blob: ee15363b69daa8a22f2fb4e86174321b3ce94512 [file] [log] [blame]
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cmath>
#include <vector>
#include <ultrahdr/gainmapmath.h>
namespace android::ultrahdr {
static const std::vector<float> kPqOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kPqOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kPqOETFNumEntries - 1);
result.push_back(pqOetf(value));
}
return result;
}();
static const std::vector<float> kPqInvOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kPqInvOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kPqInvOETFNumEntries - 1);
result.push_back(pqInvOetf(value));
}
return result;
}();
static const std::vector<float> kHlgOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kHlgOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kHlgOETFNumEntries - 1);
result.push_back(hlgOetf(value));
}
return result;
}();
static const std::vector<float> kHlgInvOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kHlgInvOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kHlgInvOETFNumEntries - 1);
result.push_back(hlgInvOetf(value));
}
return result;
}();
static const std::vector<float> kSrgbInvOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kSrgbInvOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kSrgbInvOETFNumEntries - 1);
result.push_back(srgbInvOetf(value));
}
return result;
}();
// Use Shepard's method for inverse distance weighting. For more information:
// en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method
float ShepardsIDW::euclideanDistance(float x1, float x2, float y1, float y2) {
return sqrt(((y2 - y1) * (y2 - y1)) + (x2 - x1) * (x2 - x1));
}
void ShepardsIDW::fillShepardsIDW(float *weights, int incR, int incB) {
for (int y = 0; y < mMapScaleFactor; y++) {
for (int x = 0; x < mMapScaleFactor; x++) {
float pos_x = ((float)x) / mMapScaleFactor;
float pos_y = ((float)y) / mMapScaleFactor;
int curr_x = floor(pos_x);
int curr_y = floor(pos_y);
int next_x = curr_x + incR;
int next_y = curr_y + incB;
float e1_distance = euclideanDistance(pos_x, curr_x, pos_y, curr_y);
int index = y * mMapScaleFactor * 4 + x * 4;
if (e1_distance == 0) {
weights[index++] = 1.f;
weights[index++] = 0.f;
weights[index++] = 0.f;
weights[index++] = 0.f;
} else {
float e1_weight = 1.f / e1_distance;
float e2_distance = euclideanDistance(pos_x, curr_x, pos_y, next_y);
float e2_weight = 1.f / e2_distance;
float e3_distance = euclideanDistance(pos_x, next_x, pos_y, curr_y);
float e3_weight = 1.f / e3_distance;
float e4_distance = euclideanDistance(pos_x, next_x, pos_y, next_y);
float e4_weight = 1.f / e4_distance;
float total_weight = e1_weight + e2_weight + e3_weight + e4_weight;
weights[index++] = e1_weight / total_weight;
weights[index++] = e2_weight / total_weight;
weights[index++] = e3_weight / total_weight;
weights[index++] = e4_weight / total_weight;
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// sRGB transformations
static const float kMaxPixelFloat = 1.0f;
static float clampPixelFloat(float value) {
return (value < 0.0f) ? 0.0f : (value > kMaxPixelFloat) ? kMaxPixelFloat : value;
}
// See IEC 61966-2-1/Amd 1:2003, Equation F.7.
static const float kSrgbR = 0.2126f, kSrgbG = 0.7152f, kSrgbB = 0.0722f;
float srgbLuminance(Color e) {
return kSrgbR * e.r + kSrgbG * e.g + kSrgbB * e.b;
}
// See ITU-R BT.709-6, Section 3.
// Uses the same coefficients for deriving luma signal as
// IEC 61966-2-1/Amd 1:2003 states for luminance, so we reuse the luminance
// function above.
static const float kSrgbCb = 1.8556f, kSrgbCr = 1.5748f;
Color srgbRgbToYuv(Color e_gamma) {
float y_gamma = srgbLuminance(e_gamma);
return {{{ y_gamma,
(e_gamma.b - y_gamma) / kSrgbCb,
(e_gamma.r - y_gamma) / kSrgbCr }}};
}
// See ITU-R BT.709-6, Section 3.
