blob: 74b882c91cfac6a9e246686afb7769cff7b24095 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_header.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9_rtcd.h"
#include <assert.h>
#include <stdio.h>
#define COEFCOUNT_TESTING
// #define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int merge_index(int v, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (v < max1) v = v * modulus + modulus / 2;
else {
int w;
v -= max1;
w = v;
v += (v + modulus - modulus / 2) / modulus;
while (v % modulus == modulus / 2 ||
w != v - (v + modulus - modulus / 2) / modulus) v++;
}
return v;
}
static int inv_remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
int i;
v = merge_index(v, n - 1, modulus);
if ((m << 1) <= n) {
i = vp9_inv_recenter_nonneg(v + 1, m);
} else {
i = n - 1 - vp9_inv_recenter_nonneg(v + 1, n - 1 - m);
}
return i;
}
static vp9_prob read_prob_diff_update(vp9_reader *const bc, int oldp) {
int delp = vp9_decode_term_subexp(bc, SUBEXP_PARAM, 255);
return (vp9_prob)inv_remap_prob(delp, oldp);
}
void vp9_init_de_quantizer(VP9D_COMP *pbi) {
int i;
int q;
VP9_COMMON *const pc = &pbi->common;
for (q = 0; q < QINDEX_RANGE; q++) {
pc->Y1dequant[q][0] = (int16_t)vp9_dc_quant(q, pc->y1dc_delta_q);
pc->UVdequant[q][0] = (int16_t)vp9_dc_uv_quant(q, pc->uvdc_delta_q);
/* all the ac values =; */
for (i = 1; i < 16; i++) {
int rc = vp9_default_zig_zag1d_4x4[i];
pc->Y1dequant[q][rc] = (int16_t)vp9_ac_yquant(q);
pc->UVdequant[q][rc] = (int16_t)vp9_ac_uv_quant(q, pc->uvac_delta_q);
}
}
}
static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *xd) {
int i;
int qindex;
VP9_COMMON *const pc = &pbi->common;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Set the Q baseline allowing for any segment level adjustment
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_ALT_Q)) {
if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA)
/* Abs Value */
qindex = vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
else {
/* Delta Value */
qindex = pc->base_qindex +
vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
/* Clamp to valid range */
qindex = (qindex >= 0) ? ((qindex <= MAXQ) ? qindex : MAXQ) : 0;
}
} else
qindex = pc->base_qindex;
xd->q_index = qindex;
/* Set up the block level dequant pointers */
for (i = 0; i < 16; i++) {
xd->block[i].dequant = pc->Y1dequant[qindex];
}
xd->inv_txm4x4_1 = vp9_short_idct4x4llm_1;
xd->inv_txm4x4 = vp9_short_idct4x4llm;
xd->itxm_add = vp9_dequant_idct_add;
xd->itxm_add_y_block = vp9_dequant_idct_add_y_block;
xd->itxm_add_uv_block = vp9_dequant_idct_add_uv_block;
if (xd->lossless) {
assert(qindex == 0);
xd->inv_txm4x4_1 = vp9_short_inv_walsh4x4_1_x8;
xd->inv_txm4x4 = vp9_short_inv_walsh4x4_x8;
xd->itxm_add = vp9_dequant_idct_add_lossless_c;
xd->itxm_add_y_block = vp9_dequant_idct_add_y_block_lossless_c;
xd->itxm_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c;
}
for (i = 16; i < 24; i++) {
xd->block[i].dequant = pc->UVdequant[qindex];
}
}
/* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it
* to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy.
*/
static void skip_recon_mb(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, int mb_col) {
BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
if (sb_type == BLOCK_SIZE_SB64X64) {
vp9_build_intra_predictors_sb64uv_s(xd);
vp9_build_intra_predictors_sb64y_s(xd);
} else if (sb_type == BLOCK_SIZE_SB32X32) {
vp9_build_intra_predictors_sbuv_s(xd);
vp9_build_intra_predictors_sby_s(xd);
} else {
vp9_build_intra_predictors_mbuv_s(xd);
vp9_build_intra_predictors_mby_s(xd);
}
} else {
if (sb_type == BLOCK_SIZE_SB64X64) {
vp9_build_inter64x64_predictors_sb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride,
mb_row, mb_col);
} else if (sb_type == BLOCK_SIZE_SB32X32) {
vp9_build_inter32x32_predictors_sb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride,
mb_row, mb_col);
} else {
vp9_build_inter16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride,
mb_row, mb_col);
#if CONFIG_COMP_INTERINTRA_PRED
if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
}
#endif
}
}
}
static void decode_16x16(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
TX_TYPE tx_type = get_tx_type_16x16(xd, 0);
#ifdef DEC_DEBUG
if (dec_debug) {
int i;
printf("\n");
printf("qcoeff 16x16\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("predictor\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->predictor[i]);
if (i % 16 == 15) printf("\n");
}
}
#endif
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff,
xd->block[0].dequant, xd->predictor,
xd->dst.y_buffer, 16, xd->dst.y_stride,
xd->eobs[0]);
} else {
vp9_dequant_idct_add_16x16(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
16, xd->dst.y_stride, xd->eobs[0]);
}
vp9_dequant_idct_add_uv_block_8x8(
xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd);
}
static void decode_8x8(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
// First do Y
// if the first one is DCT_DCT assume all the rest are as well
TX_TYPE tx_type = get_tx_type_8x8(xd, 0);
#ifdef DEC_DEBUG
if (dec_debug) {
int i;
printf("\n");
printf("qcoeff 8x8\n");
for (i = 0; i < 384; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i % 16 == 15) printf("\n");
}
}
#endif
if (tx_type != DCT_DCT || xd->mode_info_context->mbmi.mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
int idx = (ib & 0x02) ? (ib + 2) : ib;
int16_t *q = xd->block[idx].qcoeff;
int16_t *dq = xd->block[0].dequant;
uint8_t *pre = xd->block[ib].predictor;
uint8_t *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst;
int stride = xd->dst.y_stride;
BLOCKD *b = &xd->block[ib];
if (xd->mode_info_context->mbmi.mode == I8X8_PRED) {
int i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor);
}
tx_type = get_tx_type_8x8(xd, ib);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_8x8_c(tx_type, q, dq, pre, dst, 16, stride,
xd->eobs[idx]);
} else {
vp9_dequant_idct_add_8x8_c(q, dq, pre, dst, 16, stride,
xd->eobs[idx]);
}
}
} else {
vp9_dequant_idct_add_y_block_8x8(xd->qcoeff,
xd->block[0].dequant,
xd->predictor,
xd->dst.y_buffer,
xd->dst.y_stride,
xd);
}
// Now do UV
if (xd->mode_info_context->mbmi.mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(xd, &xd->block[16 + i], i8x8mode, b->predictor);
xd->itxm_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[16 + i]);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(xd, &xd->block[20 + i], i8x8mode, b->predictor);
xd->itxm_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[20 + i]);
}
} else if (xd->mode_info_context->mbmi.mode == SPLITMV) {
xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd);
} else {
vp9_dequant_idct_add_uv_block_8x8
(xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd);
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i;
printf("\n");
printf("predictor\n");
for (i = 0; i < 384; i++) {
printf("%3d ", xd->predictor[i]);
if (i % 16 == 15) printf("\n");
}
}
#endif
}
static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
TX_TYPE tx_type;
int i, eobtotal = 0;
MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
if (mode == I8X8_PRED) {
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
const int iblock[4] = {0, 1, 4, 5};
int j;
int i8x8mode;
BLOCKD *b;
b = &xd->block[ib];
i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor);
for (j = 0; j < 4; j++) {
b = &xd->block[ib + iblock[j]];
tx_type = get_tx_type_4x4(xd, ib + iblock[j]);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff,
b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16,
b->dst_stride, xd->eobs[ib + iblock[j]]);
} else {
xd->itxm_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride,
xd->eobs[ib + iblock[j]]);
}
}
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor);
xd->itxm_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[16 + i]);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor);
xd->itxm_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[20 + i]);
}
} else if (mode == B_PRED) {
for (i = 0; i < 16; i++) {
int b_mode;
BLOCKD *b = &xd->block[i];
b_mode = xd->mode_info_context->bmi[i].as_mode.first;
#if CONFIG_NEWBINTRAMODES
xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context =
vp9_find_bpred_context(b);
#endif
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
eobtotal += vp9_decode_coefs_4x4(pbi, xd, bc, PLANE_TYPE_Y_WITH_DC, i);
vp9_intra4x4_predict(xd, b, b_mode, b->predictor);
tx_type = get_tx_type_4x4(xd, i);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff,
b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride,
xd->eobs[i]);
} else {
xd->itxm_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]);
}
}
if (!xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_decode_mb_tokens_4x4_uv(pbi, xd, bc);
}
vp9_build_intra_predictors_mbuv(xd);
xd->itxm_add_uv_block(xd->qcoeff + 16 * 16,
xd->block[16].dequant,
xd->predictor + 16 * 16,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.uv_stride,
xd);
} else if (mode == SPLITMV || get_tx_type_4x4(xd, 0) == DCT_DCT) {
xd->itxm_add_y_block(xd->qcoeff,
xd->block[0].dequant,
xd->predictor,
xd->dst.y_buffer,
xd->dst.y_stride,
xd);
xd->itxm_add_uv_block(xd->qcoeff + 16 * 16,
xd->block[16].dequant,
xd->predictor + 16 * 16,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.uv_stride,
xd);
} else {
#ifdef DEC_DEBUG
if (dec_debug) {
int i;
printf("\n");
printf("qcoeff 4x4\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("predictor\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->predictor[i]);
if (i % 16 == 15) printf("\n");
}
}
#endif
for (i = 0; i < 16; i++) {
BLOCKD *b = &xd->block[i];
tx_type = get_tx_type_4x4(xd, i);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff,
b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16,
b->dst_stride, xd->eobs[i]);
} else {
xd->itxm_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]);
}
}
xd->itxm_add_uv_block(xd->qcoeff + 16 * 16,
xd->block[16].dequant,
xd->predictor + 16 * 16,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.uv_stride,
xd);
}
}
static void decode_superblock64(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
int n, eobtotal;
VP9_COMMON *const pc = &pbi->common;
MODE_INFO *mi = xd->mode_info_context;
const int mis = pc->mode_info_stride;
assert(xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB64X64);
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, pc);
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_reset_sb64_tokens_context(xd);
/* Special case: Force the loopfilter to skip when eobtotal and
* mb_skip_coeff are zero.
*/
skip_recon_mb(pbi, xd, mb_row, mb_col);
return;
}
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sb64y_s(xd);
vp9_build_intra_predictors_sb64uv_s(xd);
} else {
vp9_build_inter64x64_predictors_sb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride,
mb_row, mb_col);
}
/* dequantization and idct */
eobtotal = vp9_decode_sb64_tokens(pbi, xd, bc);
if (eobtotal == 0) { // skip loopfilter
for (n = 0; n < 16; n++) {
const int x_idx = n & 3, y_idx = n >> 2;
if (mb_col + x_idx < pc->mb_cols && mb_row + y_idx < pc->mb_rows)
mi[y_idx * mis + x_idx].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff;
}
} else {
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_32X32:
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
vp9_dequant_idct_add_32x32(xd->qcoeff + n * 1024,
xd->block[0].dequant,
xd->dst.y_buffer + x_idx * 32 + y_idx * xd->dst.y_stride * 32,
xd->dst.y_buffer + x_idx * 32 + y_idx * xd->dst.y_stride * 32,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 64]);
}
vp9_dequant_idct_add_32x32(xd->qcoeff + 4096,
xd->block[16].dequant, xd->dst.u_buffer, xd->dst.u_buffer,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256]);
vp9_dequant_idct_add_32x32(xd->qcoeff + 4096 + 1024,
xd->block[20].dequant, xd->dst.v_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320]);
break;
case TX_16X16:
for (n = 0; n < 16; n++) {
const int x_idx = n & 3, y_idx = n >> 2;
const TX_TYPE tx_type = get_tx_type_16x16(xd,
(y_idx * 16 + x_idx) * 4);
if (tx_type == DCT_DCT) {
vp9_dequant_idct_add_16x16(xd->qcoeff + n * 256,
xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]);
} else {
vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff + n * 256,
xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]);
}
}
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
vp9_dequant_idct_add_16x16(xd->qcoeff + 4096 + n * 256,
xd->block[16].dequant,
xd->dst.u_buffer + y_idx * 16 * xd->dst.uv_stride + x_idx * 16,
xd->dst.u_buffer + y_idx * 16 * xd->dst.uv_stride + x_idx * 16,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256 + n * 16]);
vp9_dequant_idct_add_16x16(xd->qcoeff + 4096 + 1024 + n * 256,
xd->block[20].dequant,
xd->dst.v_buffer + y_idx * 16 * xd->dst.uv_stride + x_idx * 16,
xd->dst.v_buffer + y_idx * 16 * xd->dst.uv_stride + x_idx * 16,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320 + n * 16]);
}
break;
case TX_8X8:
for (n = 0; n < 64; n++) {
const int x_idx = n & 7, y_idx = n >> 3;
const TX_TYPE tx_type = get_tx_type_8x8(xd, (y_idx * 16 + x_idx) * 2);
if (tx_type == DCT_DCT) {
vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64,
xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 8 * xd->dst.y_stride + x_idx * 8,
xd->dst.y_buffer + y_idx * 8 * xd->dst.y_stride + x_idx * 8,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 4]);
} else {
vp9_ht_dequant_idct_add_8x8_c(tx_type, xd->qcoeff + n * 64,
xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 8 * xd->dst.y_stride + x_idx * 8,
xd->dst.y_buffer + y_idx * 8 * xd->dst.y_stride + x_idx * 8,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 4]);
}
}
for (n = 0; n < 16; n++) {
const int x_idx = n & 3, y_idx = n >> 2;
vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64 + 4096,
xd->block[16].dequant,
xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256 + n * 4]);
vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64 + 4096 + 1024,
xd->block[20].dequant,
xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320 + n * 4]);
}
break;
case TX_4X4:
for (n = 0; n < 256; n++) {
const int x_idx = n & 15, y_idx = n >> 4;
const TX_TYPE tx_type = get_tx_type_4x4(xd, y_idx * 16 + x_idx);
if (tx_type == DCT_DCT) {
xd->itxm_add(xd->qcoeff + n * 16, xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 4 * xd->dst.y_stride + x_idx * 4,
xd->dst.y_buffer + y_idx * 4 * xd->dst.y_stride + x_idx * 4,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n]);
} else {
vp9_ht_dequant_idct_add_c(tx_type, xd->qcoeff + n * 16,
xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 4 * xd->dst.y_stride + x_idx * 4,
xd->dst.y_buffer + y_idx * 4 * xd->dst.y_stride + x_idx * 4,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n]);
}
}
for (n = 0; n < 64; n++) {
const int x_idx = n & 7, y_idx = n >> 3;
xd->itxm_add(xd->qcoeff + 4096 + n * 16,
xd->block[16].dequant,
xd->dst.u_buffer + y_idx * 4 * xd->dst.uv_stride + x_idx * 4,
xd->dst.u_buffer + y_idx * 4 * xd->dst.uv_stride + x_idx * 4,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256 + n]);
xd->itxm_add(xd->qcoeff + 4096 + 1024 + n * 16,
xd->block[20].dequant,
xd->dst.v_buffer + y_idx * 4 * xd->dst.uv_stride + x_idx * 4,
xd->dst.v_buffer + y_idx * 4 * xd->dst.uv_stride + x_idx * 4,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320 + n]);
}
break;
default: assert(0);
}
}
}
static void decode_superblock32(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
int n, eobtotal;
VP9_COMMON *const pc = &pbi->common;
const int mis = pc->mode_info_stride;
assert(xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB32X32);
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, pc);
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd);
/* Special case: Force the loopfilter to skip when eobtotal and
* mb_skip_coeff are zero.
*/
skip_recon_mb(pbi, xd, mb_row, mb_col);
return;
}
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sby_s(xd);
vp9_build_intra_predictors_sbuv_s(xd);
} else {
vp9_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride,
mb_row, mb_col);
}
/* dequantization and idct */
eobtotal = vp9_decode_sb_tokens(pbi, xd, bc);
if (eobtotal == 0) { // skip loopfilter
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
if (mb_col + 1 < pc->mb_cols)
xd->mode_info_context[1].mbmi.mb_skip_coeff = 1;
if (mb_row + 1 < pc->mb_rows) {
xd->mode_info_context[mis].mbmi.mb_skip_coeff = 1;
if (mb_col + 1 < pc->mb_cols)
xd->mode_info_context[mis + 1].mbmi.mb_skip_coeff = 1;
}
} else {
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_32X32:
vp9_dequant_idct_add_32x32(xd->qcoeff, xd->block[0].dequant,
xd->dst.y_buffer, xd->dst.y_buffer,
xd->dst.y_stride, xd->dst.y_stride,
xd->eobs[0]);
vp9_dequant_idct_add_uv_block_16x16_c(xd->qcoeff + 1024,
xd->block[16].dequant,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.uv_stride, xd);
break;
case TX_16X16:
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
const TX_TYPE tx_type = get_tx_type_16x16(xd,
(y_idx * 8 + x_idx) * 4);
if (tx_type == DCT_DCT) {
vp9_dequant_idct_add_16x16(
xd->qcoeff + n * 256, xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]);
} else {
vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff + n * 256,
xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]);
}
}
vp9_dequant_idct_add_uv_block_16x16_c(xd->qcoeff + 1024,
xd->block[16].dequant,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.uv_stride, xd);
break;
case TX_8X8:
for (n = 0; n < 16; n++) {
const int x_idx = n & 3, y_idx = n >> 2;
const TX_TYPE tx_type = get_tx_type_8x8(xd, (y_idx * 8 + x_idx) * 2);
if (tx_type == DCT_DCT) {
vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64,
xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 8 * xd->dst.y_stride + x_idx * 8,
xd->dst.y_buffer + y_idx * 8 * xd->dst.y_stride + x_idx * 8,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 4]);
} else {
vp9_ht_dequant_idct_add_8x8_c(tx_type, xd->qcoeff + n * 64,
xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 8 * xd->dst.y_stride + x_idx * 8,
xd->dst.y_buffer + y_idx * 8 * xd->dst.y_stride + x_idx * 8,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 4]);
}
}
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64 + 1024,
xd->block[16].dequant,
xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[64 + n * 4]);
vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64 + 1280,
xd->block[20].dequant,
xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[80 + n * 4]);
}
break;
case TX_4X4:
for (n = 0; n < 64; n++) {
const int x_idx = n & 7, y_idx = n >> 3;
const TX_TYPE tx_type = get_tx_type_4x4(xd, y_idx * 8 + x_idx);
if (tx_type == DCT_DCT) {
xd->itxm_add(xd->qcoeff + n * 16, xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 4 * xd->dst.y_stride + x_idx * 4,
xd->dst.y_buffer + y_idx * 4 * xd->dst.y_stride + x_idx * 4,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n]);
} else {
vp9_ht_dequant_idct_add_c(tx_type, xd->qcoeff + n * 16,
xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 4 * xd->dst.y_stride + x_idx * 4,
xd->dst.y_buffer + y_idx * 4 * xd->dst.y_stride + x_idx * 4,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n]);
}
}
for (n = 0; n < 16; n++) {
const int x_idx = n & 3, y_idx = n >> 2;
xd->itxm_add(xd->qcoeff + 1024 + n * 16,
xd->block[16].dequant,
xd->dst.u_buffer + y_idx * 4 * xd->dst.uv_stride + x_idx * 4,
xd->dst.u_buffer + y_idx * 4 * xd->dst.uv_stride + x_idx * 4,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[64 + n]);
xd->itxm_add(xd->qcoeff + 1280 + n * 16,
xd->block[20].dequant,
xd->dst.v_buffer + y_idx * 4 * xd->dst.uv_stride + x_idx * 4,
xd->dst.v_buffer + y_idx * 4 * xd->dst.uv_stride + x_idx * 4,
xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[80 + n]);
}
break;
default: assert(0);
}
}
}
static void decode_macroblock(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, unsigned int mb_col,
BOOL_DECODER* const bc) {
int eobtotal = 0;
MB_PREDICTION_MODE mode;
int tx_size;
assert(!xd->mode_info_context->mbmi.sb_type);
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
tx_size = xd->mode_info_context->mbmi.txfm_size;
mode = xd->mode_info_context->mbmi.mode;
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_reset_mb_tokens_context(xd);
} else if (!bool_error(bc)) {
if (mode != B_PRED) {
eobtotal = vp9_decode_mb_tokens(pbi, xd, bc);
}
}
//mode = xd->mode_info_context->mbmi.mode;
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter,
&pbi->common);
if (eobtotal == 0 &&
mode != B_PRED &&
mode != SPLITMV &&
mode != I8X8_PRED &&
!bool_error(bc)) {
/* Special case: Force the loopfilter to skip when eobtotal and
mb_skip_coeff are zero. */
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
skip_recon_mb(pbi, xd, mb_row, mb_col);
return;
}
#ifdef DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size);
#endif
// moved to be performed before detokenization
// if (xd->segmentation_enabled)
// mb_init_dequantizer(pbi, xd);
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
if (mode != I8X8_PRED) {
vp9_build_intra_predictors_mbuv(xd);
if (mode != B_PRED) {
vp9_build_intra_predictors_mby(xd);
}
}
} else {
#ifdef DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d interp %d\n",
xd->mode_info_context->mbmi.mode, tx_size,
xd->mode_info_context->mbmi.interp_filter);
#endif
vp9_build_inter_predictors_mb(xd, mb_row, mb_col);
}
if (tx_size == TX_16X16) {
decode_16x16(pbi, xd, bc);
} else if (tx_size == TX_8X8) {
decode_8x8(pbi, xd, bc);
} else {
decode_4x4(pbi, xd, bc);
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("\n");
printf("final y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]);
printf("\n");
}
printf("\n");
printf("final u\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
printf("\n");
printf("final v\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
fflush(stdout);
}
#endif
}
static int get_delta_q(vp9_reader *bc, int prev, int *q_update) {
int ret_val = 0;
if (vp9_read_bit(bc)) {
ret_val = vp9_read_literal(bc, 4);
if (vp9_read_bit(bc))
ret_val = -ret_val;
}
/* Trigger a quantizer update if the delta-q value has changed */
if (ret_val != prev)
*q_update = 1;
return ret_val;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
static void set_offsets(VP9D_COMP *pbi, int block_size,
int mb_row, int mb_col) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int mis = cm->mode_info_stride;
const int idx = mis * mb_row + mb_col;
const int dst_fb_idx = cm->new_fb_idx;
const int recon_y_stride = cm->yv12_fb[dst_fb_idx].y_stride;
const int recon_uv_stride = cm->yv12_fb[dst_fb_idx].uv_stride;
const int recon_yoffset = mb_row * 16 * recon_y_stride + 16 * mb_col;
const int recon_uvoffset = mb_row * 8 * recon_uv_stride + 8 * mb_col;
xd->mode_info_context = cm->mi + idx;
xd->mode_info_context->mbmi.sb_type = block_size >> 5;
xd->prev_mode_info_context = cm->prev_mi + idx;
xd->above_context = cm->above_context + mb_col;
xd->left_context = cm->left_context + (mb_row & 3);
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to
* values that are in 1/8th pel units
*/
block_size >>= 4; // in mb units
set_mb_row(cm, xd, mb_row, block_size);
set_mb_col(cm, xd, mb_col, block_size);
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
}
static void set_refs(VP9D_COMP *pbi, int block_size,
int mb_row, int mb_col) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (mbmi->ref_frame > INTRA_FRAME) {
int ref_fb_idx;
/* Select the appropriate reference frame for this MB */
ref_fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1];
xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
setup_pred_block(&xd->pre, &cm->yv12_fb[ref_fb_idx], mb_row, mb_col,
&xd->scale_factor[0], &xd->scale_factor_uv[0]);
/* propagate errors from reference frames */
xd->corrupted |= cm->yv12_fb[ref_fb_idx].corrupted;
if (mbmi->second_ref_frame > INTRA_FRAME) {
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
second_ref_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1];
setup_pred_block(&xd->second_pre, &cm->yv12_fb[second_ref_fb_idx],
mb_row, mb_col,
&xd->scale_factor[1], &xd->scale_factor_uv[1]);
/* propagate errors from reference frames */
xd->corrupted |= cm->yv12_fb[second_ref_fb_idx].corrupted;
}
}
}
/* Decode a row of Superblocks (2x2 region of MBs) */
static void decode_sb_row(VP9D_COMP *pbi, VP9_COMMON *pc,
int mb_row, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
int mb_col;
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(pc->left_context, 0, sizeof(pc->left_context));
for (mb_col = pc->cur_tile_mb_col_start;
mb_col < pc->cur_tile_mb_col_end; mb_col += 4) {
if (vp9_read(bc, pc->sb64_coded)) {
#ifdef DEC_DEBUG
dec_debug = (pc->current_video_frame == 1 && mb_row == 0 && mb_col == 0);
if (dec_debug)
printf("Debug\n");
#endif
set_offsets(pbi, 64, mb_row, mb_col);
vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, bc);
set_refs(pbi, 64, mb_row, mb_col);
decode_superblock64(pbi, xd, mb_row, mb_col, bc);
xd->corrupted |= bool_error(bc);
} else {
int j;
for (j = 0; j < 4; j++) {
const int x_idx_sb = (j & 1) << 1, y_idx_sb = j & 2;
if (mb_row + y_idx_sb >= pc->mb_rows ||
mb_col + x_idx_sb >= pc->mb_cols) {
// MB lies outside frame, skip on to next
continue;
}
xd->sb_index = j;
if (vp9_read(bc, pc->sb32_coded)) {
#ifdef DEC_DEBUG
dec_debug = (pc->current_video_frame == 1 &&
mb_row + y_idx_sb == 0 && mb_col + x_idx_sb == 0);
#endif
set_offsets(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb);
vp9_decode_mb_mode_mv(pbi,
xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc);
set_refs(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb);
decode_superblock32(pbi,
xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc);
xd->corrupted |= bool_error(bc);
} else {
int i;
// Process the 4 MBs within the SB in the order:
// top-left, top-right, bottom-left, bottom-right
for (i = 0; i < 4; i++) {
const int x_idx = x_idx_sb + (i & 1), y_idx = y_idx_sb + (i >> 1);
if (mb_row + y_idx >= pc->mb_rows ||
mb_col + x_idx >= pc->mb_cols) {
// MB lies outside frame, skip on to next
continue;
}
#ifdef DEC_DEBUG
dec_debug = (pc->current_video_frame == 1 &&
mb_row + y_idx == 0 && mb_col + x_idx == 0);
#endif
set_offsets(pbi, 16, mb_row + y_idx, mb_col + x_idx);
xd->mb_index = i;
vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc);
