blob: 7db97db413bb71d4e12a4af319dd3019dd9c276a [file] [log] [blame]
/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VPX_DSP_X86_INV_TXFM_SSE2_H_
#define VPX_DSP_X86_INV_TXFM_SSE2_H_
#include <emmintrin.h> // SSE2
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vpx_dsp/inv_txfm.h"
#include "vpx_dsp/x86/transpose_sse2.h"
#include "vpx_dsp/x86/txfm_common_sse2.h"
static INLINE void idct8x8_12_transpose_16bit_4x8(const __m128i *const in,
__m128i *const out) {
// Unpack 16 bit elements. Goes from:
// in[0]: 30 31 32 33 00 01 02 03
// in[1]: 20 21 22 23 10 11 12 13
// in[2]: 40 41 42 43 70 71 72 73
// in[3]: 50 51 52 53 60 61 62 63
// to:
// tr0_0: 00 10 01 11 02 12 03 13
// tr0_1: 20 30 21 31 22 32 23 33
// tr0_2: 40 50 41 51 42 52 43 53
// tr0_3: 60 70 61 71 62 72 63 73
const __m128i tr0_0 = _mm_unpackhi_epi16(in[0], in[1]);
const __m128i tr0_1 = _mm_unpacklo_epi16(in[1], in[0]);
const __m128i tr0_2 = _mm_unpacklo_epi16(in[2], in[3]);
const __m128i tr0_3 = _mm_unpackhi_epi16(in[3], in[2]);
// Unpack 32 bit elements resulting in:
// tr1_0: 00 10 20 30 01 11 21 31
// tr1_1: 02 12 22 32 03 13 23 33
// tr1_2: 40 50 60 70 41 51 61 71
// tr1_3: 42 52 62 72 43 53 63 73
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
// Unpack 64 bit elements resulting in:
// out[0]: 00 10 20 30 40 50 60 70
// out[1]: 01 11 21 31 41 51 61 71
// out[2]: 02 12 22 32 42 52 62 72
// out[3]: 03 13 23 33 43 53 63 73
out[0] = _mm_unpacklo_epi64(tr1_0, tr1_1);
out[1] = _mm_unpackhi_epi64(tr1_0, tr1_1);
out[2] = _mm_unpacklo_epi64(tr1_2, tr1_3);
out[3] = _mm_unpackhi_epi64(tr1_2, tr1_3);
}
static INLINE __m128i dct_const_round_shift_sse2(const __m128i in) {
const __m128i t = _mm_add_epi32(in, _mm_set1_epi32(DCT_CONST_ROUNDING));
return _mm_srai_epi32(t, DCT_CONST_BITS);
}
static INLINE __m128i idct_madd_round_shift_sse2(const __m128i in,
const __m128i cospi) {
const __m128i t = _mm_madd_epi16(in, cospi);
return dct_const_round_shift_sse2(t);
}
// Calculate the dot product between in0/1 and x and wrap to short.
