blob: 7a26b227effa2904478a55d340fadd45e8e60c69 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include "./vpx_config.h"
#include "./vpx_scale_rtcd.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_idct.h"
#if CONFIG_VP9_POSTPROC
#include "vp9/common/vp9_postproc.h"
#endif
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_mbgraph.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_picklpf.h"
#include "vp9/encoder/vp9_psnr.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_temporal_filter.h"
#include "vp9/encoder/vp9_vaq.h"
#include "vp9/encoder/vp9_resize.h"
#include "vpx_ports/vpx_timer.h"
void vp9_entropy_mode_init();
void vp9_coef_tree_initialize();
#define DEFAULT_INTERP_FILTER SWITCHABLE
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
// for altref computation.
#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
// mv. Choose a very high value for
// now so that HIGH_PRECISION is always
// chosen.
// Masks for partially or completely disabling split mode
#define DISABLE_ALL_SPLIT 0x3F
#define DISABLE_ALL_INTER_SPLIT 0x1F
#define DISABLE_COMPOUND_SPLIT 0x18
#define LAST_AND_INTRA_SPLIT_ONLY 0x1E
// Max rate target for 1080P and below encodes under normal circumstances
// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
#define MAX_MB_RATE 250
#define MAXRATE_1080P 2025000
#if CONFIG_INTERNAL_STATS
extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest, int lumamask,
double *weight);
extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest, double *ssim_y,
double *ssim_u, double *ssim_v);
#endif
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
void vp9_init_quantizer(VP9_COMP *cpi);
static const double in_frame_q_adj_ratio[MAX_SEGMENTS] =
{1.0, 1.5, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0};
static INLINE void Scale2Ratio(int mode, int *hr, int *hs) {
switch (mode) {
case NORMAL:
*hr = 1;
*hs = 1;
break;
case FOURFIVE:
*hr = 4;
*hs = 5;
break;
case THREEFIVE:
*hr = 3;
*hs = 5;
break;
case ONETWO:
*hr = 1;
*hs = 2;
break;
default:
*hr = 1;
*hs = 1;
assert(0);
break;
}
}
static void set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) {
MACROBLOCK *const mb = &cpi->mb;
cpi->common.allow_high_precision_mv = allow_high_precision_mv;
if (cpi->common.allow_high_precision_mv) {
mb->mvcost = mb->nmvcost_hp;
mb->mvsadcost = mb->nmvsadcost_hp;
} else {
mb->mvcost = mb->nmvcost;
mb->mvsadcost = mb->nmvsadcost;
}
}
void vp9_initialize_enc() {
static int init_done = 0;
if (!init_done) {
vp9_initialize_common();
vp9_coef_tree_initialize();
vp9_tokenize_initialize();
vp9_init_quant_tables();
vp9_init_me_luts();
vp9_rc_init_minq_luts();
// init_base_skip_probs();
vp9_entropy_mv_init();
vp9_entropy_mode_init();
init_done = 1;
}
}
static void dealloc_compressor_data(VP9_COMP *cpi) {
// Delete sementation map
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
vpx_free(cpi->common.last_frame_seg_map);
cpi->common.last_frame_seg_map = 0;
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = 0;
vpx_free(cpi->complexity_map);
cpi->complexity_map = 0;
vpx_free(cpi->active_map);
cpi->active_map = 0;
vp9_free_frame_buffers(&cpi->common);
vp9_free_frame_buffer(&cpi->last_frame_uf);
vp9_free_frame_buffer(&cpi->scaled_source);
vp9_free_frame_buffer(&cpi->alt_ref_buffer);
vp9_lookahead_destroy(cpi->lookahead);
vpx_free(cpi->tok);
cpi->tok = 0;
// Activity mask based per mb zbin adjustments
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb_norm_activity_map);
cpi->mb_norm_activity_map = 0;
vpx_free(cpi->above_context[0]);
cpi->above_context[0] = NULL;
vpx_free(cpi->above_seg_context);
cpi->above_seg_context = NULL;
}
// Computes a q delta (in "q index" terms) to get from a starting q value
// to a target value
// target q value
int vp9_compute_qdelta(const VP9_COMP *cpi, double qstart, double qtarget) {
int i;
int start_index = cpi->rc.worst_quality;
int target_index = cpi->rc.worst_quality;
// Convert the average q value to an index.
for (i = cpi->rc.best_quality; i < cpi->rc.worst_quality; i++) {
start_index = i;
if (vp9_convert_qindex_to_q(i) >= qstart)
break;
}
// Convert the q target to an index
for (i = cpi->rc.best_quality; i < cpi->rc.worst_quality; i++) {
target_index = i;
if (vp9_convert_qindex_to_q(i) >= qtarget)
break;
}
return target_index - start_index;
}
// Computes a q delta (in "q index" terms) to get from a starting q value
// to a value that should equate to thegiven rate ratio.
int vp9_compute_qdelta_by_rate(VP9_COMP *cpi,
double base_q_index, double rate_target_ratio) {
int i;
int base_bits_per_mb;
int target_bits_per_mb;
int target_index = cpi->rc.worst_quality;
// Make SURE use of floating point in this function is safe.
vp9_clear_system_state();
// Look up the current projected bits per block for the base index
base_bits_per_mb = vp9_rc_bits_per_mb(cpi->common.frame_type,
base_q_index, 1.0);
// Find the target bits per mb based on the base value and given ratio.
target_bits_per_mb = rate_target_ratio * base_bits_per_mb;
// Convert the q target to an index
for (i = cpi->rc.best_quality; i < cpi->rc.worst_quality; i++) {
target_index = i;
if (vp9_rc_bits_per_mb(cpi->common.frame_type,
i, 1.0) <= target_bits_per_mb )
break;
}
return target_index - base_q_index;
}
// This function sets up a set of segments with delta Q values around
// the baseline frame quantizer.
static void setup_in_frame_q_adj(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
struct segmentation *seg = &cm->seg;
// double q_ratio;
int segment;
int qindex_delta;
// Make SURE use of floating point in this function is safe.
vp9_clear_system_state();
if (cm->frame_type == KEY_FRAME ||
cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
// Clear down the segment map
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
// Clear down the complexity map used for rd
vpx_memset(cpi->complexity_map, 0, cm->mi_rows * cm->mi_cols);
// Enable segmentation
vp9_enable_segmentation((VP9_PTR)cpi);
vp9_clearall_segfeatures(seg);
// Select delta coding method
seg->abs_delta = SEGMENT_DELTADATA;
// Segment 0 "Q" feature is disabled so it defaults to the baseline Q
vp9_disable_segfeature(seg, 0, SEG_LVL_ALT_Q);
// Use some of the segments for in frame Q adjustment
for (segment = 1; segment < 3; segment++) {
qindex_delta =
vp9_compute_qdelta_by_rate(cpi, cm->base_qindex,
in_frame_q_adj_ratio[segment]);
vp9_enable_segfeature(seg, segment, SEG_LVL_ALT_Q);
vp9_set_segdata(seg, segment, SEG_LVL_ALT_Q, qindex_delta);
}
}
}
static void configure_static_seg_features(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
struct segmentation *seg = &cm->seg;
int high_q = (int)(cpi->rc.avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
vp9_disable_segmentation((VP9_PTR)cpi);
// Clear down the segment features.
vp9_clearall_segfeatures(seg);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
vp9_disable_segmentation((VP9_PTR)cpi);
vp9_clearall_segfeatures(seg);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
vp9_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta = vp9_compute_qdelta(
cpi, cpi->rc.avg_q, (cpi->rc.avg_q * 0.875));
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta - 2));
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
seg->abs_delta = SEGMENT_DELTADATA;
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (cpi->rc.frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (cpi->rc.source_alt_ref_active) {
seg->update_map = 0;
seg->update_data = 1;
seg->abs_delta = SEGMENT_DELTADATA;
qi_delta = vp9_compute_qdelta(cpi, cpi->rc.avg_q,
(cpi->rc.avg_q * 1.125));
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta + 2));
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
} else {
// Disable segmentation and clear down features if alt ref
// is not active for this group
vp9_disable_segmentation((VP9_PTR)cpi);
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
vp9_clearall_segfeatures(seg);
}
} else if (cpi->rc.is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
// DEBUG: Print out the segment id of each MB in the current frame.
static void print_seg_map(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int row, col;
int map_index = 0;
FILE *statsfile = fopen("segmap.stt", "a");
fprintf(statsfile, "%10d\n", cm->current_video_frame);
for (row = 0; row < cpi->common.mi_rows; row++) {
for (col = 0; col < cpi->common.mi_cols; col++) {
fprintf(statsfile, "%10d", cpi->segmentation_map[map_index]);
map_index++;
}
fprintf(statsfile, "\n");
}
fprintf(statsfile, "\n");
fclose(statsfile);
}
static void update_reference_segmentation_map(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int row, col;
MODE_INFO **mi_8x8, **mi_8x8_ptr = cm->mi_grid_visible;
uint8_t *cache_ptr = cm->last_frame_seg_map, *cache;
for (row = 0; row < cm->mi_rows; row++) {
mi_8x8 = mi_8x8_ptr;
cache = cache_ptr;
for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
cache[0] = mi_8x8[0]->mbmi.segment_id;
mi_8x8_ptr += cm->mode_info_stride;
cache_ptr += cm->mi_cols;
}
}
static int is_slowest_mode(int mode) {
return (mode == MODE_SECONDPASS_BEST || mode == MODE_BESTQUALITY);
}
static void set_rd_speed_thresholds(VP9_COMP *cpi) {
SPEED_FEATURES *sf = &cpi->sf;
int i;
// Set baseline threshold values
for (i = 0; i < MAX_MODES; ++i)
sf->thresh_mult[i] = is_slowest_mode(cpi->oxcf.mode) ? -500 : 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG] = 0;
sf->thresh_mult[THR_NEARESTA] = 0;
sf->thresh_mult[THR_DC] += 1000;
sf->thresh_mult[THR_NEWMV] += 1000;
sf->thresh_mult[THR_NEWA] += 1000;
sf->thresh_mult[THR_NEWG] += 1000;
sf->thresh_mult[THR_NEARMV] += 1000;
sf->thresh_mult[THR_NEARA] += 1000;
sf->thresh_mult[THR_COMP_NEARESTLA] += 1000;
sf->thresh_mult[THR_COMP_NEARESTGA] += 1000;
sf->thresh_mult[THR_TM] += 1000;
sf->thresh_mult[THR_COMP_NEARLA] += 1500;
sf->thresh_mult[THR_COMP_NEWLA] += 2000;
sf->thresh_mult[THR_NEARG] += 1000;
sf->thresh_mult[THR_COMP_NEARGA] += 1500;
sf->thresh_mult[THR_COMP_NEWGA] += 2000;
sf->thresh_mult[THR_ZEROMV] += 2000;
sf->thresh_mult[THR_ZEROG] += 2000;
sf->thresh_mult[THR_ZEROA] += 2000;
sf->thresh_mult[THR_COMP_ZEROLA] += 2500;
sf->thresh_mult[THR_COMP_ZEROGA] += 2500;
sf->thresh_mult[THR_H_PRED] += 2000;
sf->thresh_mult[THR_V_PRED] += 2000;
sf->thresh_mult[THR_D45_PRED ] += 2500;
sf->thresh_mult[THR_D135_PRED] += 2500;
sf->thresh_mult[THR_D117_PRED] += 2500;
sf->thresh_mult[THR_D153_PRED] += 2500;
sf->thresh_mult[THR_D207_PRED] += 2500;
sf->thresh_mult[THR_D63_PRED] += 2500;
/* disable frame modes if flags not set */
if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) {
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_NEARG ] = INT_MAX;
sf->thresh_mult[THR_NEWG ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) {
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_NEARA ] = INT_MAX;
sf->thresh_mult[THR_NEWA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
(VP9_LAST_FLAG | VP9_ALT_FLAG)) {
sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
(VP9_GOLD_FLAG | VP9_ALT_FLAG)) {
sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
}
}
static void set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) {
SPEED_FEATURES *sf = &cpi->sf;
int i;
for (i = 0; i < MAX_REFS; ++i)
sf->thresh_mult_sub8x8[i] = is_slowest_mode(cpi->oxcf.mode) ? -500 : 0;
sf->thresh_mult_sub8x8[THR_LAST] += 2500;
sf->thresh_mult_sub8x8[THR_GOLD] += 2500;
sf->thresh_mult_sub8x8[THR_ALTR] += 2500;
sf->thresh_mult_sub8x8[THR_INTRA] += 2500;
sf->thresh_mult_sub8x8[THR_COMP_LA] += 4500;
sf->thresh_mult_sub8x8[THR_COMP_GA] += 4500;
// Check for masked out split cases.
for (i = 0; i < MAX_REFS; i++) {
if (sf->disable_split_mask & (1 << i))
sf->thresh_mult_sub8x8[i] = INT_MAX;
}
// disable mode test if frame flag is not set
if (!(cpi->ref_frame_flags & VP9_LAST_FLAG))
sf->thresh_mult_sub8x8[THR_LAST] = INT_MAX;
if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG))
sf->thresh_mult_sub8x8[THR_GOLD] = INT_MAX;
if (!(cpi->ref_frame_flags & VP9_ALT_FLAG))
sf->thresh_mult_sub8x8[THR_ALTR] = INT_MAX;
if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
(VP9_LAST_FLAG | VP9_ALT_FLAG))
sf->thresh_mult_sub8x8[THR_COMP_LA] = INT_MAX;
if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
(VP9_GOLD_FLAG | VP9_ALT_FLAG))
sf->thresh_mult_sub8x8[THR_COMP_GA] = INT_MAX;
}
static void set_good_speed_feature(VP9_COMMON *cm,
SPEED_FEATURES *sf,
int speed) {
int i;
sf->adaptive_rd_thresh = 1;
sf->recode_loop = ((speed < 1) ? ALLOW_RECODE : ALLOW_RECODE_KFMAXBW);
if (speed == 1) {
sf->use_square_partition_only = !frame_is_intra_only(cm);
sf->less_rectangular_check = 1;
sf->tx_size_search_method = frame_is_intra_only(cm)
? USE_FULL_RD : USE_LARGESTALL;
if (MIN(cm->width, cm->height) >= 720)
sf->disable_split_mask = cm->show_frame ?
DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
else
sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
sf->use_rd_breakout = 1;
sf->adaptive_motion_search = 1;
sf->adaptive_pred_interp_filter = 1;
sf->auto_mv_step_size = 1;
sf->adaptive_rd_thresh = 2;
sf->recode_loop = ALLOW_RECODE_KFARFGF;
sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
}
if (speed == 2) {
sf->use_square_partition_only = !frame_is_intra_only(cm);
sf->less_rectangular_check = 1;
sf->tx_size_search_method = frame_is_intra_only(cm)
? USE_FULL_RD : USE_LARGESTALL;
if (MIN(cm->width, cm->height) >= 720)
sf->disable_split_mask = cm->show_frame ?
DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
else
sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_INTRA_LOWVAR;
sf->use_rd_breakout = 1;
sf->adaptive_motion_search = 1;
sf->adaptive_pred_interp_filter = 2;
sf->reference_masking = 1;
sf->auto_mv_step_size = 1;
sf->disable_filter_search_var_thresh = 50;
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_LOW_MOTION;
sf->adjust_partitioning_from_last_frame = 1;
sf->last_partitioning_redo_frequency = 3;
sf->adaptive_rd_thresh = 2;
sf->recode_loop = ALLOW_RECODE_KFARFGF;
sf->use_lp32x32fdct = 1;
sf->mode_skip_start = 11;
sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V;
sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
}
if (speed == 3) {
sf->use_square_partition_only = 1;
sf->tx_size_search_method = USE_LARGESTALL;
if (MIN(cm->width, cm->height) >= 720)
sf->disable_split_mask = DISABLE_ALL_SPLIT;
else
sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT;
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_INTRA_LOWVAR;
sf->use_rd_breakout = 1;
sf->adaptive_motion_search = 1;
sf->adaptive_pred_interp_filter = 2;
sf->reference_masking = 1;
sf->auto_mv_step_size = 1;
sf->disable_filter_search_var_thresh = 100;
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL;
sf->adjust_partitioning_from_last_frame = 1;
sf->last_partitioning_redo_frequency = 3;
sf->use_uv_intra_rd_estimate = 1;
sf->skip_encode_sb = 1;
sf->use_lp32x32fdct = 1;
sf->subpel_iters_per_step = 1;
sf->use_fast_coef_updates = 2;
sf->adaptive_rd_thresh = 4;
sf->mode_skip_start = 6;
}
if (speed == 4) {
sf->use_square_partition_only = 1;
sf->tx_size_search_method = USE_LARGESTALL;
sf->disable_split_mask = DISABLE_ALL_SPLIT;
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_COMP_REFMISMATCH |
FLAG_SKIP_INTRA_LOWVAR |
FLAG_EARLY_TERMINATE;
sf->use_rd_breakout = 1;
sf->adaptive_motion_search = 1;
sf->adaptive_pred_interp_filter = 2;
sf->reference_masking = 1;
sf->auto_mv_step_size = 1;
sf->disable_filter_search_var_thresh = 200;
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL;
sf->adjust_partitioning_from_last_frame = 1;
sf->last_partitioning_redo_frequency = 3;
sf->use_uv_intra_rd_estimate = 1;
sf->skip_encode_sb = 1;
sf->use_lp32x32fdct = 1;
sf->subpel_iters_per_step = 1;
sf->use_fast_coef_updates = 2;
sf->adaptive_rd_thresh = 4;
sf->mode_skip_start = 6;
}
if (speed == 5) {
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->use_one_partition_size_always = 1;
sf->always_this_block_size = BLOCK_16X16;
sf->tx_size_search_method = frame_is_intra_only(cm) ?
USE_FULL_RD : USE_LARGESTALL;
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_COMP_REFMISMATCH |
FLAG_SKIP_INTRA_LOWVAR |
FLAG_EARLY_TERMINATE;
sf->use_rd_breakout = 1;
sf->use_lp32x32fdct = 1;
sf->optimize_coefficients = 0;
sf->auto_mv_step_size = 1;
sf->reference_masking = 1;
sf->disable_split_mask = DISABLE_ALL_SPLIT;
sf->search_method = HEX;
sf->subpel_iters_per_step = 1;
sf->disable_split_var_thresh = 64;
sf->disable_filter_search_var_thresh = 500;
for (i = 0; i < TX_SIZES; i++) {
sf->intra_y_mode_mask[i] = INTRA_DC_ONLY;
sf->intra_uv_mode_mask[i] = INTRA_DC_ONLY;
}
sf->use_fast_coef_updates = 2;
sf->adaptive_rd_thresh = 4;
sf->mode_skip_start = 6;
}
}
static void set_rt_speed_feature(VP9_COMMON *cm,
SPEED_FEATURES *sf,
int speed) {
sf->static_segmentation = 0;
sf->adaptive_rd_thresh = 1;
sf->recode_loop = ((speed < 1) ? ALLOW_RECODE : ALLOW_RECODE_KFMAXBW);
if (speed == 1) {
sf->use_square_partition_only = !frame_is_intra_only(cm);
sf->less_rectangular_check = 1;
sf->tx_size_search_method =
frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL;
if (MIN(cm->width, cm->height) >= 720)
sf->disable_split_mask = cm->show_frame ?
DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
else
sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
sf->use_rd_breakout = 1;
sf->adaptive_motion_search = 1;
sf->adaptive_pred_interp_filter = 1;
sf->auto_mv_step_size = 1;
sf->adaptive_rd_thresh = 2;
sf->recode_loop = ALLOW_RECODE_KFARFGF;
sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
}
if (speed >= 2) {
sf->use_square_partition_only = !frame_is_intra_only(cm);
sf->less_rectangular_check = 1;
sf->tx_size_search_method =
frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL;
if (MIN(cm->width, cm->height) >= 720)
sf->disable_split_mask = cm->show_frame ?
DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT;
else
sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH
| FLAG_SKIP_INTRA_BESTINTER | FLAG_SKIP_COMP_BESTINTRA
| FLAG_SKIP_INTRA_LOWVAR;
sf->use_rd_breakout = 1;
sf->adaptive_motion_search = 1;
sf->adaptive_pred_interp_filter = 2;
sf->auto_mv_step_size = 1;
sf->reference_masking = 1;
sf->disable_filter_search_var_thresh = 50;
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_LOW_MOTION;
sf->adjust_partitioning_from_last_frame = 1;
sf->last_partitioning_redo_frequency = 3;
sf->adaptive_rd_thresh = 2;
sf->recode_loop = ALLOW_RECODE_KFARFGF;
sf->use_lp32x32fdct = 1;
sf->mode_skip_start = 11;
sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V;
sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
}
if (speed >= 3) {
sf->use_square_partition_only = 1;
sf->tx_size_search_method = USE_LARGESTALL;
if (MIN(cm->width, cm->height) >= 720)
sf->disable_split_mask = DISABLE_ALL_SPLIT;
else
sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT;
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH
| FLAG_SKIP_INTRA_BESTINTER | FLAG_SKIP_COMP_BESTINTRA
| FLAG_SKIP_INTRA_LOWVAR;
sf->disable_filter_search_var_thresh = 100;
sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_ALL;
sf->use_uv_intra_rd_estimate = 1;
sf->skip_encode_sb = 1;
sf->subpel_iters_per_step = 1;
sf->use_fast_coef_updates = 2;
sf->adaptive_rd_thresh = 4;
sf->mode_skip_start = 6;
}
if (speed >= 4) {
sf->optimize_coefficients = 0;
sf->disable_split_mask = DISABLE_ALL_SPLIT;
sf->use_fast_lpf_pick = 2;
}
if (speed >= 5) {
int i;
sf->adaptive_rd_thresh = 5;
sf->auto_min_max_partition_size = frame_is_intra_only(cm) ?
RELAXED_NEIGHBORING_MIN_MAX : STRICT_NEIGHBORING_MIN_MAX;
sf->subpel_force_stop = 1;
for (i = 0; i < TX_SIZES; i++) {
sf->intra_y_mode_mask[i] = INTRA_DC_H_V;
sf->intra_uv_mode_mask[i] = INTRA_DC_ONLY;
}
sf->RD = 0;
}
if (speed >= 6) {
sf->super_fast_rtc = 1;
}
}
void vp9_set_speed_features(VP9_COMP *cpi) {
SPEED_FEATURES *sf = &cpi->sf;
VP9_COMMON *cm = &cpi->common;
int speed = cpi->speed;
int i;
// Convert negative speed to positive
if (speed < 0)
speed = -speed;
for (i = 0; i < MAX_MODES; ++i)
cpi->mode_chosen_counts[i] = 0;
// best quality defaults
sf->RD = 1;
sf->search_method = NSTEP;
sf->recode_loop = ALLOW_RECODE;
sf->subpel_search_method = SUBPEL_TREE;
sf->subpel_iters_per_step = 2;
sf->subpel_force_stop = 0;
sf->optimize_coefficients = !cpi->oxcf.lossless;
sf->reduce_first_step_size = 0;
sf->auto_mv_step_size = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->comp_inter_joint_search_thresh = BLOCK_4X4;
sf->adaptive_rd_thresh = 0;
sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_OFF;
sf->tx_size_search_method = USE_FULL_RD;
sf->use_lp32x32fdct = 0;
sf->adaptive_motion_search = 0;
sf->adaptive_pred_interp_filter = 0;
sf->reference_masking = 0;
sf->use_one_partition_size_always = 0;
sf->less_rectangular_check = 0;
sf->use_square_partition_only = 0;
sf->auto_min_max_partition_size = NOT_IN_USE;
sf->max_partition_size = BLOCK_64X64;
sf->min_partition_size = BLOCK_4X4;
sf->adjust_partitioning_from_last_frame = 0;
sf->last_partitioning_redo_frequency = 4;
sf->disable_split_mask = 0;
sf->mode_search_skip_flags = 0;
sf->disable_split_var_thresh = 0;
sf->disable_filter_search_var_thresh = 0;
for (i = 0; i < TX_SIZES; i++) {
sf->intra_y_mode_mask[i] = ALL_INTRA_MODES;
sf->intra_uv_mode_mask[i] = ALL_INTRA_MODES;
}
sf->use_rd_breakout = 0;
sf->skip_encode_sb = 0;
sf->use_uv_intra_rd_estimate = 0;
sf->use_fast_lpf_pick = 0;
sf->use_fast_coef_updates = 0;
sf->using_small_partition_info = 0;
sf->mode_skip_start = MAX_MODES; // Mode index at which mode skip mask set
sf->super_fast_rtc = 0;
switch (cpi->oxcf.mode) {
case MODE_BESTQUALITY:
case MODE_SECONDPASS_BEST: // This is the best quality mode.
