blob: e6933f00d8b7ef879a778d77526273873ed53e3b [file] [log] [blame]
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_scale/yv12config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_context_tree.h"
#include "vp9/encoder/vp9_denoiser.h"
#include "vp9/encoder/vp9_encoder.h"
// OUTPUT_YUV_DENOISED
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv);
#endif
static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
return 3 + (increase_denoising ? 1 : 0);
}
static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 4;
}
static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 625;
}
static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) {
return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 80 : 40);
}
static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising,
int motion_magnitude) {
if (motion_magnitude > noise_motion_thresh(bs, increase_denoising)) {
if (increase_denoising)
return (1 << num_pels_log2_lookup[bs]) << 2;
else
return 0;
} else {
return (1 << num_pels_log2_lookup[bs]) << 4;
}
}
static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) {
return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2);
}
// TODO(jackychen): If increase_denoising is enabled in the future,
// we might need to update the code for calculating 'total_adj' in
// case the C code is not bit-exact with corresponding sse2 code.
int vp9_denoiser_filter_c(const uint8_t *sig, int sig_stride,
const uint8_t *mc_avg, int mc_avg_stride,
uint8_t *avg, int avg_stride, int increase_denoising,
BLOCK_SIZE bs, int motion_magnitude) {
int r, c;
const uint8_t *sig_start = sig;
const uint8_t *mc_avg_start = mc_avg;
uint8_t *avg_start = avg;
int diff, adj, absdiff, delta;
int adj_val[] = { 3, 4, 6 };
int total_adj = 0;
int shift_inc = 1;
// If motion_magnitude is small, making the denoiser more aggressive by
// increasing the adjustment for each level. Add another increment for
// blocks that are labeled for increase denoising.
if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
if (increase_denoising) {
shift_inc = 2;
}
adj_val[0] += shift_inc;
adj_val[1] += shift_inc;
adj_val[2] += shift_inc;
}
// First attempt to apply a strong temporal denoising filter.
for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
diff = mc_avg[c] - sig[c];
absdiff = abs(diff);
if (absdiff <= absdiff_thresh(bs, increase_denoising)) {
avg[c] = mc_avg[c];
total_adj += diff;
} else {
switch (absdiff) {
case 4:
case 5:
case 6:
case 7: adj = adj_val[0]; break;
case 8:
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15: adj = adj_val[1]; break;
default: adj = adj_val[2];
}
if (diff > 0) {
avg[c] = VPXMIN(UINT8_MAX, sig[c] + adj);
total_adj += adj;
} else {
avg[c] = VPXMAX(0, sig[c] - adj);
total_adj -= adj;
}
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// If the strong filter did not modify the signal too much, we're all set.
if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
// Otherwise, we try to dampen the filter if the delta is not too high.
delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising)) >>
num_pels_log2_lookup[bs]) +
1;
if (delta >= delta_thresh(bs, increase_denoising)) {
return COPY_BLOCK;
}
mc_avg = mc_avg_start;
avg = avg_start;
sig = sig_start;
for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
diff = mc_avg[c] - sig[c];
adj = abs(diff);
if (adj > delta) {
adj = delta;
}
if (diff > 0) {
// Diff positive means we made positive adjustment above
// (in first try/attempt), so now make negative adjustment to bring
// denoised signal down.
avg[c] = VPXMAX(0, avg[c] - adj);
total_adj -= adj;
} else {
// Diff negative means we made negative adjustment above
// (in first try/attempt), so now make positive adjustment to bring
// denoised signal up.
