blob: b6dbced94b69e393d243944858e94a9ec67e83ac [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "./vpx_scale_rtcd.h"
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
void vp9_setup_interp_filters(MACROBLOCKD *xd,
INTERPOLATION_TYPE mcomp_filter_type,
VP9_COMMON *cm) {
if (xd->mi_8x8 && xd->mi_8x8[0]) {
MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
set_scale_factors(xd, mbmi->ref_frame[0] - LAST_FRAME,
mbmi->ref_frame[1] - LAST_FRAME,
cm->active_ref_scale);
} else {
set_scale_factors(xd, -1, -1, cm->active_ref_scale);
}
xd->subpix.filter_x = xd->subpix.filter_y =
vp9_get_filter_kernel(mcomp_filter_type == SWITCHABLE ?
EIGHTTAP : mcomp_filter_type);
assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
}
void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const MV *src_mv,
const struct scale_factors *scale,
int w, int h, int ref,
const struct subpix_fn_table *subpix,
enum mv_precision precision) {
const int is_q4 = precision == MV_PRECISION_Q4;
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
is_q4 ? src_mv->col : src_mv->col * 2 };
const MV32 mv = scale->scale_mv(&mv_q4, scale);
const int subpel_x = mv.col & SUBPEL_MASK;
const int subpel_y = mv.row & SUBPEL_MASK;
src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
scale->predict[subpel_x != 0][subpel_y != 0][ref](
src, src_stride, dst, dst_stride,
subpix->filter_x[subpel_x], scale->x_step_q4,
subpix->filter_y[subpel_y], scale->y_step_q4,
w, h);
}
static INLINE int round_mv_comp_q4(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
}
static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
mi->bmi[1].as_mv[idx].as_mv.row +
mi->bmi[2].as_mv[idx].as_mv.row +
mi->bmi[3].as_mv[idx].as_mv.row),
round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
mi->bmi[1].as_mv[idx].as_mv.col +
mi->bmi[2].as_mv[idx].as_mv.col +
mi->bmi[3].as_mv[idx].as_mv.col) };
return res;
}
// TODO(jkoleszar): yet another mv clamping function :-(
MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
int bw, int bh, int ss_x, int ss_y) {
// If the MV points so far into the UMV border that no visible pixels
// are used for reconstruction, the subpel part of the MV can be
// discarded and the MV limited to 16 pixels with equivalent results.
const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS;
const int spel_right = spel_left - SUBPEL_SHIFTS;
const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS;
const int spel_bottom = spel_top - SUBPEL_SHIFTS;
MV clamped_mv = {
src_mv->row * (1 << (1 - ss_y)),
src_mv->col * (1 << (1 - ss_x))
};
assert(ss_x <= 1);
assert(ss_y <= 1);
clamp_mv(&clamped_mv,
xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
return clamped_mv;
}
struct build_inter_predictors_args {
MACROBLOCKD *xd;
int x, y;
};
static void build_inter_predictors(int plane, int block, BLOCK_SIZE bsize,
int pred_w, int pred_h,
void *argv) {
const struct build_inter_predictors_args* const arg = argv;
MACROBLOCKD *const xd = arg->xd;
struct macroblockd_plane *const pd = &xd->plane[plane];
const int bwl = b_width_log2(bsize) - pd->subsampling_x;
const int bw = 4 << bwl;
const int bh = plane_block_height(bsize, pd);
const int x = 4 * (block & ((1 << bwl) - 1));
const int y = 4 * (block >> bwl);
const MODE_INFO *mi = xd->mi_8x8[0];
const int is_compound = has_second_ref(&mi->mbmi);
int ref;
assert(x < bw);
assert(y < bh);
assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_w == bw);
assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_h == bh);
for (ref = 0; ref < 1 + is_compound; ++ref) {
struct scale_factors *const scale = &xd->scale_factor[ref];
struct buf_2d *const pre_buf = &pd->pre[ref];
struct buf_2d *const dst_buf = &pd->dst;
const uint8_t *const pre = pre_buf->buf + scaled_buffer_offset(x, y,
pre_buf->stride, scale);
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
// TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
// same MV (the average of the 4 luma MVs) but we could do something
// smarter for non-4:2:0. Just punt for now, pending the changes to get
// rid of SPLITMV mode entirely.
const MV mv = mi->mbmi.sb_type < BLOCK_8X8
? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
: mi_mv_pred_q4(mi, ref))
: mi->mbmi.mv[ref].as_mv;
// TODO(jkoleszar): This clamping is done in the incorrect place for the
// scaling case. It needs to be done on the scaled MV, not the pre-scaling
// MV. Note however that it performs the subsampling aware scaling so
// that the result is always q4.
const MV res_mv = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
pd->subsampling_x,
pd->subsampling_y);
scale->set_scaled_offsets(scale, arg->y + y, arg->x + x);
vp9_build_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
&res_mv, scale,
4 << pred_w, 4 << pred_h, ref,
&xd->subpix, MV_PRECISION_Q4);
}
}
// TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could
// calculate the subsampled BLOCK_SIZE, but that type isn't defined for
// sizes smaller than 16x16 yet.
typedef void (*foreach_predicted_block_visitor)(int plane, int block,
BLOCK_SIZE bsize,
int pred_w, int pred_h,
void *arg);
static INLINE void foreach_predicted_block_in_plane(
const MACROBLOCKD* const xd, BLOCK_SIZE bsize, int plane,
foreach_predicted_block_visitor visit, void *arg) {
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
if (xd->mi_8x8[0]->mbmi.sb_type < BLOCK_8X8) {
int i = 0, x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < 1 << bhl; ++y)
for (x = 0; x < 1 << bwl; ++x)
visit(plane, i++, bsize, 0, 0, arg);
} else {
visit(plane, 0, bsize, bwl, bhl, arg);
}
}
static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
int mi_row, int mi_col,
int plane_from, int plane_to) {
int plane;
for (plane = plane_from; plane <= plane_to; ++plane) {
struct build_inter_predictors_args args = {
xd, mi_col * MI_SIZE, mi_row * MI_SIZE,
};
foreach_predicted_block_in_plane(xd, bsize, plane, build_inter_predictors,
&args);
}
}
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
MAX_MB_PLANE - 1);
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
MAX_MB_PLANE - 1);
}
// TODO(dkovalev: find better place for this function)
void vp9_setup_scale_factors(VP9_COMMON *cm, int i) {
const int ref = cm->active_ref_idx[i];
struct scale_factors *const sf = &cm->active_ref_scale[i];
if (ref >= NUM_YV12_BUFFERS) {
vp9_zero(*sf);
} else {
YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref];
vp9_setup_scale_factors_for_frame(sf,
fb->y_crop_width, fb->y_crop_height,
cm->width, cm->height);
if (vp9_is_scaled(sf))
vp9_extend_frame_borders(fb, cm->subsampling_x, cm->subsampling_y);
}
}