// Same derivation to BT.2100's YUV->RGB, below. Similar to srgbRgbToYuv, we
// can reuse the luminance coefficients since they are the same.
static const float kSrgbGCb = kSrgbB * kSrgbCb / kSrgbG;
static const float kSrgbGCr = kSrgbR * kSrgbCr / kSrgbG;
Color srgbYuvToRgb(Color e_gamma) {
return {{{ clampPixelFloat(e_gamma.y + kSrgbCr * e_gamma.v),
clampPixelFloat(e_gamma.y - kSrgbGCb * e_gamma.u - kSrgbGCr * e_gamma.v),
clampPixelFloat(e_gamma.y + kSrgbCb * e_gamma.u) }}};
}
// See IEC 61966-2-1/Amd 1:2003, Equations F.5 and F.6.
float srgbInvOetf(float e_gamma) {
if (e_gamma <= 0.04045f) {
return e_gamma / 12.92f;
} else {
return pow((e_gamma + 0.055f) / 1.055f, 2.4);
}
}
Color srgbInvOetf(Color e_gamma) {
return {{{ srgbInvOetf(e_gamma.r),
srgbInvOetf(e_gamma.g),
srgbInvOetf(e_gamma.b) }}};
}
// See IEC 61966-2-1, Equations F.5 and F.6.
float srgbInvOetfLUT(float e_gamma) {
uint32_t value = static_cast<uint32_t>(e_gamma * kSrgbInvOETFNumEntries);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kSrgbInvOETFNumEntries - 1);
return kSrgbInvOETF[value];
}
Color srgbInvOetfLUT(Color e_gamma) {
return {{{ srgbInvOetfLUT(e_gamma.r),
srgbInvOetfLUT(e_gamma.g),
srgbInvOetfLUT(e_gamma.b) }}};
}
////////////////////////////////////////////////////////////////////////////////
// Display-P3 transformations
// See SMPTE EG 432-1, Equation 7-8.
static const float kP3R = 0.20949f, kP3G = 0.72160f, kP3B = 0.06891f;
float p3Luminance(Color e) {
return kP3R * e.r + kP3G * e.g + kP3B * e.b;
}
// See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2.
// Unfortunately, calculation of luma signal differs from calculation of
// luminance for Display-P3, so we can't reuse p3Luminance here.
static const float kP3YR = 0.299f, kP3YG = 0.587f, kP3YB = 0.114f;
static const float kP3Cb = 1.772f, kP3Cr = 1.402f;
Color p3RgbToYuv(Color e_gamma) {
float y_gamma = kP3YR * e_gamma.r + kP3YG * e_gamma.g + kP3YB * e_gamma.b;
return {{{ y_gamma,
(e_gamma.b - y_gamma) / kP3Cb,
(e_gamma.r - y_gamma) / kP3Cr }}};
}
// See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2.
// Same derivation to BT.2100's YUV->RGB, below. Similar to p3RgbToYuv, we must
// use luma signal coefficients rather than the luminance coefficients.
static const float kP3GCb = kP3YB * kP3Cb / kP3YG;
static const float kP3GCr = kP3YR * kP3Cr / kP3YG;
Color p3YuvToRgb(Color e_gamma) {
return {{{ clampPixelFloat(e_gamma.y + kP3Cr * e_gamma.v),
clampPixelFloat(e_gamma.y - kP3GCb * e_gamma.u - kP3GCr * e_gamma.v),
clampPixelFloat(e_gamma.y + kP3Cb * e_gamma.u) }}};
}
////////////////////////////////////////////////////////////////////////////////
// BT.2100 transformations - according to ITU-R BT.2100-2
// See ITU-R BT.2100-2, Table 5, HLG Reference OOTF
static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f;
float bt2100Luminance(Color e) {
return kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b;
}
// See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals.
// BT.2100 uses the same coefficients for calculating luma signal and luminance,
// so we reuse the luminance function here.
static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f;
Color bt2100RgbToYuv(Color e_gamma) {
float y_gamma = bt2100Luminance(e_gamma);
return {{{ y_gamma,
(e_gamma.b - y_gamma) / kBt2100Cb,
(e_gamma.r - y_gamma) / kBt2100Cr }}};
}
// See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals.
