blob: e41b645cce073d4487976044197fd3a4b9aedc63 [file] [log] [blame]
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef USE_BIG_ENDIAN
#define USE_BIG_ENDIAN true
#endif
#include <ultrahdr/icc.h>
#include <vector>
#include <utils/Log.h>
#ifndef FLT_MAX
#define FLT_MAX 0x1.fffffep127f
#endif
namespace android::ultrahdr {
static void Matrix3x3_apply(const Matrix3x3* m, float* x) {
float y0 = x[0] * m->vals[0][0] + x[1] * m->vals[0][1] + x[2] * m->vals[0][2];
float y1 = x[0] * m->vals[1][0] + x[1] * m->vals[1][1] + x[2] * m->vals[1][2];
float y2 = x[0] * m->vals[2][0] + x[1] * m->vals[2][1] + x[2] * m->vals[2][2];
x[0] = y0;
x[1] = y1;
x[2] = y2;
}
bool Matrix3x3_invert(const Matrix3x3* src, Matrix3x3* dst) {
double a00 = src->vals[0][0],
a01 = src->vals[1][0],
a02 = src->vals[2][0],
a10 = src->vals[0][1],
a11 = src->vals[1][1],
a12 = src->vals[2][1],
a20 = src->vals[0][2],
a21 = src->vals[1][2],
a22 = src->vals[2][2];
double b0 = a00*a11 - a01*a10,
b1 = a00*a12 - a02*a10,
b2 = a01*a12 - a02*a11,
b3 = a20,
b4 = a21,
b5 = a22;
double determinant = b0*b5
- b1*b4
+ b2*b3;
if (determinant == 0) {
return false;
}
double invdet = 1.0 / determinant;
if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) {
return false;
}
b0 *= invdet;
b1 *= invdet;
b2 *= invdet;
b3 *= invdet;
b4 *= invdet;
b5 *= invdet;
dst->vals[0][0] = (float)( a11*b5 - a12*b4 );
dst->vals[1][0] = (float)( a02*b4 - a01*b5 );
dst->vals[2][0] = (float)( + b2 );
dst->vals[0][1] = (float)( a12*b3 - a10*b5 );
dst->vals[1][1] = (float)( a00*b5 - a02*b3 );
dst->vals[2][1] = (float)( - b1 );
dst->vals[0][2] = (float)( a10*b4 - a11*b3 );
dst->vals[1][2] = (float)( a01*b3 - a00*b4 );
dst->vals[2][2] = (float)( + b0 );
for (int r = 0; r < 3; ++r)
for (int c = 0; c < 3; ++c) {
if (!isfinitef_(dst->vals[r][c])) {
return false;
}
}
return true;
}
static Matrix3x3 Matrix3x3_concat(const Matrix3x3* A, const Matrix3x3* B) {
Matrix3x3 m = { { { 0,0,0 },{ 0,0,0 },{ 0,0,0 } } };
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++) {
m.vals[r][c] = A->vals[r][0] * B->vals[0][c]
+ A->vals[r][1] * B->vals[1][c]
+ A->vals[r][2] * B->vals[2][c];
}
return m;
}
static void float_XYZD50_to_grid16_lab(const float* xyz_float, uint8_t* grid16_lab) {
float v[3] = {
xyz_float[0] / kD50_x,
xyz_float[1] / kD50_y,
xyz_float[2] / kD50_z,
};
for (size_t i = 0; i < 3; ++i) {
v[i] = v[i] > 0.008856f ? cbrtf(v[i]) : v[i] * 7.787f + (16 / 116.0f);
}
const float L = v[1] * 116.0f - 16.0f;
const float a = (v[0] - v[1]) * 500.0f;
const float b = (v[1] - v[2]) * 200.0f;
const float Lab_unorm[3] = {
L * (1 / 100.f),
(a + 128.0f) * (1 / 255.0f),
(b + 128.0f) * (1 / 255.0f),
};
// This will encode L=1 as 0xFFFF. This matches how skcms will interpret the
// table, but the spec appears to indicate that the value should be 0xFF00.