static INLINE __m128i idct_calc_wraplow_sse2(const __m128i in0,
const __m128i in1,
const __m128i x) {
const __m128i t0 = idct_madd_round_shift_sse2(in0, x);
const __m128i t1 = idct_madd_round_shift_sse2(in1, x);
return _mm_packs_epi32(t0, t1);
}
// Functions to allow 8 bit optimisations to be used when profile 0 is used with
// highbitdepth enabled
static INLINE __m128i load_input_data4(const tran_low_t *data) {
#if CONFIG_VP9_HIGHBITDEPTH
const __m128i zero = _mm_setzero_si128();
const __m128i in = _mm_load_si128((const __m128i *)data);
return _mm_packs_epi32(in, zero);
#else
return _mm_loadl_epi64((const __m128i *)data);
#endif
}
static INLINE __m128i load_input_data8(const tran_low_t *data) {
#if CONFIG_VP9_HIGHBITDEPTH
const __m128i in0 = _mm_load_si128((const __m128i *)data);
const __m128i in1 = _mm_load_si128((const __m128i *)(data + 4));
return _mm_packs_epi32(in0, in1);
#else
return _mm_load_si128((const __m128i *)data);
#endif
}
static INLINE void load_buffer_8x8(const tran_low_t *const input,
__m128i *const in) {
in[0] = load_input_data8(input + 0 * 8);
in[1] = load_input_data8(input + 1 * 8);
in[2] = load_input_data8(input + 2 * 8);
in[3] = load_input_data8(input + 3 * 8);
in[4] = load_input_data8(input + 4 * 8);
in[5] = load_input_data8(input + 5 * 8);
in[6] = load_input_data8(input + 6 * 8);
in[7] = load_input_data8(input + 7 * 8);
}
static INLINE void load_buffer_8x16(const tran_low_t *const input,
__m128i *const in) {
in[0] = load_input_data8(input + 0 * 16);
in[1] = load_input_data8(input + 1 * 16);
in[2] = load_input_data8(input + 2 * 16);
in[3] = load_input_data8(input + 3 * 16);
in[4] = load_input_data8(input + 4 * 16);
in[5] = load_input_data8(input + 5 * 16);
in[6] = load_input_data8(input + 6 * 16);
in[7] = load_input_data8(input + 7 * 16);
in[8] = load_input_data8(input + 8 * 16);
in[9] = load_input_data8(input + 9 * 16);
in[10] = load_input_data8(input + 10 * 16);
in[11] = load_input_data8(input + 11 * 16);
in[12] = load_input_data8(input + 12 * 16);
in[13] = load_input_data8(input + 13 * 16);
in[14] = load_input_data8(input + 14 * 16);
in[15] = load_input_data8(input + 15 * 16);
}
static INLINE void recon_and_store(uint8_t *const dest, const __m128i in_x) {
const __m128i zero = _mm_setzero_si128();
__m128i d0 = _mm_loadl_epi64((__m128i *)(dest));
d0 = _mm_unpacklo_epi8(d0, zero);
d0 = _mm_add_epi16(in_x, d0);
d0 = _mm_packus_epi16(d0, d0);
_mm_storel_epi64((__m128i *)(dest), d0);
}
static INLINE void write_buffer_8x8(const __m128i *const in,
uint8_t *const dest, const int stride) {
const __m128i final_rounding = _mm_set1_epi16(1 << 4);
__m128i t[8];
// Final rounding and shift
t[0] = _mm_adds_epi16(in[0], final_rounding);
t[1] = _mm_adds_epi16(in[1], final_rounding);
t[2] = _mm_adds_epi16(in[2], final_rounding);
t[3] = _mm_adds_epi16(in[3], final_rounding);
t[4] = _mm_adds_epi16(in[4], final_rounding);
t[5] = _mm_adds_epi16(in[5], final_rounding);
t[6] = _mm_adds_epi16(in[6], final_rounding);
t[7] = _mm_adds_epi16(in[7], final_rounding);
t[0] = _mm_srai_epi16(t[0], 5);