set_refs(pbi, 16, mb_row + y_idx, mb_col + x_idx);
decode_macroblock(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc);
/* check if the boolean decoder has suffered an error */
xd->corrupted |= bool_error(bc);
}
}
}
}
}
}
static unsigned int read_partition_size(const unsigned char *cx_size) {
const unsigned int size =
cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16);
return size;
}
static int read_is_valid(const unsigned char *start,
size_t len,
const unsigned char *end) {
return start + len > start && start + len <= end;
}
static void setup_token_decoder(VP9D_COMP *pbi,
const unsigned char *cx_data,
BOOL_DECODER* const bool_decoder) {
VP9_COMMON *pc = &pbi->common;
const unsigned char *user_data_end = pbi->Source + pbi->source_sz;
const unsigned char *partition;
ptrdiff_t partition_size;
ptrdiff_t bytes_left;
// Set up pointers to token partition
partition = cx_data;
bytes_left = user_data_end - partition;
partition_size = bytes_left;
/* Validate the calculated partition length. If the buffer
* described by the partition can't be fully read, then restrict
* it to the portion that can be (for EC mode) or throw an error.
*/
if (!read_is_valid(partition, partition_size, user_data_end)) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
}
if (vp9_start_decode(bool_decoder,
partition, (unsigned int)partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void init_frame(VP9D_COMP *pbi) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
if (pc->frame_type == KEY_FRAME) {
vp9_setup_past_independence(pc, xd);
/* All buffers are implicitly updated on key frames. */
pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
} else if (pc->error_resilient_mode) {
vp9_setup_past_independence(pc, xd);
}
if (pc->frame_type != KEY_FRAME) {
if (!pc->use_bilinear_mc_filter)
pc->mcomp_filter_type = EIGHTTAP;
else
pc->mcomp_filter_type = BILINEAR;
/* To enable choice of different interpolation filters */
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0; /* init without corruption */
xd->fullpixel_mask = 0xffffffff;
if (pc->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
}
#if CONFIG_CODE_NONZEROCOUNT
static void read_nzc_probs_common(VP9_COMMON *cm,
BOOL_DECODER* const bc,
int block_size) {
int c, r, b, t;
int tokens, nodes;
vp9_prob *nzc_probs;
vp9_prob upd;
if (!vp9_read_bit(bc)) return;
if (block_size == 32) {
tokens = NZC32X32_TOKENS;
nzc_probs = cm->fc.nzc_probs_32x32[0][0][0];
upd = NZC_UPDATE_PROB_32X32;
} else if (block_size == 16) {
tokens = NZC16X16_TOKENS;
nzc_probs = cm->fc.nzc_probs_16x16[0][0][0];
upd = NZC_UPDATE_PROB_16X16;
} else if (block_size == 8) {
tokens = NZC8X8_TOKENS;
nzc_probs = cm->fc.nzc_probs_8x8[0][0][0];
upd = NZC_UPDATE_PROB_8X8;
} else {
tokens = NZC4X4_TOKENS;
nzc_probs = cm->fc.nzc_probs_4x4[0][0][0];
upd = NZC_UPDATE_PROB_4X4;
}
nodes = tokens - 1;
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < BLOCK_TYPES; ++b) {
int offset = c * REF_TYPES * BLOCK_TYPES + r * BLOCK_TYPES + b;
int offset_nodes = offset * nodes;
for (t = 0; t < nodes; ++t) {
vp9_prob *p = &nzc_probs[offset_nodes + t];
if (vp9_read(bc, upd)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
}
static void read_nzc_probs(VP9_COMMON *cm,
BOOL_DECODER* const bc) {
read_nzc_probs_common(cm, bc, 4);
if (cm->txfm_mode != ONLY_4X4)
read_nzc_probs_common(cm, bc, 8);
if (cm->txfm_mode > ALLOW_8X8)
read_nzc_probs_common(cm, bc, 16);
if (cm->txfm_mode > ALLOW_16X16)
read_nzc_probs_common(cm, bc, 32);
}
#endif // CONFIG_CODE_NONZEROCOUNT
static void read_coef_probs_common(BOOL_DECODER* const bc,
vp9_coeff_probs *coef_probs,
int block_types) {
int i, j, k, l, m;
if (vp9_read_bit(bc)) {
for (i = 0; i < block_types; i++) {
for (j = 0; j < REF_TYPES; j++) {
for (k = 0; k < COEF_BANDS; k++) {
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
if (l >= 3 && k == 0)
continue;
for (m = CONFIG_CODE_NONZEROCOUNT; m < ENTROPY_NODES; m++) {
vp9_prob *const p = coef_probs[i][j][k][l] + m;
if (vp9_read(bc, COEF_UPDATE_PROB)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
}
}
}
static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) {
VP9_COMMON *const pc = &pbi->common;
read_coef_probs_common(bc, pc->fc.coef_probs_4x4, BLOCK_TYPES);
if (pbi->common.txfm_mode != ONLY_4X4) {
read_coef_probs_common(bc, pc->fc.coef_probs_8x8, BLOCK_TYPES);
}
if (pbi->common.txfm_mode > ALLOW_8X8) {
read_coef_probs_common(bc, pc->fc.coef_probs_16x16, BLOCK_TYPES);
}
if (pbi->common.txfm_mode > ALLOW_16X16) {
read_coef_probs_common(bc, pc->fc.coef_probs_32x32, BLOCK_TYPES);
}
}
static void update_frame_size(VP9D_COMP *pbi) {
VP9_COMMON *cm = &pbi->common;
/* our internal buffers are always multiples of 16 */
int width = (cm->Width + 15) & ~15;
int height = (cm->Height + 15) & ~15;
cm->mb_rows = height >> 4;
cm->mb_cols = width >> 4;
cm->MBs = cm->mb_rows * cm->mb_cols;
cm->mode_info_stride = cm->mb_cols + 1;
memset(cm->mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO));
vp9_update_mode_info_border(cm, cm->mip);
cm->mi = cm->mip + cm->mode_info_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
vp9_update_mode_info_in_image(cm, cm->mi);
}
int vp9_decode_frame(VP9D_COMP *pbi, const unsigned char **p_data_end) {
BOOL_DECODER header_bc, residual_bc;
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const unsigned char *data = (const unsigned char *)pbi->Source;
const unsigned char *data_end = data + pbi->source_sz;
ptrdiff_t first_partition_length_in_bytes = 0;
int mb_row;
int i, j;
int corrupt_tokens = 0;
// printf("Decoding frame %d\n", pc->current_video_frame);
/* start with no corruption of current frame */
xd->corrupted = 0;
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
} else {
pc->last_frame_type = pc->frame_type;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
first_partition_length_in_bytes =
(data[0] | (data[1] << 8) | (data[2] << 16)) >> 5;
if ((data + first_partition_length_in_bytes > data_end
|| data + first_partition_length_in_bytes < data))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp9_setup_version(pc);
if (pc->frame_type == KEY_FRAME) {
/* vet via sync code */
/* When error concealment is enabled we should only check the sync
* code if we have enough bits available
*/
if (data + 3 < data_end) {
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
data += 3;
}
{
const int width = pc->Width;
const int height = pc->Height;
/* If error concealment is enabled we should only parse the new size
* if we have enough data. Otherwise we will end up with the wrong
* size.