// https://crbug.com/skia/13807
for (size_t i = 0; i < 3; ++i) {
reinterpret_cast<uint16_t*>(grid16_lab)[i] =
Endian_SwapBE16(float_round_to_unorm16(Lab_unorm[i]));
}
}
std::string IccHelper::get_desc_string(const ultrahdr_transfer_function tf,
const ultrahdr_color_gamut gamut) {
std::string result;
switch (gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
result += "sRGB";
break;
case ULTRAHDR_COLORGAMUT_P3:
result += "Display P3";
break;
case ULTRAHDR_COLORGAMUT_BT2100:
result += "Rec2020";
break;
default:
result += "Unknown";
break;
}
result += " Gamut with ";
switch (tf) {
case ULTRAHDR_TF_SRGB:
result += "sRGB";
break;
case ULTRAHDR_TF_LINEAR:
result += "Linear";
break;
case ULTRAHDR_TF_PQ:
result += "PQ";
break;
case ULTRAHDR_TF_HLG:
result += "HLG";
break;
default:
result += "Unknown";
break;
}
result += " Transfer";
return result;
}
sp<DataStruct> IccHelper::write_text_tag(const char* text) {
uint32_t text_length = strlen(text);
uint32_t header[] = {
Endian_SwapBE32(kTAG_TextType), // Type signature
0, // Reserved
Endian_SwapBE32(1), // Number of records
Endian_SwapBE32(12), // Record size (must be 12)
Endian_SwapBE32(SetFourByteTag('e', 'n', 'U', 'S')), // English USA
Endian_SwapBE32(2 * text_length), // Length of string in bytes
Endian_SwapBE32(28), // Offset of string
};
uint32_t total_length = text_length * 2 + sizeof(header);
total_length = (((total_length + 2) >> 2) << 2); // 4 aligned
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
if (!dataStruct->write(header, sizeof(header))) {
ALOGE("write_text_tag(): error in writing data");
return dataStruct;
}
for (size_t i = 0; i < text_length; i++) {
// Convert ASCII to big-endian UTF-16.
dataStruct->write8(0);
dataStruct->write8(text[i]);
}
return dataStruct;
}
sp<DataStruct> IccHelper::write_xyz_tag(float x, float y, float z) {
uint32_t data[] = {
Endian_SwapBE32(kXYZ_PCSSpace),
0,
static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(x))),
static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(y))),
static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(z))),
};
sp<DataStruct> dataStruct = sp<DataStruct>::make(sizeof(data));
dataStruct->write(&data, sizeof(data));
return dataStruct;
}
sp<DataStruct> IccHelper::write_trc_tag(const int table_entries, const void* table_16) {
int total_length = 4 + 4 + 4 + table_entries * 2;
total_length = (((total_length + 2) >> 2) << 2); // 4 aligned
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
dataStruct->write32(Endian_SwapBE32(kTAG_CurveType)); // Type
dataStruct->write32(0); // Reserved
dataStruct->write32(Endian_SwapBE32(table_entries)); // Value count
for (size_t i = 0; i < table_entries; ++i) {
uint16_t value = reinterpret_cast<const uint16_t*>(table_16)[i];
dataStruct->write16(value);
}
return dataStruct;
}
sp<DataStruct> IccHelper::write_trc_tag(const TransferFunction& fn) {
if (fn.a == 1.f && fn.b == 0.f && fn.c == 0.f
&& fn.d == 0.f && fn.e == 0.f && fn.f == 0.f) {
int total_length = 16;
sp<DataStruct> dataStruct = new DataStruct(total_length);
dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type
dataStruct->write32(0); // Reserved
dataStruct->write32(Endian_SwapBE16(kExponential_ParaCurveType));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g)));
return dataStruct;
}
int total_length = 40;
sp<DataStruct> dataStruct = new DataStruct(total_length);
dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type
dataStruct->write32(0); // Reserved
dataStruct->write32(Endian_SwapBE16(kGABCDEF_ParaCurveType));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.a)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.b)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.c)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.d)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.e)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.f)));
return dataStruct;
}
float IccHelper::compute_tone_map_gain(const ultrahdr_transfer_function tf, float L) {
if (L <= 0.f) {
return 1.f;
}
if (tf == ULTRAHDR_TF_PQ) {
// The PQ transfer function will map to the range [0, 1]. Linearly scale
// it up to the range [0, 10,000/203]. We will then tone map that back
// down to [0, 1].