cpi->diamond_search_sad = vp9_full_range_search;
break;
case MODE_FIRSTPASS:
case MODE_GOODQUALITY:
case MODE_SECONDPASS:
set_good_speed_feature(cm, sf, speed);
break;
case MODE_REALTIME:
set_rt_speed_feature(cm, sf, speed);
break;
}; /* switch */
// Set rd thresholds based on mode and speed setting
set_rd_speed_thresholds(cpi);
set_rd_speed_thresholds_sub8x8(cpi);
// Slow quant, dct and trellis not worthwhile for first pass
// so make sure they are always turned off.
if (cpi->pass == 1) {
sf->optimize_coefficients = 0;
}
// No recode for 1 pass.
if (cpi->pass == 0) {
sf->recode_loop = DISALLOW_RECODE;
sf->optimize_coefficients = 0;
}
cpi->mb.fwd_txm4x4 = vp9_fdct4x4;
if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) {
cpi->mb.fwd_txm4x4 = vp9_fwht4x4;
}
if (cpi->sf.subpel_search_method == SUBPEL_TREE) {
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree;
cpi->find_fractional_mv_step_comp = vp9_find_best_sub_pixel_comp_tree;
}
cpi->mb.optimize = cpi->sf.optimize_coefficients == 1 && cpi->pass != 1;
}
static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
cpi->lookahead = vp9_lookahead_init(cpi->oxcf.width, cpi->oxcf.height,
cm->subsampling_x, cm->subsampling_y,
cpi->oxcf.lag_in_frames);
if (!cpi->lookahead)
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
cpi->oxcf.width, cpi->oxcf.height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
void vp9_alloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
if (vp9_alloc_frame_buffers(cm, cm->width, cm->height))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (vp9_alloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp9_alloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
vpx_free(cpi->tok);
{
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(cm, cpi->mb_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->mb_norm_activity_map);
CHECK_MEM_ERROR(cm, cpi->mb_norm_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
// 2 contexts per 'mi unit', so that we have one context per 4x4 txfm
// block where mi unit size is 8x8.
vpx_free(cpi->above_context[0]);
CHECK_MEM_ERROR(cm, cpi->above_context[0],
vpx_calloc(2 * mi_cols_aligned_to_sb(cm->mi_cols) *
MAX_MB_PLANE,
sizeof(*cpi->above_context[0])));
vpx_free(cpi->above_seg_context);
CHECK_MEM_ERROR(cm, cpi->above_seg_context,
vpx_calloc(mi_cols_aligned_to_sb(cm->mi_cols),
sizeof(*cpi->above_seg_context)));
}
static void update_frame_size(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
vp9_update_frame_size(cm);
// Update size of buffers local to this frame
if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate last frame buffer");
if (vp9_realloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate scaled source buffer");
{
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.search_method == NSTEP) {
vp9_init3smotion_compensation(&cpi->mb, y_stride);
} else if (cpi->sf.search_method == DIAMOND) {
vp9_init_dsmotion_compensation(&cpi->mb, y_stride);
}
}
{
int i;
for (i = 1; i < MAX_MB_PLANE; ++i) {
cpi->above_context[i] = cpi->above_context[0] +
i * sizeof(*cpi->above_context[0]) * 2 *
mi_cols_aligned_to_sb(cm->mi_cols);
}
}
}
// Table that converts 0-63 Q range values passed in outside to the Qindex
// range used internally.
static const int q_trans[] = {
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60,
64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124,
128, 132, 136, 140, 144, 148, 152, 156,
160, 164, 168, 172, 176, 180, 184, 188,
192, 196, 200, 204, 208, 212, 216, 220,
224, 228, 232, 236, 240, 244, 249, 255,
};
int vp9_reverse_trans(int x) {
int i;
for (i = 0; i < 64; i++)
if (q_trans[i] >= x)
return i;
return 63;
};
void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
VP9_COMMON *const cm = &cpi->common;
int64_t vbr_max_bits;
if (framerate < 0.1)
framerate = 30;
cpi->oxcf.framerate = framerate;
cpi->output_framerate = cpi->oxcf.framerate;
cpi->rc.av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth
/ cpi->output_framerate);
cpi->rc.min_frame_bandwidth = (int)(cpi->rc.av_per_frame_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100);
cpi->rc.min_frame_bandwidth = MAX(cpi->rc.min_frame_bandwidth,
FRAME_OVERHEAD_BITS);
// A maximum bitrate for a frame is defined.
// The baseline for this aligns with HW implementations that
// can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
// per 16x16 MB (averaged over a frame). However this limit is extended if
// a very high rate is given on the command line or the the rate cannnot
// be acheived because of a user specificed max q (e.g. when the user
// specifies lossless encode.
//
vbr_max_bits = ((int64_t)cpi->rc.av_per_frame_bandwidth *
(int64_t)cpi->oxcf.two_pass_vbrmax_section) / 100;
cpi->rc.max_frame_bandwidth =
MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
// Set Maximum gf/arf interval
cpi->rc.max_gf_interval = 16;
// Extended interval for genuinely static scenes
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
// Special conditions when alt ref frame enabled in lagged compress mode
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
if (cpi->rc.max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->rc.max_gf_interval = cpi->oxcf.lag_in_frames - 1;
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
if (cpi->rc.max_gf_interval > cpi->twopass.static_scene_max_gf_interval)
cpi->rc.max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
}
static int64_t rescale(int val, int64_t num, int denom) {
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (llval * llnum / llden);
}
// Initialize layer context data from init_config().
static void init_layer_context(VP9_COMP *const cpi) {
const VP9_CONFIG *const oxcf = &cpi->oxcf;
int temporal_layer = 0;
cpi->svc.spatial_layer_id = 0;
cpi->svc.temporal_layer_id = 0;
for (temporal_layer = 0; temporal_layer < cpi->svc.number_temporal_layers;
++temporal_layer) {
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[temporal_layer];
RATE_CONTROL *const lrc = &lc->rc;
lrc->active_worst_quality = q_trans[oxcf->worst_allowed_q];
lrc->avg_frame_qindex[INTER_FRAME] = lrc->active_worst_quality;
lrc->last_q[INTER_FRAME] = lrc->active_worst_quality;
lrc->ni_av_qi = lrc->active_worst_quality;
lrc->total_actual_bits = 0;
lrc->total_target_vs_actual = 0;
lrc->ni_tot_qi = 0;
lrc->tot_q = 0.0;
lrc->avg_q = 0.0;
lrc->ni_frames = 0;
lrc->decimation_count = 0;
lrc->decimation_factor = 0;
lrc->rate_correction_factor = 1.0;
lrc->key_frame_rate_correction_factor = 1.0;
lc->target_bandwidth = oxcf->ts_target_bitrate[temporal_layer] *
1000;
lrc->buffer_level = rescale((int)(oxcf->starting_buffer_level),
lc->target_bandwidth, 1000);
lrc->bits_off_target = lrc->buffer_level;
}
}
// Update the layer context from a change_config() call.
static void update_layer_context_change_config(VP9_COMP *const cpi,
const int target_bandwidth) {
const VP9_CONFIG *const oxcf = &cpi->oxcf;
const RATE_CONTROL *const rc = &cpi->rc;
int temporal_layer = 0;
float bitrate_alloc = 1.0;
for (temporal_layer = 0; temporal_layer < cpi->svc.number_temporal_layers;
++temporal_layer) {
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[temporal_layer];
RATE_CONTROL *const lrc = &lc->rc;
lc->target_bandwidth = oxcf->ts_target_bitrate[temporal_layer] * 1000;
bitrate_alloc = (float)lc->target_bandwidth / (float)target_bandwidth;
// Update buffer-related quantities.
lc->starting_buffer_level = oxcf->starting_buffer_level * bitrate_alloc;
lc->optimal_buffer_level = oxcf->optimal_buffer_level * bitrate_alloc;
lc->maximum_buffer_size = oxcf->maximum_buffer_size * bitrate_alloc;
lrc->bits_off_target = MIN(lrc->bits_off_target, lc->maximum_buffer_size);
lrc->buffer_level = MIN(lrc->buffer_level, lc->maximum_buffer_size);
// Update framerate-related quantities.
lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[temporal_layer];
lrc->av_per_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
// Update qp-related quantities.
lrc->worst_quality = rc->worst_quality;
lrc->best_quality = rc->best_quality;
lrc->active_worst_quality = rc->active_worst_quality;
}
}
// Prior to encoding the frame, update framerate-related quantities
// for the current layer.
static void update_layer_framerate(VP9_COMP *const cpi) {
int temporal_layer = cpi->svc.temporal_layer_id;
const VP9_CONFIG *const oxcf = &cpi->oxcf;
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[temporal_layer];
RATE_CONTROL *const lrc = &lc->rc;
lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[temporal_layer];
lrc->av_per_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth;
// Update the average layer frame size (non-cumulative per-frame-bw).
if (temporal_layer == 0) {
lc->avg_frame_size = lrc->av_per_frame_bandwidth;
} else {
double prev_layer_framerate = oxcf->framerate /
oxcf->ts_rate_decimator[temporal_layer - 1];
int prev_layer_target_bandwidth =
oxcf->ts_target_bitrate[temporal_layer - 1] * 1000;
lc->avg_frame_size =
(int)(lc->target_bandwidth - prev_layer_target_bandwidth) /
(lc->framerate - prev_layer_framerate);
}
}
// Prior to encoding the frame, set the layer context, for the current layer
// to be encoded, to the cpi struct.
static void restore_layer_context(VP9_COMP *const cpi) {
int temporal_layer = cpi->svc.temporal_layer_id;
LAYER_CONTEXT *lc = &cpi->svc.layer_context[temporal_layer];
int frame_since_key = cpi->rc.frames_since_key;
int frame_to_key = cpi->rc.frames_to_key;
cpi->rc = lc->rc;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
cpi->oxcf.starting_buffer_level = lc->starting_buffer_level;
cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level;
cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size;
cpi->output_framerate = lc->framerate;
// Reset the frames_since_key and frames_to_key counters to their values
// before the layer restore. Keep these defined for the stream (not layer).
cpi->rc.frames_since_key = frame_since_key;
cpi->rc.frames_to_key = frame_to_key;
}
// Save the layer context after encoding the frame.
static void save_layer_context(VP9_COMP *const cpi) {
int temporal_layer = cpi->svc.temporal_layer_id;
LAYER_CONTEXT *lc = &cpi->svc.layer_context[temporal_layer];
lc->rc = cpi->rc;
lc->target_bandwidth = cpi->oxcf.target_bandwidth;
lc->starting_buffer_level = cpi->oxcf.starting_buffer_level;
lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level;
lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size;
lc->framerate = cpi->output_framerate;
}
static void set_tile_limits(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int min_log2_tile_cols, max_log2_tile_cols;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
}
static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *const cm = &cpi->common;
int i;
cpi->oxcf = *oxcf;
cm->version = oxcf->version;
cm->width = oxcf->width;
cm->height = oxcf->height;
cm->subsampling_x = 0;
cm->subsampling_y = 0;
vp9_alloc_compressor_data(cpi);
// Spatial scalability.
cpi->svc.number_spatial_layers = oxcf->ss_number_layers;
// Temporal scalability.
cpi->svc.number_temporal_layers = oxcf->ts_number_layers;
if (cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
init_layer_context(cpi);
}
// change includes all joint functionality
vp9_change_config(ptr, oxcf);
// Initialize active best and worst q and average q values.
cpi->rc.active_worst_quality = cpi->oxcf.worst_allowed_q;
if (cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
cpi->rc.avg_frame_qindex[0] = cpi->oxcf.worst_allowed_q;
cpi->rc.avg_frame_qindex[1] = cpi->oxcf.worst_allowed_q;
cpi->rc.avg_frame_qindex[2] = cpi->oxcf.worst_allowed_q;
} else {
cpi->rc.avg_frame_qindex[0] = (cpi->oxcf.worst_allowed_q +
cpi->oxcf.best_allowed_q) / 2;
cpi->rc.avg_frame_qindex[1] = (cpi->oxcf.worst_allowed_q +
cpi->oxcf.best_allowed_q) / 2;
cpi->rc.avg_frame_qindex[2] = (cpi->oxcf.worst_allowed_q +
cpi->oxcf.best_allowed_q) / 2;
}
cpi->rc.last_q[0] = cpi->oxcf.best_allowed_q;
cpi->rc.last_q[1] = cpi->oxcf.best_allowed_q;
cpi->rc.last_q[2] = cpi->oxcf.best_allowed_q;
// Initialise the starting buffer levels
cpi->rc.buffer_level = cpi->oxcf.starting_buffer_level;
cpi->rc.bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rc.rolling_target_bits = cpi->rc.av_per_frame_bandwidth;
cpi->rc.rolling_actual_bits = cpi->rc.av_per_frame_bandwidth;
cpi->rc.long_rolling_target_bits = cpi->rc.av_per_frame_bandwidth;
cpi->rc.long_rolling_actual_bits = cpi->rc.av_per_frame_bandwidth;
cpi->rc.total_actual_bits = 0;
cpi->rc.total_target_vs_actual = 0;
cpi->static_mb_pct = 0;
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
set_tile_limits(cpi);
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
}
void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *const cm = &cpi->common;
if (!cpi || !oxcf)
return;
if (cm->version != oxcf->version) {
cm->version = oxcf->version;
}
cpi->oxcf = *oxcf;
switch (cpi->oxcf.mode) {
// Real time and one pass deprecated in test code base
case MODE_GOODQUALITY:
cpi->pass = 0;
cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5);
break;
case MODE_FIRSTPASS:
cpi->pass = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5);
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
break;
case MODE_REALTIME:
cpi->pass = 0;
break;
}
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
cpi->oxcf.lossless = oxcf->lossless;
cpi->mb.e_mbd.itxm_add = cpi->oxcf.lossless ? vp9_iwht4x4_add
: vp9_idct4x4_add;
cpi->rc.baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
cm->refresh_frame_context = 1;
cm->reset_frame_context = 0;
vp9_reset_segment_features(&cm->seg);
set_high_precision_mv(cpi, 0);
{
int i;
for (i = 0; i < MAX_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
// local file playback mode == really big buffer
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
}
// Convert target bandwidth from Kbit/s to Bit/s
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
// Set or reset optimal and maximum buffer levels.