//
// Similar to bt2100RgbToYuv above, we can reuse the luminance coefficients.
//
// Derived by inversing bt2100RgbToYuv. The derivation for R and B are pretty
// straight forward; we just invert the formulas for U and V above. But deriving
// the formula for G is a bit more complicated:
//
// Start with equation for luminance:
// Y = kBt2100R * R + kBt2100G * G + kBt2100B * B
// Solve for G:
// G = (Y - kBt2100R * R - kBt2100B * B) / kBt2100B
// Substitute equations for R and B in terms YUV:
// G = (Y - kBt2100R * (Y + kBt2100Cr * V) - kBt2100B * (Y + kBt2100Cb * U)) / kBt2100B
// Simplify:
// G = Y * ((1 - kBt2100R - kBt2100B) / kBt2100G)
// + U * (kBt2100B * kBt2100Cb / kBt2100G)
// + V * (kBt2100R * kBt2100Cr / kBt2100G)
//
// We then get the following coeficients for calculating G from YUV:
//
// Coef for Y = (1 - kBt2100R - kBt2100B) / kBt2100G = 1
// Coef for U = kBt2100B * kBt2100Cb / kBt2100G = kBt2100GCb = ~0.1645
// Coef for V = kBt2100R * kBt2100Cr / kBt2100G = kBt2100GCr = ~0.5713
static const float kBt2100GCb = kBt2100B * kBt2100Cb / kBt2100G;
static const float kBt2100GCr = kBt2100R * kBt2100Cr / kBt2100G;
Color bt2100YuvToRgb(Color e_gamma) {
return {{{ clampPixelFloat(e_gamma.y + kBt2100Cr * e_gamma.v),
clampPixelFloat(e_gamma.y - kBt2100GCb * e_gamma.u - kBt2100GCr * e_gamma.v),
clampPixelFloat(e_gamma.y + kBt2100Cb * e_gamma.u) }}};
}
// See ITU-R BT.2100-2, Table 5, HLG Reference OETF.
static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073;
float hlgOetf(float e) {
if (e <= 1.0f/12.0f) {
return sqrt(3.0f * e);
} else {
return kHlgA * log(12.0f * e - kHlgB) + kHlgC;
}
}
Color hlgOetf(Color e) {
return {{{ hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b) }}};
}
float hlgOetfLUT(float e) {
uint32_t value = static_cast<uint32_t>(e * kHlgOETFNumEntries);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kHlgOETFNumEntries - 1);
return kHlgOETF[value];
}
Color hlgOetfLUT(Color e) {
return {{{ hlgOetfLUT(e.r), hlgOetfLUT(e.g), hlgOetfLUT(e.b) }}};
}
// See ITU-R BT.2100-2, Table 5, HLG Reference EOTF.
float hlgInvOetf(float e_gamma) {
if (e_gamma <= 0.5f) {
return pow(e_gamma, 2.0f) / 3.0f;
} else {
return (exp((e_gamma - kHlgC) / kHlgA) + kHlgB) / 12.0f;
}
}
Color hlgInvOetf(Color e_gamma) {
return {{{ hlgInvOetf(e_gamma.r),
hlgInvOetf(e_gamma.g),
hlgInvOetf(e_gamma.b) }}};
}
float hlgInvOetfLUT(float e_gamma) {
uint32_t value = static_cast<uint32_t>(e_gamma * kHlgInvOETFNumEntries);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kHlgInvOETFNumEntries - 1);
return kHlgInvOETF[value];
}
Color hlgInvOetfLUT(Color e_gamma) {
return {{{ hlgInvOetfLUT(e_gamma.r),
hlgInvOetfLUT(e_gamma.g),
hlgInvOetfLUT(e_gamma.b) }}};
}
// See ITU-R BT.2100-2, Table 4, Reference PQ OETF.