constexpr float kInputMaxLuminance = 10000 / 203.f;
constexpr float kOutputMaxLuminance = 1.0;
L *= kInputMaxLuminance;
// Compute the tone map gain which will tone map from 10,000/203 to 1.0.
constexpr float kToneMapA = kOutputMaxLuminance / (kInputMaxLuminance * kInputMaxLuminance);
constexpr float kToneMapB = 1.f / kOutputMaxLuminance;
return kInputMaxLuminance * (1.f + kToneMapA * L) / (1.f + kToneMapB * L);
}
if (tf == ULTRAHDR_TF_HLG) {
// Let Lw be the brightness of the display in nits.
constexpr float Lw = 203.f;
const float gamma = 1.2f + 0.42f * std::log(Lw / 1000.f) / std::log(10.f);
return std::pow(L, gamma - 1.f);
}
return 1.f;
}
sp<DataStruct> IccHelper::write_cicp_tag(uint32_t color_primaries,
uint32_t transfer_characteristics) {
int total_length = 12; // 4 + 4 + 1 + 1 + 1 + 1
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
dataStruct->write32(Endian_SwapBE32(kTAG_cicp)); // Type signature
dataStruct->write32(0); // Reserved
dataStruct->write8(color_primaries); // Color primaries
dataStruct->write8(transfer_characteristics); // Transfer characteristics
dataStruct->write8(0); // RGB matrix
dataStruct->write8(1); // Full range
return dataStruct;
}
void IccHelper::compute_lut_entry(const Matrix3x3& src_to_XYZD50, float rgb[3]) {
// Compute the matrices to convert from source to Rec2020, and from Rec2020 to XYZD50.
Matrix3x3 src_to_rec2020;
const Matrix3x3 rec2020_to_XYZD50 = kRec2020;
{
Matrix3x3 XYZD50_to_rec2020;
Matrix3x3_invert(&rec2020_to_XYZD50, &XYZD50_to_rec2020);
src_to_rec2020 = Matrix3x3_concat(&XYZD50_to_rec2020, &src_to_XYZD50);
}
// Convert the source signal to linear.
for (size_t i = 0; i < kNumChannels; ++i) {
rgb[i] = pqOetf(rgb[i]);
}
// Convert source gamut to Rec2020.
Matrix3x3_apply(&src_to_rec2020, rgb);
// Compute the luminance of the signal.
float L = bt2100Luminance({{{rgb[0], rgb[1], rgb[2]}}});
// Compute the tone map gain based on the luminance.
float tone_map_gain = compute_tone_map_gain(ULTRAHDR_TF_PQ, L);
// Apply the tone map gain.
for (size_t i = 0; i < kNumChannels; ++i) {
rgb[i] *= tone_map_gain;
}
// Convert from Rec2020-linear to XYZD50.
