blob: a2412d124f1df31e6d61ea96b64b7f2c9db54133 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h"
#include "vpx_dsp/x86/inv_txfm_sse2.h"
#include "vpx_dsp/x86/transpose_sse2.h"
#include "vpx_dsp/x86/txfm_common_sse2.h"
void vpx_highbd_idct16x16_256_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) {
tran_low_t out[16 * 16];
tran_low_t *outptr = out;
int i, j, test;
__m128i inptr[32];
__m128i min_input, max_input, temp1, temp2, sign_bits;
const __m128i zero = _mm_set1_epi16(0);
const __m128i rounding = _mm_set1_epi16(32);
const __m128i max = _mm_set1_epi16(3155);
const __m128i min = _mm_set1_epi16(-3155);
int optimised_cols = 0;
// Load input into __m128i & pack to 16 bits
for (i = 0; i < 16; i++) {
temp1 = _mm_loadu_si128((const __m128i *)(input + 16 * i));
temp2 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 4));
inptr[i] = _mm_packs_epi32(temp1, temp2);
temp1 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 8));
temp2 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 12));
inptr[i + 16] = _mm_packs_epi32(temp1, temp2);
}
// Find the min & max for the row transform
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 32; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
if (!test) {
// Do the row transform
idct16_sse2(inptr, inptr + 16);
// Find the min & max for the column transform
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 32; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
if (test) {
array_transpose_16x16(inptr, inptr + 16);
for (i = 0; i < 16; i++) {
sign_bits = _mm_cmplt_epi16(inptr[i], zero);
temp1 = _mm_unpacklo_epi16(inptr[i], sign_bits);
temp2 = _mm_unpackhi_epi16(inptr[i], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 1)), temp2);
sign_bits = _mm_cmplt_epi16(inptr[i + 16], zero);
temp1 = _mm_unpacklo_epi16(inptr[i + 16], sign_bits);
temp2 = _mm_unpackhi_epi16(inptr[i + 16], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 2)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 3)), temp2);
}
} else {
// Set to use the optimised transform for the column
optimised_cols = 1;
}
} else {
// Run the un-optimised row transform
for (i = 0; i < 16; ++i) {
vpx_highbd_idct16_c(input, outptr, bd);
input += 16;
outptr += 16;
}
}
if (optimised_cols) {
idct16_sse2(inptr, inptr + 16);
// Final round & shift and Reconstruction and Store
{
__m128i d[2];
for (i = 0; i < 16; i++) {
inptr[i] = _mm_add_epi16(inptr[i], rounding);
inptr[i + 16] = _mm_add_epi16(inptr[i + 16], rounding);
d[0] = _mm_loadu_si128((const __m128i *)(dest + stride * i));
d[1] = _mm_loadu_si128((const __m128i *)(dest + stride * i + 8));
inptr[i] = _mm_srai_epi16(inptr[i], 6);
inptr[i + 16] = _mm_srai_epi16(inptr[i + 16], 6);
d[0] = clamp_high_sse2(_mm_add_epi16(d[0], inptr[i]), bd);
d[1] = clamp_high_sse2(_mm_add_epi16(d[1], inptr[i + 16]), bd);
// Store
_mm_storeu_si128((__m128i *)(dest + stride * i), d[0]);
_mm_storeu_si128((__m128i *)(dest + stride * i + 8), d[1]);
}
}
} else {
// Run the un-optimised column transform
tran_low_t temp_in[16], temp_out[16];
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i];
vpx_highbd_idct16_c(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
}
}
}
}
void vpx_highbd_idct16x16_10_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) {
tran_low_t out[16 * 16] = { 0 };
tran_low_t *outptr = out;
int i, j, test;
__m128i inptr[32];
__m128i min_input, max_input, temp1, temp2, sign_bits;
const __m128i zero = _mm_set1_epi16(0);
const __m128i rounding = _mm_set1_epi16(32);
const __m128i max = _mm_set1_epi16(3155);
const __m128i min = _mm_set1_epi16(-3155);
int optimised_cols = 0;
// Load input into __m128i & pack to 16 bits
for (i = 0; i < 16; i++) {
temp1 = _mm_loadu_si128((const __m128i *)(input + 16 * i));
temp2 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 4));
inptr[i] = _mm_packs_epi32(temp1, temp2);
temp1 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 8));
temp2 = _mm_loadu_si128((const __m128i *)(input + 16 * i + 12));
inptr[i + 16] = _mm_packs_epi32(temp1, temp2);
}
// Find the min & max for the row transform
// Since all non-zero dct coefficients are in upper-left 4x4 area,
// we only need to consider first 4 rows here.