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
cpi->rc.bits_off_target = MIN(cpi->rc.bits_off_target,
cpi->oxcf.maximum_buffer_size);
cpi->rc.buffer_level = MIN(cpi->rc.buffer_level,
cpi->oxcf.maximum_buffer_size);
// Set up frame rate and related parameters rate control values.
vp9_new_framerate(cpi, cpi->oxcf.framerate);
// Set absolute upper and lower quality limits
cpi->rc.worst_quality = cpi->oxcf.worst_allowed_q;
cpi->rc.best_quality = cpi->oxcf.best_allowed_q;
// active values should only be modified if out of new range
cpi->rc.active_worst_quality = clamp(cpi->rc.active_worst_quality,
cpi->rc.best_quality,
cpi->rc.worst_quality);
cpi->cq_target_quality = cpi->oxcf.cq_level;
cm->interp_filter = DEFAULT_INTERP_FILTER;
cm->display_width = cpi->oxcf.width;
cm->display_height = cpi->oxcf.height;
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
cpi->oxcf.sharpness = MIN(7, cpi->oxcf.sharpness);
cpi->common.lf.sharpness_level = cpi->oxcf.sharpness;
if (cpi->initial_width) {
// Increasing the size of the frame beyond the first seen frame, or some
// otherwise signalled maximum size, is not supported.
// TODO(jkoleszar): exit gracefully.
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
}
update_frame_size(cpi);
if (cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
update_layer_context_change_config(cpi, cpi->oxcf.target_bandwidth);
}
cpi->speed = cpi->oxcf.cpu_used;
if (cpi->oxcf.lag_in_frames == 0) {
// force to allowlag to 0 if lag_in_frames is 0;
cpi->oxcf.allow_lag = 0;
} else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) {
// Limit on lag buffers as these are not currently dynamically allocated
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
}
// YX Temp
#if CONFIG_MULTIPLE_ARF
vp9_zero(cpi->alt_ref_source);
#else
cpi->alt_ref_source = NULL;
#endif
cpi->rc.is_src_frame_alt_ref = 0;
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
set_tile_limits(cpi);
cpi->ext_refresh_frame_flags_pending = 0;
cpi->ext_refresh_frame_context_pending = 0;
}
#define M_LOG2_E 0.693147180559945309417
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_nmvjointsadcost(int *mvjointsadcost) {
mvjointsadcost[0] = 600;
mvjointsadcost[1] = 300;
mvjointsadcost[2] = 300;
mvjointsadcost[0] = 300;
}
static void cal_nmvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static void alloc_mode_context(VP9_COMMON *cm, int num_4x4_blk,
PICK_MODE_CONTEXT *ctx) {
int num_pix = num_4x4_blk << 4;
int i, k;
ctx->num_4x4_blk = num_4x4_blk;
CHECK_MEM_ERROR(cm, ctx->zcoeff_blk,
vpx_calloc(num_4x4_blk, sizeof(uint8_t)));
for (i = 0; i < MAX_MB_PLANE; ++i) {
for (k = 0; k < 3; ++k) {
CHECK_MEM_ERROR(cm, ctx->coeff[i][k],
vpx_memalign(16, num_pix * sizeof(int16_t)));
CHECK_MEM_ERROR(cm, ctx->qcoeff[i][k],
vpx_memalign(16, num_pix * sizeof(int16_t)));
CHECK_MEM_ERROR(cm, ctx->dqcoeff[i][k],
vpx_memalign(16, num_pix * sizeof(int16_t)));
CHECK_MEM_ERROR(cm, ctx->eobs[i][k],
vpx_memalign(16, num_pix * sizeof(uint16_t)));
ctx->coeff_pbuf[i][k] = ctx->coeff[i][k];
ctx->qcoeff_pbuf[i][k] = ctx->qcoeff[i][k];
ctx->dqcoeff_pbuf[i][k] = ctx->dqcoeff[i][k];
ctx->eobs_pbuf[i][k] = ctx->eobs[i][k];
}
}
}
static void free_mode_context(PICK_MODE_CONTEXT *ctx) {
int i, k;
vpx_free(ctx->zcoeff_blk);
ctx->zcoeff_blk = 0;
for (i = 0; i < MAX_MB_PLANE; ++i) {
for (k = 0; k < 3; ++k) {
vpx_free(ctx->coeff[i][k]);
ctx->coeff[i][k] = 0;
vpx_free(ctx->qcoeff[i][k]);
ctx->qcoeff[i][k] = 0;
vpx_free(ctx->dqcoeff[i][k]);
ctx->dqcoeff[i][k] = 0;
vpx_free(ctx->eobs[i][k]);
ctx->eobs[i][k] = 0;
}
}
}
static void init_pick_mode_context(VP9_COMP *cpi) {
int i;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
for (i = 0; i < BLOCK_SIZES; ++i) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[i];
const int num_4x4_h = num_4x4_blocks_high_lookup[i];
const int num_4x4_blk = MAX(4, num_4x4_w * num_4x4_h);
if (i < BLOCK_16X16) {
for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index) {
for (x->mb_index = 0; x->mb_index < 4; ++x->mb_index) {
for (x->b_index = 0; x->b_index < 16 / num_4x4_blk; ++x->b_index) {
PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
alloc_mode_context(cm, num_4x4_blk, ctx);
}
}
}
} else if (i < BLOCK_32X32) {
for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index) {
for (x->mb_index = 0; x->mb_index < 64 / num_4x4_blk; ++x->mb_index) {
PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
ctx->num_4x4_blk = num_4x4_blk;
alloc_mode_context(cm, num_4x4_blk, ctx);
}
}
} else if (i < BLOCK_64X64) {
for (x->sb_index = 0; x->sb_index < 256 / num_4x4_blk; ++x->sb_index) {
PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
ctx->num_4x4_blk = num_4x4_blk;
alloc_mode_context(cm, num_4x4_blk, ctx);
}
} else {
PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
ctx->num_4x4_blk = num_4x4_blk;
alloc_mode_context(cm, num_4x4_blk, ctx);
}
}
}
static void free_pick_mode_context(MACROBLOCK *x) {
int i;
for (i = 0; i < BLOCK_SIZES; ++i) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[i];
const int num_4x4_h = num_4x4_blocks_high_lookup[i];
const int num_4x4_blk = MAX(4, num_4x4_w * num_4x4_h);
if (i < BLOCK_16X16) {
for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index) {
for (x->mb_index = 0; x->mb_index < 4; ++x->mb_index) {
for (x->b_index = 0; x->b_index < 16 / num_4x4_blk; ++x->b_index) {
PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
free_mode_context(ctx);
}
}
}
} else if (i < BLOCK_32X32) {
for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index) {
for (x->mb_index = 0; x->mb_index < 64 / num_4x4_blk; ++x->mb_index) {
PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
free_mode_context(ctx);
}
}
} else if (i < BLOCK_64X64) {
for (x->sb_index = 0; x->sb_index < 256 / num_4x4_blk; ++x->sb_index) {
PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
free_mode_context(ctx);
}
} else {
PICK_MODE_CONTEXT *ctx = get_block_context(x, i);
free_mode_context(ctx);
}
}
}
VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) {
int i, j;
volatile union {
VP9_COMP *cpi;
VP9_PTR ptr;
} ctx;
VP9_COMP *cpi;
VP9_COMMON *cm;
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP));
// Check that the CPI instance is valid
if (!cpi)
return 0;
cm = &cpi->common;
vp9_zero(*cpi);
if (setjmp(cm->error.jmp)) {
VP9_PTR ptr = ctx.ptr;
ctx.cpi->common.error.setjmp = 0;
vp9_remove_compressor(&ptr);
return 0;
}
cm->error.setjmp = 1;
CHECK_MEM_ERROR(cm, cpi->mb.ss, vpx_calloc(sizeof(search_site),
(MAX_MVSEARCH_STEPS * 8) + 1));
vp9_create_common(cm);
cpi->use_svc = 0;
init_config((VP9_PTR)cpi, oxcf);
init_pick_mode_context(cpi);
cm->current_video_frame = 0;
// Set reference frame sign bias for ALTREF frame to 1 (for now)
cm->ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->rc.baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0;
cpi->alt_is_last = 0;
cpi->gold_is_alt = 0;
// Create the encoder segmentation map and set all entries to 0
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// Create a complexity map used for rd adjustment
CHECK_MEM_ERROR(cm, cpi->complexity_map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
CHECK_MEM_ERROR(cm, cpi->active_map, vpx_calloc(cm->MBs, 1));
vpx_memset(cpi->active_map, 1, cm->MBs);
cpi->active_map_enabled = 0;
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0])); i++) {
CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
vpx_calloc(cm->MBs *
sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
}
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90 << 12;
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->rc.frames_since_key = 8; // Sensible default for first frame.
cpi->rc.this_key_frame_forced = 0;
cpi->rc.next_key_frame_forced = 0;
cpi->rc.source_alt_ref_pending = 0;
cpi->rc.source_alt_ref_active = 0;
cpi->refresh_alt_ref_frame = 0;
#if CONFIG_MULTIPLE_ARF
// Turn multiple ARF usage on/off. This is a quick hack for the initial test
// version. It should eventually be set via the codec API.