Matrix3x3_apply(&rec2020_to_XYZD50, rgb);
}
sp<DataStruct> IccHelper::write_clut(const uint8_t* grid_points, const uint8_t* grid_16) {
uint32_t value_count = kNumChannels;
for (uint32_t i = 0; i < kNumChannels; ++i) {
value_count *= grid_points[i];
}
int total_length = 20 + 2 * value_count;
total_length = (((total_length + 2) >> 2) << 2); // 4 aligned
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
for (size_t i = 0; i < 16; ++i) {
dataStruct->write8(i < kNumChannels ? grid_points[i] : 0); // Grid size
}
dataStruct->write8(2); // Grid byte width (always 16-bit)
dataStruct->write8(0); // Reserved
dataStruct->write8(0); // Reserved
dataStruct->write8(0); // Reserved
for (uint32_t i = 0; i < value_count; ++i) {
uint16_t value = reinterpret_cast<const uint16_t*>(grid_16)[i];
dataStruct->write16(value);
}
return dataStruct;
}
sp<DataStruct> IccHelper::write_mAB_or_mBA_tag(uint32_t type,
bool has_a_curves,
const uint8_t* grid_points,
const uint8_t* grid_16) {
const size_t b_curves_offset = 32;
sp<DataStruct> b_curves_data[kNumChannels];
sp<DataStruct> a_curves_data[kNumChannels];
size_t clut_offset = 0;
sp<DataStruct> clut;
size_t a_curves_offset = 0;
// The "B" curve is required.
for (size_t i = 0; i < kNumChannels; ++i) {
b_curves_data[i] = write_trc_tag(kLinear_TransFun);
}
// The "A" curve and CLUT are optional.
if (has_a_curves) {
clut_offset = b_curves_offset;
for (size_t i = 0; i < kNumChannels; ++i) {
clut_offset += b_curves_data[i]->getLength();
}
clut = write_clut(grid_points, grid_16);
a_curves_offset = clut_offset + clut->getLength();
for (size_t i = 0; i < kNumChannels; ++i) {
a_curves_data[i] = write_trc_tag(kLinear_TransFun);
}
}
int total_length = b_curves_offset;
for (size_t i = 0; i < kNumChannels; ++i) {
total_length += b_curves_data[i]->getLength();
}
if (has_a_curves) {
total_length += clut->getLength();
for (size_t i = 0; i < kNumChannels; ++i) {
total_length += a_curves_data[i]->getLength();
}
}
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
dataStruct->write32(Endian_SwapBE32(type)); // Type signature
dataStruct->write32(0); // Reserved
dataStruct->write8(kNumChannels); // Input channels
dataStruct->write8(kNumChannels); // Output channels
dataStruct->write16(0); // Reserved
dataStruct->write32(Endian_SwapBE32(b_curves_offset)); // B curve offset
dataStruct->write32(Endian_SwapBE32(0)); // Matrix offset (ignored)
dataStruct->write32(Endian_SwapBE32(0)); // M curve offset (ignored)
dataStruct->write32(Endian_SwapBE32(clut_offset)); // CLUT offset
dataStruct->write32(Endian_SwapBE32(a_curves_offset)); // A curve offset
for (size_t i = 0; i < kNumChannels; ++i) {
if (dataStruct->write(b_curves_data[i]->getData(), b_curves_data[i]->getLength())) {
return dataStruct;
}
}
if (has_a_curves) {
dataStruct->write(clut->getData(), clut->getLength());
for (size_t i = 0; i < kNumChannels; ++i) {
dataStruct->write(a_curves_data[i]->getData(), a_curves_data[i]->getLength());
}
}
return dataStruct;
}
sp<DataStruct> IccHelper::writeIccProfile(ultrahdr_transfer_function tf,
ultrahdr_color_gamut gamut) {
ICCHeader header;
std::vector<std::pair<uint32_t, sp<DataStruct>>> tags;
// Compute profile description tag
std::string desc = get_desc_string(tf, gamut);
tags.emplace_back(kTAG_desc, write_text_tag(desc.c_str()));
Matrix3x3 toXYZD50;
switch (gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
toXYZD50 = kSRGB;
break;
case ULTRAHDR_COLORGAMUT_P3:
toXYZD50 = kDisplayP3;
break;
case ULTRAHDR_COLORGAMUT_BT2100:
toXYZD50 = kRec2020;
break;
default:
// Should not fall here.
return nullptr;
}
// Compute primaries.
