blob: 476ecaaa254aa64acf67213be1ac3d0151d21e09 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_picklpf.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_loopfilter.h"
#include "./vpx_scale_rtcd.h"
void vp9_yv12_copy_partial_frame_c(YV12_BUFFER_CONFIG *src_ybc,
YV12_BUFFER_CONFIG *dst_ybc, int fraction) {
const int height = src_ybc->y_height;
const int stride = src_ybc->y_stride;
const int offset = stride * ((height >> 5) * 16 - 8);
const int lines_to_copy = MAX(height >> (fraction + 4), 1) << 4;
assert(src_ybc->y_stride == dst_ybc->y_stride);
vpx_memcpy(dst_ybc->y_buffer + offset, src_ybc->y_buffer + offset,
stride * (lines_to_copy + 16));
}
static int calc_partial_ssl_err(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest, int Fraction) {
int i, j;
int Total = 0;
int srcoffset, dstoffset;
uint8_t *src = source->y_buffer;
uint8_t *dst = dest->y_buffer;
int linestocopy = (source->y_height >> (Fraction + 4));
if (linestocopy < 1)
linestocopy = 1;
linestocopy <<= 4;
srcoffset = source->y_stride * (dest->y_height >> 5) * 16;
dstoffset = dest->y_stride * (dest->y_height >> 5) * 16;
src += srcoffset;
dst += dstoffset;
// Loop through the raw Y plane and reconstruction data summing the square
// differences.
for (i = 0; i < linestocopy; i += 16) {
for (j = 0; j < source->y_width; j += 16) {
unsigned int sse;
Total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
&sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
// Enforce a minimum filter level based upon baseline Q
static int get_min_filter_level(VP9_COMP *cpi, int base_qindex) {
int min_filter_level;
min_filter_level = 0;
return min_filter_level;
}
// Enforce a maximum filter level based upon baseline Q
static int get_max_filter_level(VP9_COMP *cpi, int base_qindex) {
int max_filter_level = MAX_LOOP_FILTER;
(void)base_qindex;
if (cpi->twopass.section_intra_rating > 8)
max_filter_level = MAX_LOOP_FILTER * 3 / 4;
return max_filter_level;
}
// Stub function for now Alt LF not used
void vp9_set_alt_lf_level(VP9_COMP *cpi, int filt_val) {
}
void vp9_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi, int partial) {
VP9_COMMON *const cm = &cpi->common;
struct loopfilter *const lf = &cm->lf;
int best_err = 0;
int filt_err = 0;
const int min_filter_level = get_min_filter_level(cpi, cm->base_qindex);
const int max_filter_level = get_max_filter_level(cpi, cm->base_qindex);
int filter_step;
int filt_high = 0;
// Start search at previous frame filter level
int filt_mid = lf->filter_level;
int filt_low = 0;
int filt_best;
int filt_direction = 0;
int Bias = 0; // Bias against raising loop filter in favor of lowering it.
// Make a copy of the unfiltered / processed recon buffer
vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0
: cpi->oxcf.Sharpness;
// Start the search at the previous frame filter level unless it is now out of
// range.
filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
// Define the initial step size
filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
// Get baseline error score
vp9_set_alt_lf_level(cpi, filt_mid);
vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, filt_mid, 1, partial);
best_err = vp9_calc_ss_err(sd, cm->frame_to_show);
filt_best = filt_mid;
// Re-instate the unfiltered frame
vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
while (filter_step > 0) {
Bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;
if (cpi->twopass.section_intra_rating < 20)
Bias = Bias * cpi->twopass.section_intra_rating / 20;
// yx, bias less for large block size
if (cpi->common.tx_mode != ONLY_4X4)
Bias >>= 1;
filt_high = ((filt_mid + filter_step) > max_filter_level)
? max_filter_level
: (filt_mid + filter_step);
filt_low = ((filt_mid - filter_step) < min_filter_level)
? min_filter_level
: (filt_mid - filter_step);
if ((filt_direction <= 0) && (filt_low != filt_mid)) {
// Get Low filter error score
vp9_set_alt_lf_level(cpi, filt_low);
vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, filt_low, 1, partial);
filt_err = vp9_calc_ss_err(sd, cm->frame_to_show);
// Re-instate the unfiltered frame
vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
// If value is close to the best so far then bias towards a lower loop
// filter value.
if ((filt_err - Bias) < best_err) {
// Was it actually better than the previous best?
if (filt_err < best_err)
best_err = filt_err;
filt_best = filt_low;
}
}
// Now look at filt_high
if ((filt_direction >= 0) && (filt_high != filt_mid)) {
vp9_set_alt_lf_level(cpi, filt_high);
vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, filt_high, 1, partial);
filt_err = vp9_calc_ss_err(sd, cm->frame_to_show);
// Re-instate the unfiltered frame
vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
// Was it better than the previous best?
if (filt_err < (best_err - Bias)) {
best_err = filt_err;
filt_best = filt_high;
}
}
// Half the step distance if the best filter value was the same as last time
if (filt_best == filt_mid) {
filter_step = filter_step / 2;
filt_direction = 0;
} else {
filt_direction = (filt_best < filt_mid) ? -1 : 1;
filt_mid = filt_best;
}
}
lf->filter_level = filt_best;
}