cpi->multi_arf_enabled = 1;
if (cpi->multi_arf_enabled) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = 0;
vp9_zero(cpi->frame_coding_order);
vp9_zero(cpi->arf_buffer_idx);
}
#endif
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->total_sq_error = 0;
cpi->total_samples = 0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->totalp_sq_error = 0;
cpi->totalp_samples = 0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
cpi->summedp_quality = 0;
cpi->summedp_weights = 0;
}
if (cpi->b_calculate_ssimg) {
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
#endif
cpi->first_time_stamp_ever = INT64_MAX;
cpi->rc.frames_till_gf_update_due = 0;
cpi->rc.ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->rc.ni_tot_qi = 0;
cpi->rc.ni_frames = 0;
cpi->rc.tot_q = 0.0;
cpi->rc.avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q);
cpi->rc.rate_correction_factor = 1.0;
cpi->rc.key_frame_rate_correction_factor = 1.0;
cpi->rc.gf_rate_correction_factor = 1.0;
cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX];
cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX];
cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX];
cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX];
cal_nmvsadcosts(cpi->mb.nmvsadcost);
cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX];
cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX];
cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX];
cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
cpi->enable_encode_breakout = 1;
if (cpi->pass == 1) {
vp9_init_first_pass(cpi);
} else if (cpi->pass == 2) {
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in
+ (packets - 1) * packet_sz);
vp9_init_second_pass(cpi);
}
vp9_set_speed_features(cpi);
// Default rd threshold factors for mode selection
for (i = 0; i < BLOCK_SIZES; ++i) {
for (j = 0; j < MAX_MODES; ++j)
cpi->rd_thresh_freq_fact[i][j] = 32;
for (j = 0; j < MAX_REFS; ++j)
cpi->rd_thresh_freq_sub8x8[i][j] = 32;
}
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SVFHH, SVFHV, SVFHHV, \
SDX3F, SDX8F, SDX4DF)\
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \
cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \
cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg,
vp9_variance32x16, vp9_sub_pixel_variance32x16,
vp9_sub_pixel_avg_variance32x16, NULL, NULL,
NULL, NULL, NULL,
vp9_sad32x16x4d)
BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg,
vp9_variance16x32, vp9_sub_pixel_variance16x32,
vp9_sub_pixel_avg_variance16x32, NULL, NULL,
NULL, NULL, NULL,
vp9_sad16x32x4d)
BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg,
vp9_variance64x32, vp9_sub_pixel_variance64x32,
vp9_sub_pixel_avg_variance64x32, NULL, NULL,
NULL, NULL, NULL,
vp9_sad64x32x4d)
BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg,
vp9_variance32x64, vp9_sub_pixel_variance32x64,
vp9_sub_pixel_avg_variance32x64, NULL, NULL,
NULL, NULL, NULL,
vp9_sad32x64x4d)
BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg,
vp9_variance32x32, vp9_sub_pixel_variance32x32,
vp9_sub_pixel_avg_variance32x32, vp9_variance_halfpixvar32x32_h,
vp9_variance_halfpixvar32x32_v,
vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8,
vp9_sad32x32x4d)
BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg,
vp9_variance64x64, vp9_sub_pixel_variance64x64,
vp9_sub_pixel_avg_variance64x64, vp9_variance_halfpixvar64x64_h,
vp9_variance_halfpixvar64x64_v,
vp9_variance_halfpixvar64x64_hv, vp9_sad64x64x3, vp9_sad64x64x8,
vp9_sad64x64x4d)
BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg,
vp9_variance16x16, vp9_sub_pixel_variance16x16,
vp9_sub_pixel_avg_variance16x16, vp9_variance_halfpixvar16x16_h,
vp9_variance_halfpixvar16x16_v,
vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8,
vp9_sad16x16x4d)
BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg,
vp9_variance16x8, vp9_sub_pixel_variance16x8,
vp9_sub_pixel_avg_variance16x8, NULL, NULL, NULL,
vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg,
vp9_variance8x16, vp9_sub_pixel_variance8x16,
vp9_sub_pixel_avg_variance8x16, NULL, NULL, NULL,
vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg,
vp9_variance8x8, vp9_sub_pixel_variance8x8,
vp9_sub_pixel_avg_variance8x8, NULL, NULL, NULL,
vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg,
vp9_variance8x4, vp9_sub_pixel_variance8x4,
vp9_sub_pixel_avg_variance8x4, NULL, NULL,
NULL, NULL, vp9_sad8x4x8,
vp9_sad8x4x4d)
BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg,
vp9_variance4x8, vp9_sub_pixel_variance4x8,
vp9_sub_pixel_avg_variance4x8, NULL, NULL,
NULL, NULL, vp9_sad4x8x8,
vp9_sad4x8x4d)
BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg,
vp9_variance4x4, vp9_sub_pixel_variance4x4,
vp9_sub_pixel_avg_variance4x4, NULL, NULL, NULL,
vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
cpi->full_search_sad = vp9_full_search_sad;
cpi->diamond_search_sad = vp9_diamond_search_sad;
cpi->refining_search_sad = vp9_refining_search_sad;
/* vp9_init_quantizer() is first called here. Add check in
* vp9_frame_init_quantizer() so that vp9_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp9_init_quantizer() for every frame.
*/
vp9_init_quantizer(cpi);
vp9_loop_filter_init(cm);
cm->error.setjmp = 0;
vp9_zero(cpi->common.counts.uv_mode);
#ifdef MODE_TEST_HIT_STATS
vp9_zero(cpi->mode_test_hits);
#endif
return (VP9_PTR) cpi;
}
void vp9_remove_compressor(VP9_PTR *ptr) {
VP9_COMP *cpi = (VP9_COMP *)(*ptr);
int i;
if (!cpi)
return;
if (cpi && (cpi->common.current_video_frame > 0)) {
if (cpi->pass == 2) {
vp9_end_second_pass(cpi);
}
#if CONFIG_INTERNAL_STATS
vp9_clear_system_state();
// printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
if (cpi->pass != 1) {
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data +
cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * (double) 8 / (double)1000
/ time_encoded;
if (cpi->b_calculate_psnr) {
const double total_psnr = vp9_mse2psnr(cpi->total_samples, 255.0,
cpi->total_sq_error);
const double totalp_psnr = vp9_mse2psnr(cpi->totalp_samples, 255.0,
cpi->totalp_sq_error);
const double total_ssim = 100 * pow(cpi->summed_quality /
cpi->summed_weights, 8.0);
const double totalp_ssim = 100 * pow(cpi->summedp_quality /
cpi->summedp_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
"VPXSSIM\tVPSSIMP\t Time(ms)\n");
fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
dr, cpi->total / cpi->count, total_psnr,
cpi->totalp / cpi->count, totalp_psnr, total_ssim, totalp_ssim,
total_encode_time);
}
if (cpi->b_calculate_ssimg) {
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count,
cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count,
cpi->total_ssimg_all / cpi->count, total_encode_time);
}
fclose(f);
}
#endif
#ifdef MODE_TEST_HIT_STATS
if (cpi->pass != 1) {
double norm_per_pixel_mode_tests = 0;
double norm_counts[BLOCK_SIZES];
int i;
int sb64_per_frame;
int norm_factors[BLOCK_SIZES] =
{256, 128, 128, 64, 32, 32, 16, 8, 8, 4, 2, 2, 1};
FILE *f = fopen("mode_hit_stats.stt", "a");
// On average, how many mode tests do we do
for (i = 0; i < BLOCK_SIZES; ++i) {
norm_counts[i] = (double)cpi->mode_test_hits[i] /
(double)norm_factors[i];
norm_per_pixel_mode_tests += norm_counts[i];
}
// Convert to a number per 64x64 and per frame
sb64_per_frame = ((cpi->common.height + 63) / 64) *
((cpi->common.width + 63) / 64);
norm_per_pixel_mode_tests =
norm_per_pixel_mode_tests /
(double)(cpi->common.current_video_frame * sb64_per_frame);
fprintf(f, "%6.4f\n", norm_per_pixel_mode_tests);
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
cpi->time_compress_data / 1000,
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
free_pick_mode_context(&cpi->mb);
dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
for (i = 0; i < sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0]); ++i) {
vpx_free(cpi->mbgraph_stats[i].mb_stats);
}
vp9_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(const uint8_t *orig, int orig_stride,
const uint8_t *recon, int recon_stride,
unsigned int cols, unsigned int rows) {
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16) {
for (col = 0; col + 16 <= cols; col += 16) {
unsigned int sse;
vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols) {
unsigned int border_row, border_col;
const uint8_t *border_orig = orig;
const uint8_t *border_recon = recon;
for (border_row = 0; border_row < 16; border_row++) {
for (border_col = col; border_col < cols; border_col++) {
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; row++) {
for (col = 0; col < cols; col++) {
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
return total_sse;
}
typedef struct {
double psnr[4]; // total/y/u/v
uint64_t sse[4]; // total/y/u/v
uint32_t samples[4]; // total/y/u/v
} PSNR_STATS;
static void calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b,
PSNR_STATS *psnr) {
const int widths[3] = {a->y_width, a->uv_width, a->uv_width };
const int heights[3] = {a->y_height, a->uv_height, a->uv_height};
const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer };
const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride};
const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer };
const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride};
int i;
uint64_t total_sse = 0;
uint32_t total_samples = 0;
for (i = 0; i < 3; ++i) {
const int w = widths[i];
const int h = heights[i];
const uint32_t samples = w * h;
const double sse = calc_plane_error(a_planes[i], a_strides[i],
b_planes[i], b_strides[i],
w, h);
psnr->sse[1 + i] = sse;
psnr->samples[1 + i] = samples;
psnr->psnr[1 + i] = vp9_mse2psnr(samples, 255.0, sse);
total_sse += sse;
total_samples += samples;
}
psnr->sse[0] = total_sse;
psnr->samples[0] = total_samples;
psnr->psnr[0] = vp9_mse2psnr(total_samples, 255.0, total_sse);
}
static void generate_psnr_packet(VP9_COMP *cpi) {
struct vpx_codec_cx_pkt pkt;
int i;
PSNR_STATS psnr;
calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
for (i = 0; i < 4; ++i) {
pkt.data.psnr.samples[i] = psnr.samples[i];
pkt.data.psnr.sse[i] = psnr.sse[i];
pkt.data.psnr.psnr[i] = psnr.psnr[i];
}
pkt.kind = VPX_CODEC_PSNR_PKT;
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1;
cpi->ext_refresh_golden_frame = 0;
cpi->ext_refresh_alt_ref_frame = 0;
cpi->ext_refresh_last_frame = 0;
if (ref_frame_flags & VP9_LAST_FLAG)
cpi->ext_refresh_last_frame = 1;
if (ref_frame_flags & VP9_GOLD_FLAG)
cpi->ext_refresh_golden_frame = 1;
if (ref_frame_flags & VP9_ALT_FLAG)
cpi->ext_refresh_alt_ref_frame = 1;
cpi->ext_refresh_frame_flags_pending = 1;
return 0;
}
static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer(VP9_COMP *cpi,
VP9_REFFRAME ref_frame_flag) {
MV_REFERENCE_FRAME ref_frame = NONE;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_frame = LAST_FRAME;
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_frame = GOLDEN_FRAME;
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_frame = ALTREF_FRAME;
return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
}
int vp9_copy_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP9_COMP *const cpi = (VP9_COMP *)ptr;
YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
vp8_yv12_copy_frame(cfg, sd);
return 0;
} else {
return -1;
}
}
int vp9_get_reference_enc(VP9_PTR ptr, int index, YV12_BUFFER_CONFIG **fb) {
VP9_COMP *cpi = (VP9_COMP *)ptr;
VP9_COMMON *cm = &cpi->common;
if (index < 0 || index >= REF_FRAMES)
return -1;
*fb = &cm->frame_bufs[cm->ref_frame_map[index]].buf;
return 0;
}
int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP9_COMP *cpi = (VP9_COMP *)ptr;
YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
vp8_yv12_copy_frame(sd, cfg);
return 0;
} else {
return -1;
}
}
int vp9_update_entropy(VP9_PTR comp, int update) {
((VP9_COMP *)comp)->ext_refresh_frame_context = update;
((VP9_COMP *)comp)->ext_refresh_frame_context_pending = 1;
return 0;
}
#ifdef OUTPUT_YUV_SRC
void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
}
#endif
#ifdef OUTPUT_YUV_REC
void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
uint8_t *src = s->y_buffer;
int h = cm->height;
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
#if CONFIG_ALPHA
if (s->alpha_buffer) {
src = s->alpha_buffer;
h = s->alpha_height;
do {
fwrite(src, s->alpha_width, 1, yuv_rec_file);
src += s->alpha_stride;
} while (--h);
}
#endif
fflush(yuv_rec_file);
}
#endif
static void scale_and_extend_frame_nonnormative(YV12_BUFFER_CONFIG *src_fb,
YV12_BUFFER_CONFIG *dst_fb) {
const int in_w = src_fb->y_crop_width;
const int in_h = src_fb->y_crop_height;
const int out_w = dst_fb->y_crop_width;
const int out_h = dst_fb->y_crop_height;
const int in_w_uv = src_fb->uv_crop_width;
const int in_h_uv = src_fb->uv_crop_height;
const int out_w_uv = dst_fb->uv_crop_width;
const int out_h_uv = dst_fb->uv_crop_height;
int i;
uint8_t *srcs[4] = {src_fb->y_buffer, src_fb->u_buffer, src_fb->v_buffer,
src_fb->alpha_buffer};
int src_strides[4] = {src_fb->y_stride, src_fb->uv_stride, src_fb->uv_stride,
src_fb->alpha_stride};
uint8_t *dsts[4] = {dst_fb->y_buffer, dst_fb->u_buffer, dst_fb->v_buffer,
dst_fb->alpha_buffer};
int dst_strides[4] = {dst_fb->y_stride, dst_fb->uv_stride, dst_fb->uv_stride,
dst_fb->alpha_stride};
for (i = 0; i < MAX_MB_PLANE; ++i) {
if (i == 0 || i == 3) {
// Y and alpha planes
vp9_resize_plane(srcs[i], in_h, in_w, src_strides[i],
dsts[i], out_h, out_w, dst_strides[i]);
} else {
// Chroma planes
vp9_resize_plane(srcs[i], in_h_uv, in_w_uv, src_strides[i],
dsts[i], out_h_uv, out_w_uv, dst_strides[i]);
}
}
vp8_yv12_extend_frame_borders(dst_fb);
}
static void scale_and_extend_frame(YV12_BUFFER_CONFIG *src_fb,
YV12_BUFFER_CONFIG *dst_fb) {
const int in_w = src_fb->y_crop_width;
const int in_h = src_fb->y_crop_height;
const int out_w = dst_fb->y_crop_width;
const int out_h = dst_fb->y_crop_height;
int x, y, i;
uint8_t *srcs[4] = {src_fb->y_buffer, src_fb->u_buffer, src_fb->v_buffer,
src_fb->alpha_buffer};
int src_strides[4] = {src_fb->y_stride, src_fb->uv_stride, src_fb->uv_stride,
src_fb->alpha_stride};
uint8_t *dsts[4] = {dst_fb->y_buffer, dst_fb->u_buffer, dst_fb->v_buffer,
dst_fb->alpha_buffer};
int dst_strides[4] = {dst_fb->y_stride, dst_fb->uv_stride, dst_fb->uv_stride,
dst_fb->alpha_stride};
for (y = 0; y < out_h; y += 16) {
for (x = 0; x < out_w; x += 16) {
for (i = 0; i < MAX_MB_PLANE; ++i) {
const int factor = (i == 0 || i == 3 ? 1 : 2);
const int x_q4 = x * (16 / factor) * in_w / out_w;
const int y_q4 = y * (16 / factor) * in_h / out_h;
const int src_stride = src_strides[i];
const int dst_stride = dst_strides[i];
uint8_t *src = srcs[i] + y / factor * in_h / out_h * src_stride +
x / factor * in_w / out_w;
uint8_t *dst = dsts[i] + y / factor * dst_stride + x / factor;
vp9_convolve8(src, src_stride, dst, dst_stride,
vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w,
vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h,
16 / factor, 16 / factor);
}
}
}
vp8_yv12_extend_frame_borders(dst_fb);
}
static int find_fp_qindex() {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
if (vp9_convert_qindex_to_q(i) >= 30.0) {
break;
}
}
if (i == QINDEX_RANGE)
i--;
return i;
}
#define WRITE_RECON_BUFFER 0
#if WRITE_RECON_BUFFER
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) {
FILE *yframe;
int i;
char filename[255];
snprintf(filename, sizeof(filename), "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride,
frame->y_width, 1, yframe);
fclose(yframe);
snprintf(filename, sizeof(filename), "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
snprintf(filename, sizeof(filename), "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) {
#define EDGE_THRESH 128
int i, j;
int num_edge_pels = 0;
int num_pels = (frame->y_height - 2) * (frame->y_width - 2);
uint8_t *prev = frame->y_buffer + 1;
uint8_t *curr = frame->y_buffer + 1 + frame->y_stride;
uint8_t *next = frame->y_buffer + 1 + 2 * frame->y_stride;
for (i = 1; i < frame->y_height - 1; i++) {
for (j = 1; j < frame->y_width - 1; j++) {
/* Sobel hor and ver gradients */
int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) +
(next[1] - next[-1]);
int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) +
(prev[-1] - next[-1]);
h = (h < 0 ? -h : h);
v = (v < 0 ? -v : v);
if (h > EDGE_THRESH || v > EDGE_THRESH)
num_edge_pels++;
curr++;
prev++;
next++;
}
curr += frame->y_stride - frame->y_width + 2;
prev += frame->y_stride - frame->y_width + 2;
next += frame->y_stride - frame->y_width + 2;
}
return (double)num_edge_pels / num_pels;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(const VP9_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq) {
const VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
int force_recode = 0;
// Special case trap if maximum allowed frame size exceeded.