avg[c] = VPXMIN(UINT8_MAX, avg[c] + adj);
total_adj += adj;
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// We can use the filter if it has been sufficiently dampened
if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
return COPY_BLOCK;
}
static uint8_t *block_start(uint8_t *framebuf, int stride, int mi_row,
int mi_col) {
return framebuf + (stride * mi_row << 3) + (mi_col << 3);
}
static VP9_DENOISER_DECISION perform_motion_compensation(
VP9_COMMON *const cm, VP9_DENOISER *denoiser, MACROBLOCK *mb, BLOCK_SIZE bs,
int increase_denoising, int mi_row, int mi_col, PICK_MODE_CONTEXT *ctx,
int motion_magnitude, int is_skin, int *zeromv_filter, int consec_zeromv,
int num_spatial_layers, int width) {
const int sse_diff = (ctx->newmv_sse == UINT_MAX)
? 0
: ((int)ctx->zeromv_sse - (int)ctx->newmv_sse);
MV_REFERENCE_FRAME frame;
MACROBLOCKD *filter_mbd = &mb->e_mbd;
MODE_INFO *mi = filter_mbd->mi[0];
MODE_INFO saved_mi;
int i;
struct buf_2d saved_dst[MAX_MB_PLANE];
struct buf_2d saved_pre[MAX_MB_PLANE];
RefBuffer *saved_block_refs[2];
frame = ctx->best_reference_frame;
saved_mi = *mi;
if (is_skin && (motion_magnitude > 0 || consec_zeromv < 4)) return COPY_BLOCK;
// Avoid denoising small blocks. When noise > kDenLow or frame width > 480,
// denoise 16x16 blocks.
if (bs == BLOCK_8X8 || bs == BLOCK_8X16 || bs == BLOCK_16X8 ||
(bs == BLOCK_16X16 && width > 480 &&
denoiser->denoising_level <= kDenLow))
return COPY_BLOCK;
// If the best reference frame uses inter-prediction and there is enough of a
// difference in sum-squared-error, use it.
if (frame != INTRA_FRAME &&
(frame != GOLDEN_FRAME || num_spatial_layers == 1) &&
sse_diff > sse_diff_thresh(bs, increase_denoising, motion_magnitude)) {
mi->ref_frame[0] = ctx->best_reference_frame;
mi->mode = ctx->best_sse_inter_mode;
mi->mv[0] = ctx->best_sse_mv;
} else {
// Otherwise, use the zero reference frame.
frame = ctx->best_zeromv_reference_frame;
ctx->newmv_sse = ctx->zeromv_sse;
// Bias to last reference.
if (num_spatial_layers > 1 ||
(frame != LAST_FRAME &&
((ctx->zeromv_lastref_sse<(5 * ctx->zeromv_sse)>> 2) ||
denoiser->denoising_level >= kDenHigh))) {
frame = LAST_FRAME;
ctx->newmv_sse = ctx->zeromv_lastref_sse;
}
mi->ref_frame[0] = frame;
mi->mode = ZEROMV;
mi->mv[0].as_int = 0;
ctx->best_sse_inter_mode = ZEROMV;
ctx->best_sse_mv.as_int = 0;
*zeromv_filter = 1;
if (denoiser->denoising_level > kDenMedium) {
motion_magnitude = 0;
}
}
if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) {
// Restore everything to its original state
*mi = saved_mi;
return COPY_BLOCK;
}
if (motion_magnitude > (noise_motion_thresh(bs, increase_denoising) << 3)) {
// Restore everything to its original state
*mi = saved_mi;
return COPY_BLOCK;
}
// We will restore these after motion compensation.
for (i = 0; i < MAX_MB_PLANE; ++i) {
saved_pre[i] = filter_mbd->plane[i].pre[0];
saved_dst[i] = filter_mbd->plane[i].dst;
}
saved_block_refs[0] = filter_mbd->block_refs[0];
// Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser
// struct.