static const float kPqM1 = 2610.0f / 16384.0f, kPqM2 = 2523.0f / 4096.0f * 128.0f;
static const float kPqC1 = 3424.0f / 4096.0f, kPqC2 = 2413.0f / 4096.0f * 32.0f,
kPqC3 = 2392.0f / 4096.0f * 32.0f;
float pqOetf(float e) {
if (e <= 0.0f) return 0.0f;
return pow((kPqC1 + kPqC2 * pow(e, kPqM1)) / (1 + kPqC3 * pow(e, kPqM1)),
kPqM2);
}
Color pqOetf(Color e) {
return {{{ pqOetf(e.r), pqOetf(e.g), pqOetf(e.b) }}};
}
float pqOetfLUT(float e) {
uint32_t value = static_cast<uint32_t>(e * kPqOETFNumEntries);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kPqOETFNumEntries - 1);
return kPqOETF[value];
}
Color pqOetfLUT(Color e) {
return {{{ pqOetfLUT(e.r), pqOetfLUT(e.g), pqOetfLUT(e.b) }}};
}
// Derived from the inverse of the Reference PQ OETF.
static const float kPqInvA = 128.0f, kPqInvB = 107.0f, kPqInvC = 2413.0f, kPqInvD = 2392.0f,
kPqInvE = 6.2773946361f, kPqInvF = 0.0126833f;
float pqInvOetf(float e_gamma) {
// This equation blows up if e_gamma is 0.0, and checking on <= 0.0 doesn't
// always catch 0.0. So, check on 0.0001, since anything this small will
// effectively be crushed to zero anyways.
if (e_gamma <= 0.0001f) return 0.0f;
return pow((kPqInvA * pow(e_gamma, kPqInvF) - kPqInvB)
/ (kPqInvC - kPqInvD * pow(e_gamma, kPqInvF)),
kPqInvE);
}
Color pqInvOetf(Color e_gamma) {
return {{{ pqInvOetf(e_gamma.r),
pqInvOetf(e_gamma.g),
pqInvOetf(e_gamma.b) }}};
}
float pqInvOetfLUT(float e_gamma) {
uint32_t value = static_cast<uint32_t>(e_gamma * kPqInvOETFNumEntries);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kPqInvOETFNumEntries - 1);
return kPqInvOETF[value];
}
Color pqInvOetfLUT(Color e_gamma) {
return {{{ pqInvOetfLUT(e_gamma.r),
pqInvOetfLUT(e_gamma.g),
pqInvOetfLUT(e_gamma.b) }}};
}
////////////////////////////////////////////////////////////////////////////////
// Color conversions
Color bt709ToP3(Color e) {
return {{{ 0.82254f * e.r + 0.17755f * e.g + 0.00006f * e.b,
0.03312f * e.r + 0.96684f * e.g + -0.00001f * e.b,
0.01706f * e.r + 0.07240f * e.g + 0.91049f * e.b }}};
}
Color bt709ToBt2100(Color e) {
return {{{ 0.62740f * e.r + 0.32930f * e.g + 0.04332f * e.b,
0.06904f * e.r + 0.91958f * e.g + 0.01138f * e.b,
0.01636f * e.r + 0.08799f * e.g + 0.89555f * e.b }}};
}
Color p3ToBt709(Color e) {
return {{{ 1.22482f * e.r + -0.22490f * e.g + -0.00007f * e.b,
-0.04196f * e.r + 1.04199f * e.g + 0.00001f * e.b,
-0.01961f * e.r + -0.07865f * e.g + 1.09831f * e.b }}};
}
Color p3ToBt2100(Color e) {
return {{{ 0.75378f * e.r + 0.19862f * e.g + 0.04754f * e.b,
0.04576f * e.r + 0.94177f * e.g + 0.01250f * e.b,
-0.00121f * e.r + 0.01757f * e.g + 0.98359f * e.b }}};
}
Color bt2100ToBt709(Color e) {
return {{{ 1.66045f * e.r + -0.58764f * e.g + -0.07286f * e.b,
-0.12445f * e.r + 1.13282f * e.g + -0.00837f * e.b,
-0.01811f * e.r + -0.10057f * e.g + 1.11878f * e.b }}};
}
Color bt2100ToP3(Color e) {
return {{{ 1.34369f * e.r + -0.28223f * e.g + -0.06135f * e.b,
-0.06533f * e.r + 1.07580f * e.g + -0.01051f * e.b,
0.00283f * e.r + -0.01957f * e.g + 1.01679f * e.b
}}};
}
// TODO: confirm we always want to convert like this before calculating
// luminance.