{
tags.emplace_back(kTAG_rXYZ,
write_xyz_tag(toXYZD50.vals[0][0], toXYZD50.vals[1][0], toXYZD50.vals[2][0]));
tags.emplace_back(kTAG_gXYZ,
write_xyz_tag(toXYZD50.vals[0][1], toXYZD50.vals[1][1], toXYZD50.vals[2][1]));
tags.emplace_back(kTAG_bXYZ,
write_xyz_tag(toXYZD50.vals[0][2], toXYZD50.vals[1][2], toXYZD50.vals[2][2]));
}
// Compute white point tag (must be D50)
tags.emplace_back(kTAG_wtpt, write_xyz_tag(kD50_x, kD50_y, kD50_z));
// Compute transfer curves.
if (tf != ULTRAHDR_TF_PQ) {
if (tf == ULTRAHDR_TF_HLG) {
std::vector<uint8_t> trc_table;
trc_table.resize(kTrcTableSize * 2);
for (uint32_t i = 0; i < kTrcTableSize; ++i) {
float x = i / (kTrcTableSize - 1.f);
float y = hlgOetf(x);
y *= compute_tone_map_gain(tf, y);
float_to_table16(y, &trc_table[2 * i]);
}
tags.emplace_back(kTAG_rTRC,
write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data())));
tags.emplace_back(kTAG_gTRC,
write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data())));
tags.emplace_back(kTAG_bTRC,
write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data())));
} else {
tags.emplace_back(kTAG_rTRC, write_trc_tag(kSRGB_TransFun));
tags.emplace_back(kTAG_gTRC, write_trc_tag(kSRGB_TransFun));
tags.emplace_back(kTAG_bTRC, write_trc_tag(kSRGB_TransFun));
}
}
// Compute CICP.
if (tf == ULTRAHDR_TF_HLG || tf == ULTRAHDR_TF_PQ) {
// The CICP tag is present in ICC 4.4, so update the header's version.
header.version = Endian_SwapBE32(0x04400000);
uint32_t color_primaries = 0;
if (gamut == ULTRAHDR_COLORGAMUT_BT709) {
color_primaries = kCICPPrimariesSRGB;
} else if (gamut == ULTRAHDR_COLORGAMUT_P3) {
color_primaries = kCICPPrimariesP3;
}
uint32_t transfer_characteristics = 0;
if (tf == ULTRAHDR_TF_SRGB) {
transfer_characteristics = kCICPTrfnSRGB;
} else if (tf == ULTRAHDR_TF_LINEAR) {
transfer_characteristics = kCICPTrfnLinear;
} else if (tf == ULTRAHDR_TF_PQ) {
transfer_characteristics = kCICPTrfnPQ;
} else if (tf == ULTRAHDR_TF_HLG) {
transfer_characteristics = kCICPTrfnHLG;
}
tags.emplace_back(kTAG_cicp, write_cicp_tag(color_primaries, transfer_characteristics));
}
// Compute A2B0.
if (tf == ULTRAHDR_TF_PQ) {
std::vector<uint8_t> a2b_grid;
a2b_grid.resize(kGridSize * kGridSize * kGridSize * kNumChannels * 2);
size_t a2b_grid_index = 0;
for (uint32_t r_index = 0; r_index < kGridSize; ++r_index) {
for (uint32_t g_index = 0; g_index < kGridSize; ++g_index) {
for (uint32_t b_index = 0; b_index < kGridSize; ++b_index) {
float rgb[3] = {
r_index / (kGridSize - 1.f),
g_index / (kGridSize - 1.f),
b_index / (kGridSize - 1.f),
};
compute_lut_entry(toXYZD50, rgb);
float_XYZD50_to_grid16_lab(rgb, &a2b_grid[a2b_grid_index]);
a2b_grid_index += 6;
}
}
}
const uint8_t* grid_16 = reinterpret_cast<const uint8_t*>(a2b_grid.data());
uint8_t grid_points[kNumChannels];
for (size_t i = 0; i < kNumChannels; ++i) {
grid_points[i] = kGridSize;
}
auto a2b_data = write_mAB_or_mBA_tag(kTAG_mABType,
/* has_a_curves */ true,
grid_points,
grid_16);
tags.emplace_back(kTAG_A2B0, std::move(a2b_data));
}
// Compute B2A0.