if (rc->projected_frame_size > rc->max_frame_bandwidth) {
force_recode = 1;
// Is frame recode allowed.
// Yes if either recode mode 1 is selected or mode 2 is selected
// and the frame is a key frame, golden frame or alt_ref_frame
} else if ((cpi->sf.recode_loop == ALLOW_RECODE) ||
((cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF) &&
(cm->frame_type == KEY_FRAME ||
cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
// General over and under shoot tests
if ((rc->projected_frame_size > high_limit && q < maxq) ||
(rc->projected_frame_size < low_limit && q > minq)) {
force_recode = 1;
} else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
// Deal with frame undershoot and whether or not we are
// below the automatically set cq level.
if (q > cpi->cq_target_quality &&
rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
force_recode = 1;
}
}
}
return force_recode;
}
static void update_reference_frames(VP9_COMP * const cpi) {
VP9_COMMON * const cm = &cpi->common;
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME) {
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
}
#if CONFIG_MULTIPLE_ARF
else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
#else
else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
!cpi->use_svc) {
#endif
/* Preserve the previously existing golden frame and update the frame in
* the alt ref slot instead. This is highly specific to the current use of
* alt-ref as a forward reference, and this needs to be generalized as
* other uses are implemented (like RTC/temporal scaling)
*
* The update to the buffer in the alt ref slot was signaled in
* vp9_pack_bitstream(), now swap the buffer pointers so that it's treated
* as the golden frame next time.
*/
int tmp;
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1];
}
#endif
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[arf_idx], cm->new_fb_idx);
}
if (cpi->refresh_golden_frame) {
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
}
}
if (cpi->refresh_last_frame) {
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
}
}
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
struct loopfilter *lf = &cm->lf;
if (xd->lossless) {
lf->filter_level = 0;
} else {
struct vpx_usec_timer timer;
vp9_clear_system_state();
vpx_usec_timer_start(&timer);
vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.use_fast_lpf_pick);
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
if (lf->filter_level > 0) {
vp9_set_alt_lf_level(cpi, lf->filter_level);
vp9_loop_filter_frame(cm, xd, lf->filter_level, 0, 0);
}
vp9_extend_frame_inner_borders(cm->frame_to_show,
cm->subsampling_x, cm->subsampling_y);
}
static void scale_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
YV12_BUFFER_CONFIG *const ref = &cm->frame_bufs[idx].buf;
if (ref->y_crop_width != cm->width ||
ref->y_crop_height != cm->height) {
const int new_fb = get_free_fb(cm);
vp9_realloc_frame_buffer(&cm->frame_bufs[new_fb].buf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS);
scale_and_extend_frame(ref, &cm->frame_bufs[new_fb].buf);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
} else {
cpi->scaled_ref_idx[ref_frame - 1] = idx;
cm->frame_bufs[idx].ref_count++;
}
}
}
static void release_scaled_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int i;
for (i = 0; i < 3; i++)
cm->frame_bufs[cpi->scaled_ref_idx[i]].ref_count--;
}
static void full_to_model_count(unsigned int *model_count,
unsigned int *full_count) {
int n;
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
model_count[TWO_TOKEN] += full_count[n];
model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
}
static void full_to_model_counts(vp9_coeff_count_model *model_count,
vp9_coeff_count *full_count) {
int i, j, k, l;
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
}
#if 0 && CONFIG_INTERNAL_STATS
static void output_frame_level_debug_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
int recon_err;
vp9_clear_system_state(); // __asm emms;
recon_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm));
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10u %10d %10d %10d %10d %10d "
"%10"PRId64" %10"PRId64" %10d "
"%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
"%6d %6d %5d %5d %5d "
"%10"PRId64" %10.3lf"
"%10lf %8u %10d %10d %10d\n",
cpi->common.current_video_frame, cpi->rc.this_frame_target,
cpi->rc.projected_frame_size,
cpi->rc.projected_frame_size / cpi->common.MBs,
(cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
cpi->rc.total_target_vs_actual,
(cpi->oxcf.starting_buffer_level - cpi->rc.bits_off_target),
cpi->rc.total_actual_bits, cm->base_qindex,
vp9_convert_qindex_to_q(cm->base_qindex),
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
vp9_convert_qindex_to_q(cpi->rc.active_worst_quality), cpi->rc.avg_q,
vp9_convert_qindex_to_q(cpi->rc.ni_av_qi),
vp9_convert_qindex_to_q(cpi->cq_target_quality),
cpi->refresh_last_frame, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->twopass.bits_left /
(1 + cpi->twopass.total_left_stats.coded_error),
cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
cpi->twopass.kf_zeromotion_pct);
fclose(f);
if (0) {
FILE *const fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
cm->frame_type, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; ++i)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
for (i = 0; i < MAX_REFS; ++i)
fprintf(fmodes, "%5d ", cpi->sub8x8_mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
static void encode_without_recode_loop(VP9_COMP *cpi,
size_t *size,
uint8_t *dest,
int *q) {
VP9_COMMON *const cm = &cpi->common;
vp9_clear_system_state(); // __asm emms;
vp9_set_quantizer(cpi, *q);
// Set up entropy context depending on frame type. The decoder mandates
// the use of the default context, index 0, for keyframes and inter
// frames where the error_resilient_mode or intra_only flag is set. For
// other inter-frames the encoder currently uses only two contexts;
// context 1 for ALTREF frames and context 0 for the others.
if (cm->frame_type == KEY_FRAME) {
vp9_setup_key_frame(cpi);
} else {
if (!cm->intra_only && !cm->error_resilient_mode) {
cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame;
}
vp9_setup_inter_frame(cpi);
}
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
setup_in_frame_q_adj(cpi);
}
// transform / motion compensation build reconstruction frame
vp9_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vp9_clear_system_state(); // __asm emms;
}
static void encode_with_recode_loop(VP9_COMP *cpi,
size_t *size,
uint8_t *dest,
int *q,
int bottom_index,
int top_index) {
VP9_COMMON *const cm = &cpi->common;
int loop_count = 0;
int loop = 0;
int overshoot_seen = 0;
int undershoot_seen = 0;
int q_low = bottom_index, q_high = top_index;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
// Decide frame size bounds
vp9_rc_compute_frame_size_bounds(cpi, cpi->rc.this_frame_target,
&frame_under_shoot_limit,
&frame_over_shoot_limit);
do {
vp9_clear_system_state(); // __asm emms;
vp9_set_quantizer(cpi, *q);
if (loop_count == 0) {
// Set up entropy context depending on frame type. The decoder mandates
// the use of the default context, index 0, for keyframes and inter
// frames where the error_resilient_mode or intra_only flag is set. For
// other inter-frames the encoder currently uses only two contexts;
// context 1 for ALTREF frames and context 0 for the others.
if (cm->frame_type == KEY_FRAME) {
vp9_setup_key_frame(cpi);
} else {
if (!cm->intra_only && !cm->error_resilient_mode) {
cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame;
}
vp9_setup_inter_frame(cpi);
}
}
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
setup_in_frame_q_adj(cpi);
}
// transform / motion compensation build reconstruction frame
vp9_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vp9_clear_system_state(); // __asm emms;
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
vp9_save_coding_context(cpi);
cpi->dummy_packing = 1;
if (!cpi->sf.super_fast_rtc)
vp9_pack_bitstream(cpi, dest, size);
cpi->rc.projected_frame_size = (*size) << 3;
vp9_restore_coding_context(cpi);
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
}
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
loop = 0;
} else {
if ((cm->frame_type == KEY_FRAME) &&
cpi->rc.this_key_frame_forced &&
(cpi->rc.projected_frame_size < cpi->rc.max_frame_bandwidth)) {
int last_q = *q;
int kf_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm));
int high_err_target = cpi->ambient_err;
int low_err_target = cpi->ambient_err >> 1;
// Prevent possible divide by zero error below for perfect KF
kf_err += !kf_err;
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ((kf_err > high_err_target &&
cpi->rc.projected_frame_size <= frame_over_shoot_limit) ||
(kf_err > low_err_target &&
cpi->rc.projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = *q > q_low ? *q - 1 : q_low;
// Adjust Q
*q = ((*q) * high_err_target) / kf_err;
*q = MIN((*q), (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
cpi->rc.projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = *q < q_high ? *q + 1 : q_high;
// Adjust Q
*q = ((*q) * low_err_target) / kf_err;
*q = MIN((*q), (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
*q = clamp(*q, q_low, q_high);
loop = *q != last_q;
} else if (recode_loop_test(
cpi, frame_over_shoot_limit, frame_under_shoot_limit,
*q, MAX(q_high, top_index), bottom_index)) {
// Is the projected frame size out of range and are we allowed
// to attempt to recode.
int last_q = *q;
int retries = 0;
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (cpi->rc.projected_frame_size > cpi->rc.this_frame_target) {
// Special case if the projected size is > the max allowed.