ColorTransformFn getHdrConversionFn(ultrahdr_color_gamut sdr_gamut,
ultrahdr_color_gamut hdr_gamut) {
switch (sdr_gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
switch (hdr_gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
return identityConversion;
case ULTRAHDR_COLORGAMUT_P3:
return p3ToBt709;
case ULTRAHDR_COLORGAMUT_BT2100:
return bt2100ToBt709;
case ULTRAHDR_COLORGAMUT_UNSPECIFIED:
return nullptr;
}
break;
case ULTRAHDR_COLORGAMUT_P3:
switch (hdr_gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
return bt709ToP3;
case ULTRAHDR_COLORGAMUT_P3:
return identityConversion;
case ULTRAHDR_COLORGAMUT_BT2100:
return bt2100ToP3;
case ULTRAHDR_COLORGAMUT_UNSPECIFIED:
return nullptr;
}
break;
case ULTRAHDR_COLORGAMUT_BT2100:
switch (hdr_gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
return bt709ToBt2100;
case ULTRAHDR_COLORGAMUT_P3:
return p3ToBt2100;
case ULTRAHDR_COLORGAMUT_BT2100:
return identityConversion;
case ULTRAHDR_COLORGAMUT_UNSPECIFIED:
return nullptr;
}
break;
case ULTRAHDR_COLORGAMUT_UNSPECIFIED:
return nullptr;
}
}
// All of these conversions are derived from the respective input YUV->RGB conversion followed by
// the RGB->YUV for the receiving encoding. They are consistent with the RGB<->YUV functions in this
// file, given that we uses BT.709 encoding for sRGB and BT.601 encoding for Display-P3, to match
// DataSpace.
Color yuv709To601(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + 0.101579f * e_gamma.u + 0.196076f * e_gamma.v,
0.0f * e_gamma.y + 0.989854f * e_gamma.u + -0.110653f * e_gamma.v,
0.0f * e_gamma.y + -0.072453f * e_gamma.u + 0.983398f * e_gamma.v }}};
}
Color yuv709To2100(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + -0.016969f * e_gamma.u + 0.096312f * e_gamma.v,
0.0f * e_gamma.y + 0.995306f * e_gamma.u + -0.051192f * e_gamma.v,
0.0f * e_gamma.y + 0.011507f * e_gamma.u + 1.002637f * e_gamma.v }}};
}
Color yuv601To709(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + -0.118188f * e_gamma.u + -0.212685f * e_gamma.v,
0.0f * e_gamma.y + 1.018640f * e_gamma.u + 0.114618f * e_gamma.v,
0.0f * e_gamma.y + 0.075049f * e_gamma.u + 1.025327f * e_gamma.v }}};
}
Color yuv601To2100(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + -0.128245f * e_gamma.u + -0.115879f * e_gamma.v,
0.0f * e_gamma.y + 1.010016f * e_gamma.u + 0.061592f * e_gamma.v,
0.0f * e_gamma.y + 0.086969f * e_gamma.u + 1.029350f * e_gamma.v }}};
}
Color yuv2100To709(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + 0.018149f * e_gamma.u + -0.095132f * e_gamma.v,
0.0f * e_gamma.y + 1.004123f * e_gamma.u + 0.051267f * e_gamma.v,
0.0f * e_gamma.y + -0.011524f * e_gamma.u + 0.996782f * e_gamma.v }}};
}
Color yuv2100To601(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + 0.117887f * e_gamma.u + 0.105521f * e_gamma.v,
0.0f * e_gamma.y + 0.995211f * e_gamma.u + -0.059549f * e_gamma.v,
0.0f * e_gamma.y + -0.084085f * e_gamma.u + 0.976518f * e_gamma.v }}};
}
void transformYuv420(jr_uncompressed_ptr image, size_t x_chroma, size_t y_chroma,
ColorTransformFn fn) {
Color yuv1 = getYuv420Pixel(image, x_chroma * 2, y_chroma * 2 );
Color yuv2 = getYuv420Pixel(image, x_chroma * 2 + 1, y_chroma * 2 );
Color yuv3 = getYuv420Pixel(image, x_chroma * 2, y_chroma * 2 + 1);
Color yuv4 = getYuv420Pixel(image, x_chroma * 2 + 1, y_chroma * 2 + 1);