t[1] = _mm_srai_epi16(t[1], 5);
t[2] = _mm_srai_epi16(t[2], 5);
t[3] = _mm_srai_epi16(t[3], 5);
t[4] = _mm_srai_epi16(t[4], 5);
t[5] = _mm_srai_epi16(t[5], 5);
t[6] = _mm_srai_epi16(t[6], 5);
t[7] = _mm_srai_epi16(t[7], 5);
recon_and_store(dest + 0 * stride, t[0]);
recon_and_store(dest + 1 * stride, t[1]);
recon_and_store(dest + 2 * stride, t[2]);
recon_and_store(dest + 3 * stride, t[3]);
recon_and_store(dest + 4 * stride, t[4]);
recon_and_store(dest + 5 * stride, t[5]);
recon_and_store(dest + 6 * stride, t[6]);
recon_and_store(dest + 7 * stride, t[7]);
}
static INLINE void write_buffer_8x16(uint8_t *const dest, __m128i *const in,
const int stride) {
const __m128i final_rounding = _mm_set1_epi16(1 << 5);
// Final rounding and shift
in[0] = _mm_adds_epi16(in[0], final_rounding);
in[1] = _mm_adds_epi16(in[1], final_rounding);
in[2] = _mm_adds_epi16(in[2], final_rounding);
in[3] = _mm_adds_epi16(in[3], final_rounding);
in[4] = _mm_adds_epi16(in[4], final_rounding);
in[5] = _mm_adds_epi16(in[5], final_rounding);
in[6] = _mm_adds_epi16(in[6], final_rounding);
in[7] = _mm_adds_epi16(in[7], final_rounding);
in[8] = _mm_adds_epi16(in[8], final_rounding);
in[9] = _mm_adds_epi16(in[9], final_rounding);
in[10] = _mm_adds_epi16(in[10], final_rounding);
in[11] = _mm_adds_epi16(in[11], final_rounding);
in[12] = _mm_adds_epi16(in[12], final_rounding);
in[13] = _mm_adds_epi16(in[13], final_rounding);
in[14] = _mm_adds_epi16(in[14], final_rounding);
in[15] = _mm_adds_epi16(in[15], final_rounding);
in[0] = _mm_srai_epi16(in[0], 6);
in[1] = _mm_srai_epi16(in[1], 6);
in[2] = _mm_srai_epi16(in[2], 6);
in[3] = _mm_srai_epi16(in[3], 6);
in[4] = _mm_srai_epi16(in[4], 6);
in[5] = _mm_srai_epi16(in[5], 6);
in[6] = _mm_srai_epi16(in[6], 6);
in[7] = _mm_srai_epi16(in[7], 6);
in[8] = _mm_srai_epi16(in[8], 6);
in[9] = _mm_srai_epi16(in[9], 6);
in[10] = _mm_srai_epi16(in[10], 6);
in[11] = _mm_srai_epi16(in[11], 6);
in[12] = _mm_srai_epi16(in[12], 6);
in[13] = _mm_srai_epi16(in[13], 6);
in[14] = _mm_srai_epi16(in[14], 6);
in[15] = _mm_srai_epi16(in[15], 6);
recon_and_store(dest + 0 * stride, in[0]);
recon_and_store(dest + 1 * stride, in[1]);
recon_and_store(dest + 2 * stride, in[2]);
recon_and_store(dest + 3 * stride, in[3]);
recon_and_store(dest + 4 * stride, in[4]);
recon_and_store(dest + 5 * stride, in[5]);
recon_and_store(dest + 6 * stride, in[6]);
recon_and_store(dest + 7 * stride, in[7]);
recon_and_store(dest + 8 * stride, in[8]);
recon_and_store(dest + 9 * stride, in[9]);
recon_and_store(dest + 10 * stride, in[10]);
recon_and_store(dest + 11 * stride, in[11]);
recon_and_store(dest + 12 * stride, in[12]);
recon_and_store(dest + 13 * stride, in[13]);
recon_and_store(dest + 14 * stride, in[14]);
recon_and_store(dest + 15 * stride, in[15]);
}
static INLINE void recon_and_store4x4_sse2(const __m128i *const in,
uint8_t *const dest,
const int stride) {
const __m128i zero = _mm_setzero_si128();
__m128i d[2];
// Reconstruction and Store
d[0] = _mm_cvtsi32_si128(*(const int *)(dest));
d[1] = _mm_cvtsi32_si128(*(const int *)(dest + stride * 3));
