos, 0x67, timecode))
break;
else
{
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume size
if (id == 0x20) //BlockGroup ID
break;
if (id == 0x23) //SimpleBlock ID
break;
pos += size; //consume payload
assert(pos <= stop);
}
}
assert(pos <= stop);
assert(timecode >= 0);
m_timecode = timecode;
}
Cluster* Cluster::Parse(
Segment* pSegment,
size_t idx,
long long off)
{
assert(pSegment);
assert(off >= 0);
assert(off < pSegment->m_size);
Cluster* const pCluster = new Cluster(pSegment, idx, -off);
assert(pCluster);
return pCluster;
}
Cluster::Cluster() :
m_pSegment(NULL),
m_index(0),
m_pos(0),
m_size(0),
m_timecode(0),
m_pEntries(NULL),
m_entriesCount(0)
{
}
Cluster::Cluster(
Segment* pSegment,
size_t idx,
long long off) :
m_pSegment(pSegment),
m_index(idx),
m_pos(off),
m_size(-1),
m_timecode(-1),
m_pEntries(NULL),
m_entriesCount(0)
{
}
Cluster::~Cluster()
{
BlockEntry** i = m_pEntries;
BlockEntry** const j = m_pEntries + m_entriesCount;
while (i != j)
{
BlockEntry* p = *i++;
assert(p);
delete p;
}
delete[] m_pEntries;
}
bool Cluster::EOS() const
{
return (m_pSegment == 0);
}
void Cluster::LoadBlockEntries()
{
if (m_pEntries)
return;
assert(m_pSegment);
assert(m_pos);
assert(m_size);
assert(m_entriesCount == 0);
IMkvReader* const pReader = m_pSegment->m_pReader;
if (m_pos < 0)
m_pos *= -1; //relative to segment
long long pos = m_pSegment->m_start + m_pos; //absolute
{
long len;
const long long id = ReadUInt(pReader, pos, len);
id;
assert(id >= 0);
assert(id == 0x0F43B675); //Cluster ID
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size > 0);
pos += len; //consume size
//pos now points to start of payload
if (m_size >= 0)
assert(size == m_size);
else
m_size = size;
}
const long long stop = pos + m_size;
long long timecode = -1; //of cluster itself
//First count the number of entries
long long idx = pos; //points to start of payload
m_entriesCount = 0;
while (idx < stop)
{
if (Match(pReader, idx, 0x67, timecode))
{
if (m_timecode >= 0)
assert(timecode == m_timecode);
else
m_timecode = timecode;
}
else
{
long len;
const long long id = ReadUInt(pReader, idx, len);
assert(id >= 0); //TODO
assert((idx + len) <= stop);
idx += len; //consume id
const long long size = ReadUInt(pReader, idx, len);
assert(size >= 0); //TODO
assert((idx + len) <= stop);
idx += len; //consume size
if (id == 0x20) //BlockGroup ID
++m_entriesCount;
else if (id == 0x23) //SimpleBlock ID
++m_entriesCount;
idx += size; //consume payload
assert(idx <= stop);
}
}
assert(idx == stop);
assert(m_timecode >= 0);
if (m_entriesCount == 0) //TODO: handle empty clusters
return;
m_pEntries = new BlockEntry*[m_entriesCount];
size_t index = 0;
while (pos < stop)
{
if (Match(pReader, pos, 0x67, timecode))
assert(timecode == m_timecode);
else
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume id
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume size
if (id == 0x20) //BlockGroup ID
ParseBlockGroup(pos, size, index++);
else if (id == 0x23) //SimpleBlock ID
ParseSimpleBlock(pos, size, index++);
pos += size; //consume payload
assert(pos <= stop);
}
}
assert(pos == stop);
assert(timecode >= 0);
assert(index == m_entriesCount);
}
long long Cluster::GetTimeCode()
{
Load();
return m_timecode;
}
long long Cluster::GetTime()
{
const long long tc = GetTimeCode();
assert(tc >= 0);
const SegmentInfo* const pInfo = m_pSegment->GetInfo();
assert(pInfo);
const long long scale = pInfo->GetTimeCodeScale();
assert(scale >= 1);
const long long t = m_timecode * scale;
return t;
}
long long Cluster::GetFirstTime()
{
const BlockEntry* const pEntry = GetFirst();
if (pEntry == 0) //empty cluster
return GetTime();
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
return pBlock->GetTime(this);
}