if (cpi->rc.projected_frame_size >= cpi->rc.max_frame_bandwidth)
q_high = cpi->rc.worst_quality;
// Raise Qlow as to at least the current value
q_low = *q < q_high ? *q + 1 : q_high;
if (undershoot_seen || loop_count > 1) {
// Update rate_correction_factor unless
vp9_rc_update_rate_correction_factors(cpi, 1);
*q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless
vp9_rc_update_rate_correction_factors(cpi, 0);
*q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target,
bottom_index, MAX(q_high, top_index));
while (*q < q_low && retries < 10) {
vp9_rc_update_rate_correction_factors(cpi, 0);
*q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target,
bottom_index, MAX(q_high, top_index));
retries++;
}
}
overshoot_seen = 1;
} else {
// Frame is too small
q_high = *q > q_low ? *q - 1 : q_low;
if (overshoot_seen || loop_count > 1) {
vp9_rc_update_rate_correction_factors(cpi, 1);
*q = (q_high + q_low) / 2;
} else {
vp9_rc_update_rate_correction_factors(cpi, 0);
*q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target,
bottom_index, top_index);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
*q < q_low) {
q_low = *q;
}
while (*q > q_high && retries < 10) {
vp9_rc_update_rate_correction_factors(cpi, 0);
*q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target,
bottom_index, top_index);
retries++;
}
}
undershoot_seen = 1;
}
// Clamp Q to upper and lower limits:
*q = clamp(*q, q_low, q_high);
loop = *q != last_q;
} else {
loop = 0;
}
}
// Special case for overlay frame.
if (cpi->rc.is_src_frame_alt_ref &&
(cpi->rc.projected_frame_size < cpi->rc.max_frame_bandwidth))
loop = 0;
if (loop) {
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
} while (loop);
}
static void get_ref_frame_flags(VP9_COMP *cpi) {
if (cpi->refresh_last_frame & cpi->refresh_golden_frame)
cpi->gold_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_last = 0;
if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 0;
if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame)
cpi->gold_is_alt = 1;
else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
}
static void set_ext_overrides(VP9_COMP *cpi) {
// Overrides the defaults with the externally supplied values with
// vp9_update_reference() and vp9_update_entropy() calls
// Note: The overrides are valid only for the next frame passed
// to encode_frame_to_data_rate() function
if (cpi->ext_refresh_frame_context_pending) {
cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
cpi->ext_refresh_frame_context_pending = 0;
}
if (cpi->ext_refresh_frame_flags_pending) {
cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
cpi->ext_refresh_frame_flags_pending = 0;
}
}
static void encode_frame_to_data_rate(VP9_COMP *cpi,
size_t *size,
uint8_t *dest,
unsigned int *frame_flags) {
VP9_COMMON *const cm = &cpi->common;
TX_SIZE t;
int q;
int top_index;
int bottom_index;
SPEED_FEATURES *const sf = &cpi->sf;
unsigned int max_mv_def = MIN(cm->width, cm->height);
struct segmentation *const seg = &cm->seg;
set_ext_overrides(cpi);
/* Scale the source buffer, if required. */
if (cm->mi_cols * MI_SIZE != cpi->un_scaled_source->y_width ||
cm->mi_rows * MI_SIZE != cpi->un_scaled_source->y_height) {
scale_and_extend_frame_nonnormative(cpi->un_scaled_source,
&cpi->scaled_source);
cpi->Source = &cpi->scaled_source;
} else {
cpi->Source = cpi->un_scaled_source;
}
scale_references(cpi);
vp9_clear_system_state();
// Enable or disable mode based tweaking of the zbin.
// For 2 pass only used where GF/ARF prediction quality
// is above a threshold.
cpi->zbin_mode_boost = 0;
cpi->zbin_mode_boost_enabled = 0;
// Current default encoder behavior for the altref sign bias.
cm->ref_frame_sign_bias[ALTREF_FRAME] = cpi->rc.source_alt_ref_active;
// Set default state for segment based loop filter update flags.
cm->lf.mode_ref_delta_update = 0;
// Initialize cpi->mv_step_param to default based on max resolution.
cpi->mv_step_param = vp9_init_search_range(cpi, max_mv_def);
// Initialize cpi->max_mv_magnitude and cpi->mv_step_param if appropriate.
if (sf->auto_mv_step_size) {
if (frame_is_intra_only(cm)) {
// Initialize max_mv_magnitude for use in the first INTER frame
// after a key/intra-only frame.
cpi->max_mv_magnitude = max_mv_def;
} else {
if (cm->show_frame)
// Allow mv_steps to correspond to twice the max mv magnitude found
// in the previous frame, capped by the default max_mv_magnitude based
// on resolution.
cpi->mv_step_param = vp9_init_search_range(cpi, MIN(max_mv_def, 2 *
cpi->max_mv_magnitude));
cpi->max_mv_magnitude = 0;
}
}
// Set various flags etc to special state if it is a key frame.
if (frame_is_intra_only(cm)) {
vp9_setup_key_frame(cpi);
// Reset the loop filter deltas and segmentation map.
vp9_reset_segment_features(&cm->seg);
// If segmentation is enabled force a map update for key frames.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
}
// The alternate reference frame cannot be active for a key frame.
cpi->rc.source_alt_ref_active = 0;
cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0);
cm->frame_parallel_decoding_mode =
(cpi->oxcf.frame_parallel_decoding_mode != 0);
if (cm->error_resilient_mode) {
cm->frame_parallel_decoding_mode = 1;
cm->reset_frame_context = 0;
cm->refresh_frame_context = 0;
} else if (cm->intra_only) {
// Only reset the current context.
cm->reset_frame_context = 2;
}
}
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed in second pass of two pass (as requires lagged coding)
// and if the relevant speed feature flag is set.
if (cpi->pass == 2 && cpi->sf.static_segmentation)
configure_static_seg_features(cpi);
// For 1 pass CBR, check if we are dropping this frame.
// Never drop on key frame.
if (cpi->pass == 0 &&
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER &&
cm->frame_type != KEY_FRAME) {
if (vp9_rc_drop_frame(cpi)) {
vp9_rc_postencode_update_drop_frame(cpi);
++cm->current_video_frame;
return;
}
}
vp9_clear_system_state();
vp9_zero(cpi->rd_tx_select_threshes);
#if CONFIG_VP9_POSTPROC
if (cpi->oxcf.noise_sensitivity > 0) {
int l = 0;
switch (cpi->oxcf.noise_sensitivity) {
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
vp9_denoise(cpi->Source, cpi->Source, l);
}
#endif
#ifdef OUTPUT_YUV_SRC
vp9_write_yuv_frame(cpi->Source);
#endif
// Decide q and q bounds.
q = vp9_rc_pick_q_and_adjust_q_bounds(cpi,
&bottom_index,
&top_index);
if (!frame_is_intra_only(cm)) {
cm->interp_filter = DEFAULT_INTERP_FILTER;
/* TODO: Decide this more intelligently */
set_high_precision_mv(cpi, (q < HIGH_PRECISION_MV_QTHRESH));
}
if (cpi->sf.recode_loop == DISALLOW_RECODE) {
encode_without_recode_loop(cpi, size, dest, &q);
} else {
encode_with_recode_loop(cpi, size, dest, &q, bottom_index, top_index);
}
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
cpi->ambient_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm));
}
// If the encoder forced a KEY_FRAME decision
if (cm->frame_type == KEY_FRAME)
cpi->refresh_last_frame = 1;
cm->frame_to_show = get_frame_new_buffer(cm);
#if WRITE_RECON_BUFFER
if (cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 1000);
#endif
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
#if WRITE_RECON_BUFFER
if (cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 2000);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 3000);
#endif
// build the bitstream
cpi->dummy_packing = 0;
vp9_pack_bitstream(cpi, dest, size);
if (cm->seg.update_map)
update_reference_segmentation_map(cpi);
release_scaled_references(cpi);
update_reference_frames(cpi);
for (t = TX_4X4; t <= TX_32X32; t++)
full_to_model_counts(cm->counts.coef[t], cpi->coef_counts[t]);
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode)
vp9_adapt_coef_probs(cm);
if (!frame_is_intra_only(cm)) {
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(cm);
vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
}
#if 0
output_frame_level_debug_stats(cpi);
#endif
if (cpi->refresh_golden_frame == 1)
cm->frame_flags |= FRAMEFLAGS_GOLDEN;
else
cm->frame_flags &= ~FRAMEFLAGS_GOLDEN;
if (cpi->refresh_alt_ref_frame == 1)
cm->frame_flags |= FRAMEFLAGS_ALTREF;
else
cm->frame_flags &= ~FRAMEFLAGS_ALTREF;
get_ref_frame_flags(cpi);
vp9_rc_postencode_update(cpi, *size);
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
#if CONFIG_MULTIPLE_ARF
// Reset the sequence number.
if (cpi->multi_arf_enabled) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
cpi->new_frame_coding_order_period = -1;
}
#endif
} else {
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
#if CONFIG_MULTIPLE_ARF
/* Increment position in the coded frame sequence. */
if (cpi->multi_arf_enabled) {
++cpi->sequence_number;
if (cpi->sequence_number >= cpi->frame_coding_order_period) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
cpi->new_frame_coding_order_period = -1;
}
cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
assert(cpi->this_frame_weight >= 0);
}
#endif
}
// Clear the one shot update flags for segmentation map and mode/ref loop
// filter deltas.
cm->seg.update_map = 0;
cm->seg.update_data = 0;
cm->lf.mode_ref_delta_update = 0;
// keep track of the last coded dimensions
cm->last_width = cm->width;
cm->last_height = cm->height;
// reset to normal state now that we are done.
if (!cm->show_existing_frame)
cm->last_show_frame = cm->show_frame;
if (cm->show_frame) {
// current mip will be the prev_mip for the next frame
MODE_INFO *temp = cm->prev_mip;
MODE_INFO **temp2 = cm->prev_mi_grid_base;
cm->prev_mip = cm->mip;
cm->mip = temp;
cm->prev_mi_grid_base = cm->mi_grid_base;
cm->mi_grid_base = temp2;
// update the upper left visible macroblock ptrs
cm->mi = cm->mip + cm->mode_info_stride + 1;
cm->mi_grid_visible = cm->mi_grid_base + cm->mode_info_stride + 1;
cpi->mb.e_mbd.mi_8x8 = cm->mi_grid_visible;
cpi->mb.e_mbd.mi_8x8[0] = cm->mi;
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
}
// restore prev_mi
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mode_info_stride + 1;
}
static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
vp9_rc_get_svc_params(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
vp9_rc_get_one_pass_cbr_params(cpi);
} else {
vp9_rc_get_one_pass_vbr_params(cpi);
}
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass1Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
(void) size;
(void) dest;
(void) frame_flags;
vp9_rc_get_first_pass_params(cpi);
vp9_set_quantizer(cpi, find_fp_qindex());
vp9_first_pass(cpi);
}
static void Pass2Encode(VP9_COMP *cpi, size_t *size,
uint8_t *dest, unsigned int *frame_flags) {
cpi->enable_encode_breakout = 1;
vp9_rc_get_second_pass_params(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
vp9_twopass_postencode_update(cpi, *size);
}
static void check_initial_width(VP9_COMP *cpi, int subsampling_x,
int subsampling_y) {
VP9_COMMON *const cm = &cpi->common;
if (!cpi->initial_width) {
cm->subsampling_x = subsampling_x;
cm->subsampling_y = subsampling_y;
alloc_raw_frame_buffers(cpi);
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
}
}
int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
VP9_COMP *cpi = (VP9_COMP *) ptr;
VP9_COMMON *cm = &cpi->common;
struct vpx_usec_timer timer;
int res = 0;
const int subsampling_x = sd->uv_width < sd->y_width;
const int subsampling_y = sd->uv_height < sd->y_height;
check_initial_width(cpi, subsampling_x, subsampling_y);
vpx_usec_timer_start(&timer);
if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
cpi->active_map_enabled ? cpi->active_map : NULL))
res = -1;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
if (cm->version == 0 && (subsampling_x != 1 || subsampling_y != 1)) {
vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
"Non-4:2:0 color space requires profile >= 1");
res = -1;
}
return res;
}
static int frame_is_reference(const VP9_COMP *cpi) {
const VP9_COMMON *cm = &cpi->common;
return cm->frame_type == KEY_FRAME ||
cpi->refresh_last_frame ||
cpi->refresh_golden_frame ||
cpi->refresh_alt_ref_frame ||
cm->refresh_frame_context ||
cm->lf.mode_ref_delta_update ||
cm->seg.update_map ||
cm->seg.update_data;
}
#if CONFIG_MULTIPLE_ARF
int is_next_frame_arf(VP9_COMP *cpi) {
// Negative entry in frame_coding_order indicates an ARF at this position.
return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0;
}
#endif
void adjust_frame_rate(VP9_COMP *cpi) {
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
} else {
int64_t last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
vp9_new_framerate(cpi, 10000000.0 / this_duration);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval = MIN((double)(cpi->source->ts_end
- cpi->first_time_stamp_ever), 10000000.0);
double avg_duration = 10000000.0 / cpi->oxcf.framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
vp9_new_framerate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags,
size_t *size, uint8_t *dest,
int64_t *time_stamp, int64_t *time_end, int flush) {
VP9_COMP *cpi = (VP9_COMP *) ptr;
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
MV_REFERENCE_FRAME ref_frame;
if (!cpi)
return -1;
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
// Normal defaults
cm->reset_frame_context = 0;
cm->refresh_frame_context = 1;
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
// Should we code an alternate reference frame.
if (cpi->oxcf.play_alternate && cpi->rc.source_alt_ref_pending) {
int frames_to_arf;
#if CONFIG_MULTIPLE_ARF
assert(!cpi->multi_arf_enabled ||
cpi->frame_coding_order[cpi->sequence_number] < 0);
if (cpi->multi_arf_enabled && (cpi->pass == 2))
frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number])
- cpi->next_frame_in_order;
else
#endif
frames_to_arf = cpi->rc.frames_till_gf_update_due;
assert(frames_to_arf <= cpi->rc.frames_to_key);
if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) {
#if CONFIG_MULTIPLE_ARF
cpi->alt_ref_source[cpi->arf_buffered] = cpi->source;
#else
cpi->alt_ref_source = cpi->source;
#endif
if (cpi->oxcf.arnr_max_frames > 0) {
// Produce the filtered ARF frame.