*/
if (data + 5 < data_end) {
pc->Width = (data[0] | (data[1] << 8));
pc->Height = (data[2] | (data[3] << 8));
pc->horiz_scale = data[4] >> 4;
pc->vert_scale = data[4] & 0x0F;
}
data += 5;
if (width != pc->Width || height != pc->Height) {
if (pc->Width <= 0) {
pc->Width = width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
if (pc->Height <= 0) {
pc->Height = height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
if (!pbi->initial_width || !pbi->initial_height) {
if (vp9_alloc_frame_buffers(pc, pc->Width, pc->Height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
pbi->initial_width = pc->Width;
pbi->initial_height = pc->Height;
}
if (pc->Width > pbi->initial_width) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame width too large");
}
if (pc->Height > pbi->initial_height) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame height too large");
}
update_frame_size(pbi);
}
}
}
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->Width == 0 || pc->Height == 0) {
return -1;
}
init_frame(pbi);
/* Reset the frame pointers to the current frame size */
vp8_yv12_realloc_frame_buffer(&pc->yv12_fb[pc->new_fb_idx],
pc->mb_cols * 16, pc->mb_rows * 16,
VP9BORDERINPIXELS);
if (vp9_start_decode(&header_bc, data,
(unsigned int)first_partition_length_in_bytes))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc);
pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc);
pc->error_resilient_mode = vp9_read_bit(&header_bc);
/* Is segmentation enabled */
xd->segmentation_enabled = (unsigned char)vp9_read_bit(&header_bc);
if (xd->segmentation_enabled) {
// Read whether or not the segmentation map is being explicitly
// updated this frame.
xd->update_mb_segmentation_map = (unsigned char)vp9_read_bit(&header_bc);
// If so what method will be used.
if (xd->update_mb_segmentation_map) {
// Which macro block level features are enabled
// Read the probs used to decode the segment id for each macro
// block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) {
xd->mb_segment_tree_probs[i] = vp9_read_bit(&header_bc) ?
(vp9_prob)vp9_read_literal(&header_bc, 8) : 255;
}
// Read the prediction probs needed to decode the segment id
pc->temporal_update = (unsigned char)vp9_read_bit(&header_bc);
for (i = 0; i < PREDICTION_PROBS; i++) {
if (pc->temporal_update) {
pc->segment_pred_probs[i] = vp9_read_bit(&header_bc) ?
(vp9_prob)vp9_read_literal(&header_bc, 8) : 255;
} else {
pc->segment_pred_probs[i] = 255;
}
}
if (pc->temporal_update) {
int count[4];
const vp9_prob *p = xd->mb_segment_tree_probs;
vp9_prob *p_mod = xd->mb_segment_mispred_tree_probs;
count[0] = p[0] * p[1];
count[1] = p[0] * (256 - p[1]);
count[2] = (256 - p[0]) * p[2];
count[3] = (256 - p[0]) * (256 - p[2]);
p_mod[0] = get_binary_prob(count[1], count[2] + count[3]);
p_mod[1] = get_binary_prob(count[0], count[2] + count[3]);
p_mod[2] = get_binary_prob(count[0] + count[1], count[3]);
p_mod[3] = get_binary_prob(count[0] + count[1], count[2]);
}
}
// Is the segment data being updated
xd->update_mb_segmentation_data = (unsigned char)vp9_read_bit(&header_bc);
if (xd->update_mb_segmentation_data) {
int data;
xd->mb_segment_abs_delta = (unsigned char)vp9_read_bit(&header_bc);
vp9_clearall_segfeatures(xd);
// For each segmentation...
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
// For each of the segments features...
for (j = 0; j < SEG_LVL_MAX; j++) {
// Is the feature enabled
if (vp9_read_bit(&header_bc)) {
// Update the feature data and mask
vp9_enable_segfeature(xd, i, j);
data = vp9_decode_unsigned_max(&header_bc,
vp9_seg_feature_data_max(j));
// Is the segment data signed..