void Cluster::ParseBlockGroup(long long start, long long size, size_t index)
{
assert(m_pEntries);
assert(m_entriesCount);
assert(index < m_entriesCount);
BlockGroup* const pGroup =
new (std::nothrow) BlockGroup(this, index, start, size);
assert(pGroup); //TODO
m_pEntries[index] = pGroup;
}
void Cluster::ParseSimpleBlock(long long start, long long size, size_t index)
{
assert(m_pEntries);
assert(m_entriesCount);
assert(index < m_entriesCount);
SimpleBlock* const pSimpleBlock =
new (std::nothrow) SimpleBlock(this, index, start, size);
assert(pSimpleBlock); //TODO
m_pEntries[index] = pSimpleBlock;
}
const BlockEntry* Cluster::GetFirst()
{
//TODO: handle empty cluster
LoadBlockEntries();
assert(m_pEntries);
assert(m_entriesCount >= 1);
const BlockEntry* const pFirst = m_pEntries[0];
assert(pFirst);
return pFirst;
}
const BlockEntry* Cluster::GetLast()
{
//TODO: handle empty cluster
LoadBlockEntries();
assert(m_pEntries);
assert(m_entriesCount >= 1);
const size_t idx = m_entriesCount - 1;
const BlockEntry* const pLast = m_pEntries[idx];
assert(pLast);
return pLast;
}
const BlockEntry* Cluster::GetNext(const BlockEntry* pEntry) const
{
assert(pEntry);
assert(m_pEntries);
assert(m_entriesCount);
size_t idx = pEntry->GetIndex();
assert(idx < m_entriesCount);
assert(m_pEntries[idx] == pEntry);
++idx;
if (idx >= m_entriesCount)
return NULL;
return m_pEntries[idx];
}
const BlockEntry* Cluster::GetEntry(const Track* pTrack)
{
assert(pTrack);
if (m_pSegment == NULL) //EOS
return pTrack->GetEOS();
LoadBlockEntries();
BlockEntry** i = m_pEntries;
assert(i);
BlockEntry** const j = i + m_entriesCount;
while (i != j)
{
const BlockEntry* const pEntry = *i++;
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() != pTrack->GetNumber())
continue;
if (pTrack->VetEntry(pEntry))
return pEntry;
}
return pTrack->GetEOS(); //no satisfactory block found
}
const BlockEntry*
Cluster::GetEntry(
const CuePoint& cp,
const CuePoint::TrackPosition& tp)
{
assert(m_pSegment);
assert(tp.m_block > 0);
LoadBlockEntries();
assert(m_pEntries); //TODO: handle empty cluster
assert(m_entriesCount > 0);
assert(tp.m_block <= (long long)m_entriesCount); //blocks are 1-based
const size_t block = static_cast<size_t>(tp.m_block);
const size_t index = block - 1;
const BlockEntry* const pEntry = m_pEntries[index];
assert(pEntry);
assert(!pEntry->EOS());
assert(pEntry->GetBlock()->GetTrackNumber() == tp.m_track);
assert(pEntry->GetBlock()->GetTimeCode(this) == cp.GetTimeCode());
return pEntry;
}
const BlockEntry* Cluster::GetMaxKey(const VideoTrack* pTrack)
{
assert(pTrack);
if (m_pSegment == 0) //EOS
return pTrack->GetEOS();
LoadBlockEntries();
assert(m_pEntries);
BlockEntry** i = m_pEntries + m_entriesCount;
BlockEntry** const j = m_pEntries;
while (i != j)
{
const BlockEntry* const pEntry = *--i;
assert(pEntry);
assert(!pEntry->EOS());
const Block* const pBlock = pEntry->GetBlock();
assert(pBlock);
if (pBlock->GetTrackNumber() != pTrack->GetNumber())
continue;
if (pBlock->IsKey())
return pEntry;
}
return pTrack->GetEOS(); //no satisfactory block found
}
BlockEntry::BlockEntry()
{
}
BlockEntry::~BlockEntry()
{
}
SimpleBlock::SimpleBlock(
Cluster* pCluster,
size_t idx,
long long start,
long long size) :
m_pCluster(pCluster),
m_index(idx),
m_block(start, size, pCluster->m_pSegment->m_pReader)
{
}
bool SimpleBlock::EOS() const
{
return false;
}
Cluster* SimpleBlock::GetCluster() const
{
return m_pCluster;
}
size_t SimpleBlock::GetIndex() const
{
return m_index;
}
const Block* SimpleBlock::GetBlock() const
{
return &m_block;
}
bool SimpleBlock::IsBFrame() const
{
return false;
}
BlockGroup::BlockGroup(
Cluster* pCluster,
size_t idx,
long long start,
long long size_) :
m_pCluster(pCluster),
m_index(idx),
m_prevTimeCode(0),