if (tf == ULTRAHDR_TF_PQ) {
auto b2a_data = write_mAB_or_mBA_tag(kTAG_mBAType,
/* has_a_curves */ false,
/* grid_points */ nullptr,
/* grid_16 */ nullptr);
tags.emplace_back(kTAG_B2A0, std::move(b2a_data));
}
// Compute copyright tag
tags.emplace_back(kTAG_cprt, write_text_tag("Google Inc. 2022"));
// Compute the size of the profile.
size_t tag_data_size = 0;
for (const auto& tag : tags) {
tag_data_size += tag.second->getLength();
}
size_t tag_table_size = kICCTagTableEntrySize * tags.size();
size_t profile_size = kICCHeaderSize + tag_table_size + tag_data_size;
sp<DataStruct> dataStruct = sp<DataStruct>::make(profile_size + kICCIdentifierSize);
// Write identifier, chunk count, and chunk ID
if (!dataStruct->write(kICCIdentifier, sizeof(kICCIdentifier)) ||
!dataStruct->write8(1) || !dataStruct->write8(1)) {
ALOGE("writeIccProfile(): error in identifier");
return dataStruct;
}
// Write the header.
header.data_color_space = Endian_SwapBE32(Signature_RGB);
header.pcs = Endian_SwapBE32(tf == ULTRAHDR_TF_PQ ? Signature_Lab : Signature_XYZ);
header.size = Endian_SwapBE32(profile_size);
header.tag_count = Endian_SwapBE32(tags.size());
if (!dataStruct->write(&header, sizeof(header))) {
ALOGE("writeIccProfile(): error in header");
return dataStruct;
}
// Write the tag table. Track the offset and size of the previous tag to
// compute each tag's offset. An empty SkData indicates that the previous
// tag is to be reused.
uint32_t last_tag_offset = sizeof(header) + tag_table_size;
uint32_t last_tag_size = 0;
for (const auto& tag : tags) {
last_tag_offset = last_tag_offset + last_tag_size;
last_tag_size = tag.second->getLength();
uint32_t tag_table_entry[3] = {
Endian_SwapBE32(tag.first),
Endian_SwapBE32(last_tag_offset),
Endian_SwapBE32(last_tag_size),
};
if (!dataStruct->write(tag_table_entry, sizeof(tag_table_entry))) {
ALOGE("writeIccProfile(): error in writing tag table");
return dataStruct;
}
}
// Write the tags.
for (const auto& tag : tags) {
if (!dataStruct->write(tag.second->getData(), tag.second->getLength())) {
ALOGE("writeIccProfile(): error in writing tags");
return dataStruct;
}
}
return dataStruct;
}
bool IccHelper::tagsEqualToMatrix(const Matrix3x3& matrix,
const uint8_t* red_tag,
const uint8_t* green_tag,
const uint8_t* blue_tag) {
sp<DataStruct> red_tag_test = write_xyz_tag(matrix.vals[0][0], matrix.vals[1][0],
matrix.vals[2][0]);
sp<DataStruct> green_tag_test = write_xyz_tag(matrix.vals[0][1], matrix.vals[1][1],
matrix.vals[2][1]);
sp<DataStruct> blue_tag_test = write_xyz_tag(matrix.vals[0][2], matrix.vals[1][2],
matrix.vals[2][2]);
return memcmp(red_tag, red_tag_test->getData(), kColorantTagSize) == 0 &&
memcmp(green_tag, green_tag_test->getData(), kColorantTagSize) == 0 &&
memcmp(blue_tag, blue_tag_test->getData(), kColorantTagSize) == 0;
}
ultrahdr_color_gamut IccHelper::readIccColorGamut(void* icc_data, size_t icc_size) {
// Each tag table entry consists of 3 fields of 4 bytes each.