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 4; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
if (!test) {
// Do the row transform (N.B. This transposes inptr)
idct16_sse2(inptr, inptr + 16);
// Find the min & max for the column transform
// N.B. Only first 4 cols contain non-zero coeffs
max_input = _mm_max_epi16(inptr[0], inptr[1]);
min_input = _mm_min_epi16(inptr[0], inptr[1]);
for (i = 2; i < 16; i++) {
max_input = _mm_max_epi16(max_input, inptr[i]);
min_input = _mm_min_epi16(min_input, inptr[i]);
}
max_input = _mm_cmpgt_epi16(max_input, max);
min_input = _mm_cmplt_epi16(min_input, min);
temp1 = _mm_or_si128(max_input, min_input);
test = _mm_movemask_epi8(temp1);
if (test) {
// Use fact only first 4 rows contain non-zero coeffs
array_transpose_8x8(inptr, inptr);
array_transpose_8x8(inptr + 8, inptr + 16);
for (i = 0; i < 4; i++) {
sign_bits = _mm_cmplt_epi16(inptr[i], zero);
temp1 = _mm_unpacklo_epi16(inptr[i], sign_bits);
temp2 = _mm_unpackhi_epi16(inptr[i], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 1)), temp2);
sign_bits = _mm_cmplt_epi16(inptr[i + 16], zero);
temp1 = _mm_unpacklo_epi16(inptr[i + 16], sign_bits);
temp2 = _mm_unpackhi_epi16(inptr[i + 16], sign_bits);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 2)), temp1);
_mm_storeu_si128((__m128i *)(outptr + 4 * (i * 4 + 3)), temp2);
}
} else {
// Set to use the optimised transform for the column
optimised_cols = 1;
}
} else {
// Run the un-optimised row transform
for (i = 0; i < 4; ++i) {
vpx_highbd_idct16_c(input, outptr, bd);
input += 16;
outptr += 16;
}
}
if (optimised_cols) {
idct16_sse2(inptr, inptr + 16);
// Final round & shift and Reconstruction and Store
{
__m128i d[2];
for (i = 0; i < 16; i++) {
inptr[i] = _mm_add_epi16(inptr[i], rounding);
inptr[i + 16] = _mm_add_epi16(inptr[i + 16], rounding);
d[0] = _mm_loadu_si128((const __m128i *)(dest + stride * i));
d[1] = _mm_loadu_si128((const __m128i *)(dest + stride * i + 8));
inptr[i] = _mm_srai_epi16(inptr[i], 6);
inptr[i + 16] = _mm_srai_epi16(inptr[i + 16], 6);
d[0] = clamp_high_sse2(_mm_add_epi16(d[0], inptr[i]), bd);
d[1] = clamp_high_sse2(_mm_add_epi16(d[1], inptr[i + 16]), bd);
// Store
_mm_storeu_si128((__m128i *)(dest + stride * i), d[0]);
_mm_storeu_si128((__m128i *)(dest + stride * i + 8), d[1]);
}
}
} else {
// Run the un-optimised column transform
tran_low_t temp_in[16], temp_out[16];
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i];
vpx_highbd_idct16_c(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
}
}
}
}
void vpx_highbd_idct16x16_1_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) {
highbd_idct_1_add_kernel(input, dest, stride, bd, 16);
}