d[0] = _mm_unpacklo_epi32(d[0],
_mm_cvtsi32_si128(*(const int *)(dest + stride)));
d[1] = _mm_unpacklo_epi32(
_mm_cvtsi32_si128(*(const int *)(dest + stride * 2)), d[1]);
d[0] = _mm_unpacklo_epi8(d[0], zero);
d[1] = _mm_unpacklo_epi8(d[1], zero);
d[0] = _mm_add_epi16(d[0], in[0]);
d[1] = _mm_add_epi16(d[1], in[1]);
d[0] = _mm_packus_epi16(d[0], d[1]);
*(int *)dest = _mm_cvtsi128_si32(d[0]);
d[0] = _mm_srli_si128(d[0], 4);
*(int *)(dest + stride) = _mm_cvtsi128_si32(d[0]);
d[0] = _mm_srli_si128(d[0], 4);
*(int *)(dest + stride * 2) = _mm_cvtsi128_si32(d[0]);
d[0] = _mm_srli_si128(d[0], 4);
*(int *)(dest + stride * 3) = _mm_cvtsi128_si32(d[0]);
}
static INLINE void store_buffer_8x32(__m128i *in, uint8_t *dst, int stride) {
const __m128i final_rounding = _mm_set1_epi16(1 << 5);
int j = 0;
while (j < 32) {
in[j] = _mm_adds_epi16(in[j], final_rounding);
in[j + 1] = _mm_adds_epi16(in[j + 1], final_rounding);
in[j] = _mm_srai_epi16(in[j], 6);
in[j + 1] = _mm_srai_epi16(in[j + 1], 6);
recon_and_store(dst, in[j]);
dst += stride;
recon_and_store(dst, in[j + 1]);
dst += stride;
j += 2;
}
}
// Only do addition and subtraction butterfly, size = 16, 32
static INLINE void add_sub_butterfly(const __m128i *in, __m128i *out,
int size) {
int i = 0;
const int num = size >> 1;
const int bound = size - 1;
while (i < num) {
out[i] = _mm_add_epi16(in[i], in[bound - i]);
out[bound - i] = _mm_sub_epi16(in[i], in[bound - i]);
i++;
}
}
#define BUTTERFLY_PAIR(x0, x1, co0, co1) \
do { \
tmp0 = _mm_madd_epi16(x0, co0); \
tmp1 = _mm_madd_epi16(x1, co0); \
tmp2 = _mm_madd_epi16(x0, co1); \
tmp3 = _mm_madd_epi16(x1, co1); \
tmp0 = _mm_add_epi32(tmp0, rounding); \
tmp1 = _mm_add_epi32(tmp1, rounding); \
tmp2 = _mm_add_epi32(tmp2, rounding); \
tmp3 = _mm_add_epi32(tmp3, rounding); \
tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); \
tmp1 = _mm_srai_epi32(tmp1, DCT_CONST_BITS); \
tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); \
tmp3 = _mm_srai_epi32(tmp3, DCT_CONST_BITS); \
} while (0)
static INLINE void butterfly(const __m128i *x0, const __m128i *x1,
const __m128i *c0, const __m128i *c1, __m128i *y0,
__m128i *y1) {
__m128i tmp0, tmp1, tmp2, tmp3, u0, u1;
const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING);
u0 = _mm_unpacklo_epi16(*x0, *x1);
u1 = _mm_unpackhi_epi16(*x0, *x1);
BUTTERFLY_PAIR(u0, u1, *c0, *c1);
*y0 = _mm_packs_epi32(tmp0, tmp1);
*y1 = _mm_packs_epi32(tmp2, tmp3);
}
static INLINE void butterfly_self(__m128i *x0, __m128i *x1, const __m128i *c0,
const __m128i *c1) {
__m128i tmp0, tmp1, tmp2, tmp3, u0, u1;
const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING);
u0 = _mm_unpacklo_epi16(*x0, *x1);
u1 = _mm_unpackhi_epi16(*x0, *x1);
BUTTERFLY_PAIR(u0, u1, *c0, *c1);
*x0 = _mm_packs_epi32(tmp0, tmp1);
*x1 = _mm_packs_epi32(tmp2, tmp3);
}
void idct4_sse2(__m128i *in);
void idct8_sse2(__m128i *in);
void idct16_sse2(__m128i *in0, __m128i *in1);
void iadst4_sse2(__m128i *in);
void iadst8_sse2(__m128i *in);
void iadst16_sse2(__m128i *in0, __m128i *in1);
#endif // VPX_DSP_X86_INV_TXFM_SSE2_H_