yuv1 = fn(yuv1);
yuv2 = fn(yuv2);
yuv3 = fn(yuv3);
yuv4 = fn(yuv4);
Color new_uv = (yuv1 + yuv2 + yuv3 + yuv4) / 4.0f;
size_t pixel_y1_idx = x_chroma * 2 + y_chroma * 2 * image->width;
size_t pixel_y2_idx = (x_chroma * 2 + 1) + y_chroma * 2 * image->width;
size_t pixel_y3_idx = x_chroma * 2 + (y_chroma * 2 + 1) * image->width;
size_t pixel_y4_idx = (x_chroma * 2 + 1) + (y_chroma * 2 + 1) * image->width;
uint8_t& y1_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y1_idx];
uint8_t& y2_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y2_idx];
uint8_t& y3_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y3_idx];
uint8_t& y4_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y4_idx];
size_t pixel_count = image->width * image->height;
size_t pixel_uv_idx = x_chroma + y_chroma * (image->width / 2);
uint8_t& u_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count + pixel_uv_idx];
uint8_t& v_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count * 5 / 4 + pixel_uv_idx];
y1_uint = static_cast<uint8_t>(floor(yuv1.y * 255.0f + 0.5f));
y2_uint = static_cast<uint8_t>(floor(yuv2.y * 255.0f + 0.5f));
y3_uint = static_cast<uint8_t>(floor(yuv3.y * 255.0f + 0.5f));
y4_uint = static_cast<uint8_t>(floor(yuv4.y * 255.0f + 0.5f));
u_uint = static_cast<uint8_t>(floor(new_uv.u * 255.0f + 128.0f + 0.5f));
v_uint = static_cast<uint8_t>(floor(new_uv.v * 255.0f + 128.0f + 0.5f));
}
////////////////////////////////////////////////////////////////////////////////
// Gain map calculations
uint8_t encodeGain(float y_sdr, float y_hdr, ultrahdr_metadata_ptr metadata) {
return encodeGain(y_sdr, y_hdr, metadata,
log2(metadata->minContentBoost), log2(metadata->maxContentBoost));
}
uint8_t encodeGain(float y_sdr, float y_hdr, ultrahdr_metadata_ptr metadata,
float log2MinContentBoost, float log2MaxContentBoost) {
float gain = 1.0f;
if (y_sdr > 0.0f) {
gain = y_hdr / y_sdr;
}
if (gain < metadata->minContentBoost) gain = metadata->minContentBoost;
if (gain > metadata->maxContentBoost) gain = metadata->maxContentBoost;
return static_cast<uint8_t>((log2(gain) - log2MinContentBoost)
/ (log2MaxContentBoost - log2MinContentBoost)
* 255.0f);
}
Color applyGain(Color e, float gain, ultrahdr_metadata_ptr metadata) {
float logBoost = log2(metadata->minContentBoost) * (1.0f - gain)
+ log2(metadata->maxContentBoost) * gain;
float gainFactor = exp2(logBoost);
return e * gainFactor;
}
Color applyGain(Color e, float gain, ultrahdr_metadata_ptr metadata, float displayBoost) {
float logBoost = log2(metadata->minContentBoost) * (1.0f - gain)
+ log2(metadata->maxContentBoost) * gain;
float gainFactor = exp2(logBoost * displayBoost / metadata->maxContentBoost);
return e * gainFactor;
}
Color applyGainLUT(Color e, float gain, GainLUT& gainLUT) {
float gainFactor = gainLUT.getGainFactor(gain);
return e * gainFactor;
}
Color getYuv420Pixel(jr_uncompressed_ptr image, size_t x, size_t y) {
size_t pixel_count = image->width * image->height;
size_t pixel_y_idx = x + y * image->width;
size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2);
uint8_t y_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y_idx];
uint8_t u_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count + pixel_uv_idx];
uint8_t v_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count * 5 / 4 + pixel_uv_idx];