filter_mbd->plane[0].pre[0].buf =
block_start(denoiser->running_avg_y[frame].y_buffer,
denoiser->running_avg_y[frame].y_stride, mi_row, mi_col);
filter_mbd->plane[0].pre[0].stride = denoiser->running_avg_y[frame].y_stride;
filter_mbd->plane[1].pre[0].buf =
block_start(denoiser->running_avg_y[frame].u_buffer,
denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col);
filter_mbd->plane[1].pre[0].stride = denoiser->running_avg_y[frame].uv_stride;
filter_mbd->plane[2].pre[0].buf =
block_start(denoiser->running_avg_y[frame].v_buffer,
denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col);
filter_mbd->plane[2].pre[0].stride = denoiser->running_avg_y[frame].uv_stride;
filter_mbd->plane[0].dst.buf =
block_start(denoiser->mc_running_avg_y.y_buffer,
denoiser->mc_running_avg_y.y_stride, mi_row, mi_col);
filter_mbd->plane[0].dst.stride = denoiser->mc_running_avg_y.y_stride;
filter_mbd->plane[1].dst.buf =
block_start(denoiser->mc_running_avg_y.u_buffer,
denoiser->mc_running_avg_y.uv_stride, mi_row, mi_col);
filter_mbd->plane[1].dst.stride = denoiser->mc_running_avg_y.uv_stride;
filter_mbd->plane[2].dst.buf =
block_start(denoiser->mc_running_avg_y.v_buffer,
denoiser->mc_running_avg_y.uv_stride, mi_row, mi_col);
filter_mbd->plane[2].dst.stride = denoiser->mc_running_avg_y.uv_stride;
set_ref_ptrs(cm, filter_mbd, frame, NONE);
vp9_build_inter_predictors_sby(filter_mbd, mi_row, mi_col, bs);
// Restore everything to its original state
*mi = saved_mi;
filter_mbd->block_refs[0] = saved_block_refs[0];
for (i = 0; i < MAX_MB_PLANE; ++i) {
filter_mbd->plane[i].pre[0] = saved_pre[i];
filter_mbd->plane[i].dst = saved_dst[i];
}
return FILTER_BLOCK;
}
void vp9_denoiser_denoise(VP9_COMP *cpi, MACROBLOCK *mb, int mi_row, int mi_col,
BLOCK_SIZE bs, PICK_MODE_CONTEXT *ctx,
VP9_DENOISER_DECISION *denoiser_decision) {
int mv_col, mv_row;
int motion_magnitude = 0;
int zeromv_filter = 0;
VP9_DENOISER *denoiser = &cpi->denoiser;
VP9_DENOISER_DECISION decision = COPY_BLOCK;
YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME];
YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y;
uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
uint8_t *mc_avg_start =
block_start(mc_avg.y_buffer, mc_avg.y_stride, mi_row, mi_col);
struct buf_2d src = mb->plane[0].src;
int is_skin = 0;
int increase_denoising = 0;
int consec_zeromv = 0;
mv_col = ctx->best_sse_mv.as_mv.col;
mv_row = ctx->best_sse_mv.as_mv.row;
motion_magnitude = mv_row * mv_row + mv_col * mv_col;
if (cpi->use_skin_detection && bs <= BLOCK_32X32 &&
denoiser->denoising_level < kDenHigh) {
int motion_level = (motion_magnitude < 16) ? 0 : 1;
// If motion for current block is small/zero, compute consec_zeromv for
// skin detection (early exit in skin detection is done for large
// consec_zeromv when current block has small/zero motion).
consec_zeromv = 0;
if (motion_level == 0) {
VP9_COMMON *const cm = &cpi->common;
int j, i;
// Loop through the 8x8 sub-blocks.
const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
const int block_index = mi_row * cm->mi_cols + mi_col;
consec_zeromv = 100;
for (i = 0; i < ymis; i++) {
for (j = 0; j < xmis; j++) {
int bl_index = block_index + i * cm->mi_cols + j;
consec_zeromv = VPXMIN(cpi->consec_zero_mv[bl_index], consec_zeromv);
// No need to keep checking 8x8 blocks if any of the sub-blocks
// has small consec_zeromv (since threshold for no_skin based on
// zero/small motion in skin detection is high, i.e, > 4).
if (consec_zeromv < 4) {
i = ymis;
j = xmis;
}
}
}
}
// TODO(marpan): Compute skin detection over sub-blocks.
is_skin = vp9_compute_skin_block(
mb->plane[0].src.buf, mb->plane[1].src.buf, mb->plane[2].src.buf,
mb->plane[0].src.stride, mb->plane[1].src.stride, bs, consec_zeromv,
motion_level);
}
if (!is_skin && denoiser->denoising_level == kDenHigh) increase_denoising = 1;
// TODO(marpan): There is an issue with denoising for speed 5,
// due to the partitioning scheme based on pickmode.