static const size_t kTagTableEntrySize = 12;
if (icc_data == nullptr || icc_size < sizeof(ICCHeader) + kICCIdentifierSize) {
return ULTRAHDR_COLORGAMUT_UNSPECIFIED;
}
if (memcmp(icc_data, kICCIdentifier, sizeof(kICCIdentifier)) != 0) {
return ULTRAHDR_COLORGAMUT_UNSPECIFIED;
}
uint8_t* icc_bytes = reinterpret_cast<uint8_t*>(icc_data) + kICCIdentifierSize;
ICCHeader* header = reinterpret_cast<ICCHeader*>(icc_bytes);
// Use 0 to indicate not found, since offsets are always relative to start
// of ICC data and therefore a tag offset of zero would never be valid.
size_t red_primary_offset = 0, green_primary_offset = 0, blue_primary_offset = 0;
size_t red_primary_size = 0, green_primary_size = 0, blue_primary_size = 0;
for (size_t tag_idx = 0; tag_idx < Endian_SwapBE32(header->tag_count); ++tag_idx) {
uint32_t* tag_entry_start = reinterpret_cast<uint32_t*>(
icc_bytes + sizeof(ICCHeader) + tag_idx * kTagTableEntrySize);
// first 4 bytes are the tag signature, next 4 bytes are the tag offset,
// last 4 bytes are the tag length in bytes.
if (red_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_rXYZ)) {
red_primary_offset = Endian_SwapBE32(*(tag_entry_start+1));
red_primary_size = Endian_SwapBE32(*(tag_entry_start+2));
} else if (green_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_gXYZ)) {
green_primary_offset = Endian_SwapBE32(*(tag_entry_start+1));
green_primary_size = Endian_SwapBE32(*(tag_entry_start+2));
} else if (blue_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_bXYZ)) {
blue_primary_offset = Endian_SwapBE32(*(tag_entry_start+1));
blue_primary_size = Endian_SwapBE32(*(tag_entry_start+2));
}
}
if (red_primary_offset == 0 || red_primary_size != kColorantTagSize ||
kICCIdentifierSize + red_primary_offset + red_primary_size > icc_size ||
green_primary_offset == 0 || green_primary_size != kColorantTagSize ||
kICCIdentifierSize + green_primary_offset + green_primary_size > icc_size ||
blue_primary_offset == 0 || blue_primary_size != kColorantTagSize ||
kICCIdentifierSize + blue_primary_offset + blue_primary_size > icc_size) {
return ULTRAHDR_COLORGAMUT_UNSPECIFIED;
}
uint8_t* red_tag = icc_bytes + red_primary_offset;
uint8_t* green_tag = icc_bytes + green_primary_offset;
uint8_t* blue_tag = icc_bytes + blue_primary_offset;
// Serialize tags as we do on encode and compare what we find to that to
// determine the gamut (since we don't have a need yet for full deserialize).
if (tagsEqualToMatrix(kSRGB, red_tag, green_tag, blue_tag)) {
return ULTRAHDR_COLORGAMUT_BT709;
} else if (tagsEqualToMatrix(kDisplayP3, red_tag, green_tag, blue_tag)) {
return ULTRAHDR_COLORGAMUT_P3;
} else if (tagsEqualToMatrix(kRec2020, red_tag, green_tag, blue_tag)) {
return ULTRAHDR_COLORGAMUT_BT2100;
}
// Didn't find a match to one of the profiles we write; indicate the gamut
// is unspecified since we don't understand it.
return ULTRAHDR_COLORGAMUT_UNSPECIFIED;
}
} // namespace android::ultrahdr