if (vp9_is_segfeature_signed(j)) {
if (vp9_read_bit(&header_bc))
data = -data;
}
} else
data = 0;
vp9_set_segdata(xd, i, j, data);
}
}
}
}
// Read common prediction model status flag probability updates for the
// reference frame
if (pc->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = 120;
pc->ref_pred_probs[1] = 80;
pc->ref_pred_probs[2] = 40;
} else {
for (i = 0; i < PREDICTION_PROBS; i++) {
if (vp9_read_bit(&header_bc))
pc->ref_pred_probs[i] = (vp9_prob)vp9_read_literal(&header_bc, 8);
}
}
pc->sb64_coded = vp9_read_literal(&header_bc, 8);
pc->sb32_coded = vp9_read_literal(&header_bc, 8);
xd->lossless = vp9_read_bit(&header_bc);
if (xd->lossless) {
pc->txfm_mode = ONLY_4X4;
} else {
/* Read the loop filter level and type */
pc->txfm_mode = vp9_read_literal(&header_bc, 2);
if (pc->txfm_mode == 3)
pc->txfm_mode += vp9_read_bit(&header_bc);
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = vp9_read_literal(&header_bc, 8);
pc->prob_tx[1] = vp9_read_literal(&header_bc, 8);
pc->prob_tx[2] = vp9_read_literal(&header_bc, 8);
}
}
pc->filter_type = (LOOPFILTERTYPE) vp9_read_bit(&header_bc);
pc->filter_level = vp9_read_literal(&header_bc, 6);
pc->sharpness_level = vp9_read_literal(&header_bc, 3);
/* Read in loop filter deltas applied at the MB level based on mode or ref frame. */
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = (unsigned char)vp9_read_bit(&header_bc);
if (xd->mode_ref_lf_delta_enabled) {
/* Do the deltas need to be updated */
xd->mode_ref_lf_delta_update = (unsigned char)vp9_read_bit(&header_bc);
if (xd->mode_ref_lf_delta_update) {
/* Send update */
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
if (vp9_read_bit(&header_bc)) {
/*sign = vp9_read_bit( &header_bc );*/
xd->ref_lf_deltas[i] = (signed char)vp9_read_literal(&header_bc, 6);
if (vp9_read_bit(&header_bc)) /* Apply sign */
xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1;
}
}
/* Send update */
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (vp9_read_bit(&header_bc)) {
/*sign = vp9_read_bit( &header_bc );*/
xd->mode_lf_deltas[i] = (signed char)vp9_read_literal(&header_bc, 6);
if (vp9_read_bit(&header_bc)) /* Apply sign */
xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1;
}
}
}
}
// Dummy read for now
vp9_read_literal(&header_bc, 2);
/* Read the default quantizers. */
{
int q_update = 0;
pc->base_qindex = vp9_read_literal(&header_bc, QINDEX_BITS);
/* AC 1st order Q = default */
pc->y1dc_delta_q = get_delta_q(&header_bc, pc->y1dc_delta_q, &q_update);
pc->uvdc_delta_q = get_delta_q(&header_bc, pc->uvdc_delta_q, &q_update);
pc->uvac_delta_q = get_delta_q(&header_bc, pc->uvac_delta_q, &q_update);
if (q_update)
vp9_init_de_quantizer(pbi);
/* MB level dequantizer setup */
mb_init_dequantizer(pbi, &pbi->mb);
}
/* Determine if the golden frame or ARF buffer should be updated and how.
* For all non key frames the GF and ARF refresh flags and sign bias
* flags must be set explicitly.
*/
if (pc->frame_type == KEY_FRAME) {
pc->active_ref_idx[0] = pc->new_fb_idx;
pc->active_ref_idx[1] = pc->new_fb_idx;
pc->active_ref_idx[2] = pc->new_fb_idx;
} else {
/* Should the GF or ARF be updated from the current frame */
pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES);
/* Select active reference frames */
for (i = 0; i < 3; i++) {
int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2);
pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num];
}
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc);
/* Is high precision mv allowed */
xd->allow_high_precision_mv = (unsigned char)vp9_read_bit(&header_bc);
// Read the type of subpel filter to use
if (vp9_read_bit(&header_bc)) {
pc->mcomp_filter_type = SWITCHABLE;
} else {
pc->mcomp_filter_type = vp9_read_literal(&header_bc, 2);
}
#if CONFIG_COMP_INTERINTRA_PRED
pc->use_interintra = vp9_read_bit(&header_bc);
#endif
/* To enable choice of different interploation filters */
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
if (!pc->error_resilient_mode) {
pc->refresh_entropy_probs = vp9_read_bit(&header_bc);
pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc);
} else {
pc->refresh_entropy_probs = 0;
pc->frame_parallel_decoding_mode = 1;
}
pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2);
vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx],
sizeof(pc->fc));
// Read inter mode probability context updates
if (pc->frame_type != KEY_FRAME) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < 4; j++) {
if (vp9_read(&header_bc, 252)) {
pc->fc.vp9_mode_contexts[i][j] =
(vp9_prob)vp9_read_literal(&header_bc, 8);
}
}
}
}
#if CONFIG_NEW_MVREF
// If Key frame reset mv ref id probabilities to defaults
if (pc->frame_type != KEY_FRAME) {
// Read any mv_ref index probability updates
int i, j;
for (i = 0; i < MAX_REF_FRAMES; ++i) {
// Skip the dummy entry for intra ref frame.
if (i == INTRA_FRAME) {
continue;
}
// Read any updates to probabilities
for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j) {
if (vp9_read(&header_bc, VP9_MVREF_UPDATE_PROB)) {
xd->mb_mv_ref_probs[i][j] =
(vp9_prob)vp9_read_literal(&header_bc, 8);
}
}
}
}
#endif
if (0) {
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,R:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pbi->refresh_frame_flags,
pc->base_qindex);
fclose(z);
}
vp9_copy(pbi->common.fc.pre_coef_probs_4x4,
pbi->common.fc.coef_probs_4x4);
vp9_copy(pbi->common.fc.pre_coef_probs_8x8,
pbi->common.fc.coef_probs_8x8);
vp9_copy(pbi->common.fc.pre_coef_probs_16x16,
pbi->common.fc.coef_probs_16x16);
vp9_copy(pbi->common.fc.pre_coef_probs_32x32,
pbi->common.fc.coef_probs_32x32);
vp9_copy(pbi->common.fc.pre_ymode_prob, pbi->common.fc.ymode_prob);
vp9_copy(pbi->common.fc.pre_sb_ymode_prob, pbi->common.fc.sb_ymode_prob);
vp9_copy(pbi->common.fc.pre_uv_mode_prob, pbi->common.fc.uv_mode_prob);
vp9_copy(pbi->common.fc.pre_bmode_prob, pbi->common.fc.bmode_prob);
vp9_copy(pbi->common.fc.pre_i8x8_mode_prob, pbi->common.fc.i8x8_mode_prob);
vp9_copy(pbi->common.fc.pre_sub_mv_ref_prob, pbi->common.fc.sub_mv_ref_prob);
vp9_copy(pbi->common.fc.pre_mbsplit_prob, pbi->common.fc.mbsplit_prob);