// Remove this speed constraint when issue is resolved.
if (denoiser->denoising_level >= kDenLow && cpi->oxcf.speed > 5)
decision = perform_motion_compensation(
&cpi->common, denoiser, mb, bs, increase_denoising, mi_row, mi_col, ctx,
motion_magnitude, is_skin, &zeromv_filter, consec_zeromv,
cpi->svc.number_spatial_layers, cpi->Source->y_width);
if (decision == FILTER_BLOCK) {
decision = vp9_denoiser_filter(src.buf, src.stride, mc_avg_start,
mc_avg.y_stride, avg_start, avg.y_stride,
increase_denoising, bs, motion_magnitude);
}
if (decision == FILTER_BLOCK) {
vpx_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride, NULL, 0,
NULL, 0, num_4x4_blocks_wide_lookup[bs] << 2,
num_4x4_blocks_high_lookup[bs] << 2);
} else { // COPY_BLOCK
vpx_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride, NULL, 0,
NULL, 0, num_4x4_blocks_wide_lookup[bs] << 2,
num_4x4_blocks_high_lookup[bs] << 2);
}
*denoiser_decision = decision;
if (decision == FILTER_BLOCK && zeromv_filter == 1)
*denoiser_decision = FILTER_ZEROMV_BLOCK;
}
static void copy_frame(YV12_BUFFER_CONFIG *const dest,
const YV12_BUFFER_CONFIG *const src) {
int r;
const uint8_t *srcbuf = src->y_buffer;
uint8_t *destbuf = dest->y_buffer;
assert(dest->y_width == src->y_width);
assert(dest->y_height == src->y_height);
for (r = 0; r < dest->y_height; ++r) {
memcpy(destbuf, srcbuf, dest->y_width);
destbuf += dest->y_stride;
srcbuf += src->y_stride;
}
}
static void swap_frame_buffer(YV12_BUFFER_CONFIG *const dest,
YV12_BUFFER_CONFIG *const src) {
uint8_t *tmp_buf = dest->y_buffer;
assert(dest->y_width == src->y_width);
assert(dest->y_height == src->y_height);
dest->y_buffer = src->y_buffer;
src->y_buffer = tmp_buf;
}
void vp9_denoiser_update_frame_info(
VP9_DENOISER *denoiser, YV12_BUFFER_CONFIG src, FRAME_TYPE frame_type,
int refresh_alt_ref_frame, int refresh_golden_frame, int refresh_last_frame,
int resized, int svc_base_is_key) {
// Copy source into denoised reference buffers on KEY_FRAME or
// if the just encoded frame was resized. For SVC, copy source if the base
// spatial layer was key frame.
if (frame_type == KEY_FRAME || resized != 0 || denoiser->reset ||
svc_base_is_key) {
int i;
// Start at 1 so as not to overwrite the INTRA_FRAME
for (i = 1; i < MAX_REF_FRAMES; ++i)
copy_frame(&denoiser->running_avg_y[i], &src);
denoiser->reset = 0;
return;
}
// If more than one refresh occurs, must copy frame buffer.