m_nextTimeCode(0),
m_pBlock(NULL) //TODO: accept multiple blocks within a block group
{
IMkvReader* const pReader = m_pCluster->m_pSegment->m_pReader;
long long pos = start;
const long long stop = start + size_;
bool bSimpleBlock = false;
bool bReferenceBlock = false;
while (pos < stop)
{
short t;
if (Match(pReader, pos, 0x7B, t))
{
if (t < 0)
m_prevTimeCode = t;
else if (t > 0)
m_nextTimeCode = t;
else
assert(false);
bReferenceBlock = true;
}
else
{
long len;
const long long id = ReadUInt(pReader, pos, len);
assert(id >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume ID
const long long size = ReadUInt(pReader, pos, len);
assert(size >= 0); //TODO
assert((pos + len) <= stop);
pos += len; //consume size
switch (id)
{
case 0x23: //SimpleBlock ID
bSimpleBlock = true;
//YES, FALL THROUGH TO NEXT CASE
case 0x21: //Block ID
ParseBlock(pos, size);
break;
default:
break;
}
pos += size; //consume payload
assert(pos <= stop);
}
}
assert(pos == stop);
assert(m_pBlock);
if (!bSimpleBlock)
m_pBlock->SetKey(!bReferenceBlock);
}
BlockGroup::~BlockGroup()
{
delete m_pBlock;
}
void BlockGroup::ParseBlock(long long start, long long size)
{
IMkvReader* const pReader = m_pCluster->m_pSegment->m_pReader;
Block* const pBlock = new Block(start, size, pReader);
assert(pBlock); //TODO
//TODO: the Matroska spec says you have multiple blocks within the
//same block group, with blocks ranked by priority (the flag bits).
assert(m_pBlock == NULL);
m_pBlock = pBlock;
}
bool BlockGroup::EOS() const
{
return false;
}
Cluster* BlockGroup::GetCluster() const
{
return m_pCluster;
}
size_t BlockGroup::GetIndex() const
{
return m_index;
}
const Block* BlockGroup::GetBlock() const
{
return m_pBlock;
}
short BlockGroup::GetPrevTimeCode() const
{
return m_prevTimeCode;
}
short BlockGroup::GetNextTimeCode() const
{
return m_nextTimeCode;
}
bool BlockGroup::IsBFrame() const
{
return (m_nextTimeCode > 0);
}
Block::Block(long long start, long long size_, IMkvReader* pReader) :
m_start(start),
m_size(size_)
{
long long pos = start;
const long long stop = start + size_;
long len;
m_track = ReadUInt(pReader, pos, len);
assert(m_track > 0);
assert((pos + len) <= stop);
pos += len; //consume track number
assert((stop - pos) >= 2);
m_timecode = Unserialize2SInt(pReader, pos);
pos += 2;
assert((stop - pos) >= 1);
const long hr = pReader->Read(pos, 1, &m_flags);
assert(hr == 0L);
++pos;
assert(pos <= stop);
m_frameOff = pos;
const long long frame_size = stop - pos;
assert(frame_size <= 2147483647L);
m_frameSize = static_cast<long>(frame_size);
}
long long Block::GetTimeCode(Cluster* pCluster) const
{
assert(pCluster);
const long long tc0 = pCluster->GetTimeCode();
assert(tc0 >= 0);
const long long tc = tc0 + static_cast<long long>(m_timecode);
assert(tc >= 0);
return tc; //unscaled timecode units
}
long long Block::GetTime(Cluster* pCluster) const
{
assert(pCluster);
const long long tc = GetTimeCode(pCluster);
const Segment* const pSegment = pCluster->m_pSegment;
const SegmentInfo* const pInfo = pSegment->GetInfo();
assert(pInfo);
const long long scale = pInfo->GetTimeCodeScale();
assert(scale >= 1);
const long long ns = tc * scale;
return ns;
}
long long Block::GetTrackNumber() const
{
return m_track;
}
bool Block::IsKey() const
{
return ((m_flags & static_cast<unsigned char>(1 << 7)) != 0);
}
void Block::SetKey(bool bKey)
{
if (bKey)
m_flags |= static_cast<unsigned char>(1 << 7);
else
m_flags &= 0x7F;
}
long long Block::GetOffset() const
{
return m_frameOff;
}
long Block::GetSize() const
{
return m_frameSize;
}
long Block::Read(IMkvReader* pReader, unsigned char* buf) const
{
assert(pReader);
assert(buf);
const long hr = pReader->Read(m_frameOff, m_frameSize, buf);
return hr;
}
} //end namespace mkvparser