#if CONFIG_COMP_INTERINTRA_PRED
pbi->common.fc.pre_interintra_prob = pbi->common.fc.interintra_prob;
#endif
pbi->common.fc.pre_nmvc = pbi->common.fc.nmvc;
#if CONFIG_CODE_NONZEROCOUNT
vp9_copy(pbi->common.fc.pre_nzc_probs_4x4,
pbi->common.fc.nzc_probs_4x4);
vp9_copy(pbi->common.fc.pre_nzc_probs_8x8,
pbi->common.fc.nzc_probs_8x8);
vp9_copy(pbi->common.fc.pre_nzc_probs_16x16,
pbi->common.fc.nzc_probs_16x16);
vp9_copy(pbi->common.fc.pre_nzc_probs_32x32,
pbi->common.fc.nzc_probs_32x32);
#endif
vp9_zero(pbi->common.fc.coef_counts_4x4);
vp9_zero(pbi->common.fc.coef_counts_8x8);
vp9_zero(pbi->common.fc.coef_counts_16x16);
vp9_zero(pbi->common.fc.coef_counts_32x32);
vp9_zero(pbi->common.fc.ymode_counts);
vp9_zero(pbi->common.fc.sb_ymode_counts);
vp9_zero(pbi->common.fc.uv_mode_counts);
vp9_zero(pbi->common.fc.bmode_counts);
vp9_zero(pbi->common.fc.i8x8_mode_counts);
vp9_zero(pbi->common.fc.sub_mv_ref_counts);
vp9_zero(pbi->common.fc.mbsplit_counts);
vp9_zero(pbi->common.fc.NMVcount);
vp9_zero(pbi->common.fc.mv_ref_ct);
#if CONFIG_COMP_INTERINTRA_PRED
vp9_zero(pbi->common.fc.interintra_counts);
#endif
#if CONFIG_CODE_NONZEROCOUNT
vp9_zero(pbi->common.fc.nzc_counts_4x4);
vp9_zero(pbi->common.fc.nzc_counts_8x8);
vp9_zero(pbi->common.fc.nzc_counts_16x16);
vp9_zero(pbi->common.fc.nzc_counts_32x32);
#endif
read_coef_probs(pbi, &header_bc);
#if CONFIG_CODE_NONZEROCOUNT
read_nzc_probs(&pbi->common, &header_bc);
#endif
/* Initialize xd pointers. Any reference should do for xd->pre, so use 0. */
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->active_ref_idx[0]],
sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx],
sizeof(YV12_BUFFER_CONFIG));
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
/* set up frame new frame for intra coded blocks */
vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
vp9_setup_block_dptrs(xd);
vp9_build_block_doffsets(xd);
/* clear out the coeff buffer */
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
/* Read the mb_no_coeff_skip flag */
pc->mb_no_coeff_skip = (int)vp9_read_bit(&header_bc);
vp9_decode_mode_mvs_init(pbi, &header_bc);
/* tile info */
{
const unsigned char *data_ptr = data + first_partition_length_in_bytes;
int tile_row, tile_col, delta_log2_tiles;
vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles);
while (delta_log2_tiles--) {
if (vp9_read_bit(&header_bc)) {
pc->log2_tile_columns++;
} else {
break;
}
}
pc->log2_tile_rows = vp9_read_bit(&header_bc);
if (pc->log2_tile_rows)
pc->log2_tile_rows += vp9_read_bit(&header_bc);
pc->tile_columns = 1 << pc->log2_tile_columns;
pc->tile_rows = 1 << pc->log2_tile_rows;
vpx_memset(pc->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
if (pbi->oxcf.inv_tile_order) {
const int n_cols = pc->tile_columns;
const unsigned char *data_ptr2[4][1 << 6];
BOOL_DECODER UNINITIALIZED_IS_SAFE(bc_bak);
// pre-initialize the offsets, we're going to read in inverse order
data_ptr2[0][0] = data_ptr;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
if (tile_row) {
int size = data_ptr2[tile_row - 1][n_cols - 1][0] |
(data_ptr2[tile_row - 1][n_cols - 1][1] << 8) |
(data_ptr2[tile_row - 1][n_cols - 1][2] << 16) |
(data_ptr2[tile_row - 1][n_cols - 1][3] << 24);
data_ptr2[tile_row - 1][n_cols - 1] += 4;
data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size;
}
for (tile_col = 1; tile_col < n_cols; tile_col++) {
int size = data_ptr2[tile_row][tile_col - 1][0] |
(data_ptr2[tile_row][tile_col - 1][1] << 8) |
(data_ptr2[tile_row][tile_col - 1][2] << 16) |
(data_ptr2[tile_row][tile_col - 1][3] << 24);
data_ptr2[tile_row][tile_col - 1] += 4;
data_ptr2[tile_row][tile_col] =
data_ptr2[tile_row][tile_col - 1] + size;
}
}
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) {
vp9_get_tile_col_offsets(pc, tile_col);
setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], &residual_bc);
/* Decode a row of superblocks */
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
decode_sb_row(pbi, pc, mb_row, xd, &residual_bc);
}
if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1)
bc_bak = residual_bc;
}
}
residual_bc = bc_bak;
} else {
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) {
vp9_get_tile_col_offsets(pc, tile_col);
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1)
setup_token_decoder(pbi, data_ptr + 4, &residual_bc);
else
setup_token_decoder(pbi, data_ptr, &residual_bc);
/* Decode a row of superblocks */
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
decode_sb_row(pbi, pc, mb_row, xd, &residual_bc);
}
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) {
int size = data_ptr[0] |
(data_ptr[1] << 8) |
(data_ptr[2] << 16) |
(data_ptr[3] << 24);
data_ptr += 4 + size;
}
}
}
}
}
corrupt_tokens |= xd->corrupted;
// keep track of the last coded dimensions
pc->last_width = pc->Width;
pc->last_height = pc->Height;
/* Collect information about decoder corruption. */
/* 1. Check first boolean decoder for errors. */
pc->yv12_fb[pc->new_fb_idx].corrupted = bool_error(&header_bc);
/* 2. Check the macroblock information */
pc->yv12_fb[pc->new_fb_idx].corrupted |= corrupt_tokens;
if (!pbi->decoded_key_frame) {
if (pc->frame_type == KEY_FRAME &&
!pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
if (!pc->error_resilient_mode &&
!pc->frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(pc);
#if CONFIG_CODE_NONZEROCOUNT
vp9_adapt_nzc_probs(pc);
#endif
}
if (pc->frame_type != KEY_FRAME) {
if (!pc->error_resilient_mode &&
!pc->frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(pc);
vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv);
vp9_adapt_mode_context(&pbi->common);
}
}
if (pc->refresh_entropy_probs) {
vpx_memcpy(&pc->frame_contexts[pc->frame_context_idx], &pc->fc,
sizeof(pc->fc));
}
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = residual_bc.pos + header_bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
#endif
/* Find the end of the coded buffer */
while (residual_bc.count > CHAR_BIT
&& residual_bc.count < VP9_BD_VALUE_SIZE) {
residual_bc.count -= CHAR_BIT;
residual_bc.user_buffer--;
}
*p_data_end = residual_bc.user_buffer;
return 0;
}