if ((refresh_alt_ref_frame + refresh_golden_frame + refresh_last_frame) > 1) {
if (refresh_alt_ref_frame) {
copy_frame(&denoiser->running_avg_y[ALTREF_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_golden_frame) {
copy_frame(&denoiser->running_avg_y[GOLDEN_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_last_frame) {
copy_frame(&denoiser->running_avg_y[LAST_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
} else {
if (refresh_alt_ref_frame) {
swap_frame_buffer(&denoiser->running_avg_y[ALTREF_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_golden_frame) {
swap_frame_buffer(&denoiser->running_avg_y[GOLDEN_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_last_frame) {
swap_frame_buffer(&denoiser->running_avg_y[LAST_FRAME],
&denoiser->running_avg_y[INTRA_FRAME]);
}
}
}
void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) {
ctx->zeromv_sse = UINT_MAX;
ctx->newmv_sse = UINT_MAX;
ctx->zeromv_lastref_sse = UINT_MAX;
ctx->best_sse_mv.as_int = 0;
}
void vp9_denoiser_update_frame_stats(MODE_INFO *mi, unsigned int sse,
PREDICTION_MODE mode,
PICK_MODE_CONTEXT *ctx) {
if (mi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) {
ctx->zeromv_sse = sse;
ctx->best_zeromv_reference_frame = mi->ref_frame[0];
if (mi->ref_frame[0] == LAST_FRAME) ctx->zeromv_lastref_sse = sse;
}
if (mi->mv[0].as_int != 0 && sse < ctx->newmv_sse) {
ctx->newmv_sse = sse;
ctx->best_sse_inter_mode = mode;
ctx->best_sse_mv = mi->mv[0];
ctx->best_reference_frame = mi->ref_frame[0];
}
}
int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height, int ssx,
int ssy,
#if CONFIG_VP9_HIGHBITDEPTH
int use_highbitdepth,
#endif
int border) {
int i, fail;
const int legacy_byte_alignment = 0;
assert(denoiser != NULL);
for (i = 0; i < MAX_REF_FRAMES; ++i) {
fail = vpx_alloc_frame_buffer(&denoiser->running_avg_y[i], width, height,
ssx, ssy,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif
border, legacy_byte_alignment);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
}
fail = vpx_alloc_frame_buffer(&denoiser->mc_running_avg_y, width, height, ssx,
ssy,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif
border, legacy_byte_alignment);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
fail = vpx_alloc_frame_buffer(&denoiser->last_source, width, height, ssx, ssy,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif
border, legacy_byte_alignment);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
denoiser->frame_buffer_initialized = 1;
denoiser->denoising_level = kDenLow;
denoiser->prev_denoising_level = kDenLow;
denoiser->reset = 0;
return 0;
}
void vp9_denoiser_free(VP9_DENOISER *denoiser) {
int i;
if (denoiser == NULL) {
return;
}
denoiser->frame_buffer_initialized = 0;
for (i = 0; i < MAX_REF_FRAMES; ++i) {
vpx_free_frame_buffer(&denoiser->running_avg_y[i]);
}
vpx_free_frame_buffer(&denoiser->mc_running_avg_y);
vpx_free_frame_buffer(&denoiser->last_source);
}
void vp9_denoiser_set_noise_level(VP9_DENOISER *denoiser, int noise_level) {
denoiser->denoising_level = noise_level;
if (denoiser->denoising_level > kDenLowLow &&
denoiser->prev_denoising_level == kDenLowLow)
denoiser->reset = 1;
else
denoiser->reset = 0;
denoiser->prev_denoising_level = denoiser->denoising_level;
}
// Scale/increase the partition threshold for denoiser speed-up.
int64_t vp9_scale_part_thresh(int64_t threshold, VP9_DENOISER_LEVEL noise_level,
int content_state, int temporal_layer_id) {
if ((content_state == kLowSadLowSumdiff) ||
(content_state == kHighSadLowSumdiff) ||
(content_state == kLowVarHighSumdiff) || (noise_level == kDenHigh) ||
(temporal_layer_id != 0)) {
int64_t scaled_thr =
(temporal_layer_id < 2) ? (3 * threshold) >> 1 : (7 * threshold) >> 2;
return scaled_thr;
} else {
return (5 * threshold) >> 2;
}
}
// Scale/increase the ac skip threshold for denoiser speed-up.
int64_t vp9_scale_acskip_thresh(int64_t threshold,
VP9_DENOISER_LEVEL noise_level, int abs_sumdiff,
int temporal_layer_id) {
if (noise_level >= kDenLow && abs_sumdiff < 5)
return threshold *=
(noise_level == kDenLow) ? 2 : (temporal_layer_id == 2) ? 10 : 6;
else
return threshold;
}
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv) {
int r, c;
uint8_t *u = yuv->u_buffer;
uint8_t *v = yuv->v_buffer;
for (r = 0; r < yuv->uv_height; ++r) {
for (c = 0; c < yuv->uv_width; ++c) {
u[c] = UINT8_MAX / 2;
v[c] = UINT8_MAX / 2;
}
u += yuv->uv_stride;
v += yuv->uv_stride;
}
}
#endif