// TODO(agrange) merge these two functions.
vp9_configure_arnr_filter(cpi, frames_to_arf, cpi->rc.gfu_boost);
vp9_temporal_filter_prepare(cpi, frames_to_arf);
vp9_extend_frame_borders(&cpi->alt_ref_buffer,
cm->subsampling_x, cm->subsampling_y);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
cpi->rc.is_src_frame_alt_ref = 0;
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled)
#endif
cpi->rc.source_alt_ref_pending = 0;
} else {
cpi->rc.source_alt_ref_pending = 0;
}
}
if (!cpi->source) {
#if CONFIG_MULTIPLE_ARF
int i;
#endif
if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) {
cm->show_frame = 1;
cm->intra_only = 0;
#if CONFIG_MULTIPLE_ARF
// Is this frame the ARF overlay.
cpi->rc.is_src_frame_alt_ref = 0;
for (i = 0; i < cpi->arf_buffered; ++i) {
if (cpi->source == cpi->alt_ref_source[i]) {
cpi->rc.is_src_frame_alt_ref = 1;
cpi->refresh_golden_frame = 1;
break;
}
}
#else
cpi->rc.is_src_frame_alt_ref = cpi->alt_ref_source
&& (cpi->source == cpi->alt_ref_source);
#endif
if (cpi->rc.is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
#if CONFIG_MULTIPLE_ARF
cpi->alt_ref_source[i] = NULL;
#else
cpi->alt_ref_source = NULL;
#endif
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
#if CONFIG_MULTIPLE_ARF
++cpi->next_frame_in_order;
#endif
}
}
if (cpi->source) {
cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
: &cpi->source->img;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
#if CONFIG_MULTIPLE_ARF
if ((cm->frame_type != KEY_FRAME) && (cpi->pass == 2))
cpi->rc.source_alt_ref_pending = is_next_frame_arf(cpi);
#endif
} else {
*size = 0;
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
vp9_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
// adjust frame rates based on timestamps given
if (cm->show_frame) {
adjust_frame_rate(cpi);
}
if (cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
update_layer_framerate(cpi);
restore_layer_context(cpi);
}
// start with a 0 size frame
*size = 0;
// Clear down mmx registers
vp9_clear_system_state(); // __asm emms;
/* find a free buffer for the new frame, releasing the reference previously
* held.
*/
cm->frame_bufs[cm->new_fb_idx].ref_count--;
cm->new_fb_idx = get_free_fb(cm);
#if CONFIG_MULTIPLE_ARF
/* Set up the correct ARF frame. */
if (cpi->refresh_alt_ref_frame) {
++cpi->arf_buffered;
}
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
(cpi->pass == 2)) {
cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number];
}
#endif
cm->frame_flags = *frame_flags;
// Reset the frame pointers to the current frame size
vp9_realloc_frame_buffer(get_frame_new_buffer(cm),
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
YV12_BUFFER_CONFIG *const buf = &cm->frame_bufs[idx].buf;
RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1];
ref_buf->buf = buf;
ref_buf->idx = idx;
vp9_setup_scale_factors_for_frame(&ref_buf->sf,
buf->y_crop_width, buf->y_crop_height,
cm->width, cm->height);
if (vp9_is_scaled(&ref_buf->sf))
vp9_extend_frame_borders(buf, cm->subsampling_x, cm->subsampling_y);
}
set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
xd->interp_kernel = vp9_get_interp_kernel(
DEFAULT_INTERP_FILTER == SWITCHABLE ? EIGHTTAP : DEFAULT_INTERP_FILTER);
if (cpi->oxcf.aq_mode == VARIANCE_AQ)
vp9_vaq_init();
if (cpi->use_svc) {
SvcEncode(cpi, size, dest, frame_flags);
} else if (cpi->pass == 1) {
Pass1Encode(cpi, size, dest, frame_flags);
} else if (cpi->pass == 2) {
Pass2Encode(cpi, size, dest, frame_flags);
} else {
// One pass encode
Pass0Encode(cpi, size, dest, frame_flags);
}
if (cm->refresh_frame_context)
cm->frame_contexts[cm->frame_context_idx] = cm->fc;
// Frame was dropped, release scaled references.
if (*size == 0) {
release_scaled_references(cpi);
}
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
}
// Save layer specific state.
if (cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
save_layer_context(cpi);
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1) {
cpi->bytes += *size;
if (cm->show_frame) {
cpi->count++;
if (cpi->b_calculate_psnr) {
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
PSNR_STATS psnr;
calc_psnr(orig, recon, &psnr);
cpi->total += psnr.psnr[0];
cpi->total_y += psnr.psnr[1];
cpi->total_u += psnr.psnr[2];
cpi->total_v += psnr.psnr[3];
cpi->total_sq_error += psnr.sse[0];
cpi->total_samples += psnr.samples[0];
{
PSNR_STATS psnr2;
double frame_ssim2 = 0, weight = 0;
#if CONFIG_VP9_POSTPROC
vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
cm->lf.filter_level * 10 / 6);
#endif
vp9_clear_system_state();
calc_psnr(orig, pp, &psnr2);
cpi->totalp += psnr2.psnr[0];
cpi->totalp_y += psnr2.psnr[1];
cpi->totalp_u += psnr2.psnr[2];
cpi->totalp_v += psnr2.psnr[3];
cpi->totalp_sq_error += psnr2.sse[0];
cpi->totalp_samples += psnr2.samples[0];
frame_ssim2 = vp9_calc_ssim(orig, recon, 1, &weight);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
frame_ssim2 = vp9_calc_ssim(orig, &cm->post_proc_buffer, 1, &weight);
cpi->summedp_quality += frame_ssim2 * weight;
cpi->summedp_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
}
if (cpi->b_calculate_ssimg) {
double y, u, v, frame_all;
frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
}
}
#endif
return 0;
}
int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest,
vp9_ppflags_t *flags) {
VP9_COMP *cpi = (VP9_COMP *) comp;
if (!cpi->common.show_frame) {
return -1;
} else {
int ret;
#if CONFIG_VP9_POSTPROC
ret = vp9_post_proc_frame(&cpi->common, dest, flags);
#else
if (cpi->common.frame_to_show) {
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.width;
dest->y_height = cpi->common.height;
dest->uv_width = cpi->common.width >> cpi->common.subsampling_x;
dest->uv_height = cpi->common.height >> cpi->common.subsampling_y;
ret = 0;
} else {
ret = -1;
}
#endif // !CONFIG_VP9_POSTPROC
vp9_clear_system_state();
return ret;
}
}
int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows,
unsigned int cols, int delta_q[MAX_SEGMENTS],
int delta_lf[MAX_SEGMENTS],
unsigned int threshold[MAX_SEGMENTS]) {
VP9_COMP *cpi = (VP9_COMP *) comp;
signed char feature_data[SEG_LVL_MAX][MAX_SEGMENTS];
struct segmentation *seg = &cpi->common.seg;
int i;
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
return -1;
if (!map) {
vp9_disable_segmentation((VP9_PTR)cpi);
return 0;
}
// Set the segmentation Map
vp9_set_segmentation_map((VP9_PTR)cpi, map);
// Activate segmentation.
vp9_enable_segmentation((VP9_PTR)cpi);
// Set up the quant, LF and breakout threshold segment data
for (i = 0; i < MAX_SEGMENTS; i++) {
feature_data[SEG_LVL_ALT_Q][i] = delta_q[i];
feature_data[SEG_LVL_ALT_LF][i] = delta_lf[i];
cpi->segment_encode_breakout[i] = threshold[i];
}
// Enable the loop and quant changes in the feature mask
for (i = 0; i < MAX_SEGMENTS; i++) {
if (delta_q[i])
vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q);
else
vp9_disable_segfeature(seg, i, SEG_LVL_ALT_Q);
if (delta_lf[i])
vp9_enable_segfeature(seg, i, SEG_LVL_ALT_LF);
else
vp9_disable_segfeature(seg, i, SEG_LVL_ALT_LF);
}
// Initialize the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
return 0;
}
int vp9_set_active_map(VP9_PTR comp, unsigned char *map,
unsigned int rows, unsigned int cols) {
VP9_COMP *cpi = (VP9_COMP *) comp;
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
if (map) {
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
} else {
cpi->active_map_enabled = 0;
}
return 0;
} else {
// cpi->active_map_enabled = 0;
return -1;
}
}
int vp9_set_internal_size(VP9_PTR comp,
VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
VP9_COMP *cpi = (VP9_COMP *) comp;
VP9_COMMON *cm = &cpi->common;
int hr = 0, hs = 0, vr = 0, vs = 0;
if (horiz_mode > ONETWO || vert_mode > ONETWO)
return -1;
Scale2Ratio(horiz_mode, &hr, &hs);
Scale2Ratio(vert_mode, &vr, &vs);
// always go to the next whole number
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int vp9_set_size_literal(VP9_PTR comp, unsigned int width,
unsigned int height) {
VP9_COMP *cpi = (VP9_COMP *)comp;
VP9_COMMON *cm = &cpi->common;
check_initial_width(cpi, 1, 1);
if (width) {
cm->width = width;
if (cm->width * 5 < cpi->initial_width) {
cm->width = cpi->initial_width / 5 + 1;
printf("Warning: Desired width too small, changed to %d \n", cm->width);
}
if (cm->width > cpi->initial_width) {
cm->width = cpi->initial_width;
printf("Warning: Desired width too large, changed to %d \n", cm->width);
}
}
if (height) {
cm->height = height;
if (cm->height * 5 < cpi->initial_height) {
cm->height = cpi->initial_height / 5 + 1;
printf("Warning: Desired height too small, changed to %d \n", cm->height);
}
if (cm->height > cpi->initial_height) {
cm->height = cpi->initial_height;
printf("Warning: Desired height too large, changed to %d \n", cm->height);
}
}
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
void vp9_set_svc(VP9_PTR comp, int use_svc) {
VP9_COMP *cpi = (VP9_COMP *)comp;
cpi->use_svc = use_svc;
return;
}
int vp9_calc_ss_err(const YV12_BUFFER_CONFIG *source,
const YV12_BUFFER_CONFIG *reference) {
int i, j;
int total = 0;
const uint8_t *src = source->y_buffer;
const uint8_t *ref = reference->y_buffer;
// Loop through the Y plane raw and reconstruction data summing
// (square differences)
for (i = 0; i < source->y_height; i += 16) {
for (j = 0; j < source->y_width; j += 16) {
unsigned int sse;
total += vp9_mse16x16(src + j, source->y_stride,
ref + j, reference->y_stride, &sse);
}
src += 16 * source->y_stride;
ref += 16 * reference->y_stride;
}
return total;
}
int vp9_get_quantizer(VP9_PTR c) {
return ((VP9_COMP *)c)->common.base_qindex;
}