// 128 bias for UV given we are using jpeglib; see:
// https://github.com/kornelski/libjpeg/blob/master/structure.doc
return {{{ static_cast<float>(y_uint) / 255.0f,
(static_cast<float>(u_uint) - 128.0f) / 255.0f,
(static_cast<float>(v_uint) - 128.0f) / 255.0f }}};
}
Color getP010Pixel(jr_uncompressed_ptr image, size_t x, size_t y) {
size_t luma_stride = image->luma_stride;
size_t chroma_stride = image->chroma_stride;
uint16_t* luma_data = reinterpret_cast<uint16_t*>(image->data);
uint16_t* chroma_data = reinterpret_cast<uint16_t*>(image->chroma_data);
if (luma_stride == 0) {
luma_stride = image->width;
}
if (chroma_stride == 0) {
chroma_stride = luma_stride;
}
if (chroma_data == nullptr) {
chroma_data = &reinterpret_cast<uint16_t*>(image->data)[luma_stride * image->height];
}
size_t pixel_y_idx = y * luma_stride + x;
size_t pixel_u_idx = (y >> 1) * chroma_stride + (x & ~0x1);
size_t pixel_v_idx = pixel_u_idx + 1;
uint16_t y_uint = luma_data[pixel_y_idx] >> 6;
uint16_t u_uint = chroma_data[pixel_u_idx] >> 6;
uint16_t v_uint = chroma_data[pixel_v_idx] >> 6;
// Conversions include taking narrow-range into account.
return {{{ (static_cast<float>(y_uint) - 64.0f) / 876.0f,
(static_cast<float>(u_uint) - 64.0f) / 896.0f - 0.5f,
(static_cast<float>(v_uint) - 64.0f) / 896.0f - 0.5f }}};
}
typedef Color (*getPixelFn)(jr_uncompressed_ptr, size_t, size_t);
static Color samplePixels(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y,
getPixelFn get_pixel_fn) {
Color e = {{{ 0.0f, 0.0f, 0.0f }}};
for (size_t dy = 0; dy < map_scale_factor; ++dy) {
for (size_t dx = 0; dx < map_scale_factor; ++dx) {
e += get_pixel_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy);
}
}
return e / static_cast<float>(map_scale_factor * map_scale_factor);
}
Color sampleYuv420(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getYuv420Pixel);
}
Color sampleP010(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getP010Pixel);
}
// TODO: do we need something more clever for filtering either the map or images
// to generate the map?
static size_t clamp(const size_t& val, const size_t& low, const size_t& high) {
return val < low ? low : (high < val ? high : val);
}
static float mapUintToFloat(uint8_t map_uint) {
return static_cast<float>(map_uint) / 255.0f;
}
static float pythDistance(float x_diff, float y_diff) {
return sqrt(pow(x_diff, 2.0f) + pow(y_diff, 2.0f));
}
// TODO: If map_scale_factor is guaranteed to be an integer, then remove the following.
float sampleMap(jr_uncompressed_ptr map, float map_scale_factor, size_t x, size_t y) {
float x_map = static_cast<float>(x) / map_scale_factor;
float y_map = static_cast<float>(y) / map_scale_factor;
size_t x_lower = static_cast<size_t>(floor(x_map));
size_t x_upper = x_lower + 1;
size_t y_lower = static_cast<size_t>(floor(y_map));
size_t y_upper = y_lower + 1;
x_lower = clamp(x_lower, 0, map->width - 1);
x_upper = clamp(x_upper, 0, map->width - 1);
y_lower = clamp(y_lower, 0, map->height - 1);
y_upper = clamp(y_upper, 0, map->height - 1);
// Use Shepard's method for inverse distance weighting. For more information:
// en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method
float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]);
float e1_dist = pythDistance(x_map - static_cast<float>(x_lower),
y_map - static_cast<float>(y_lower));
if (e1_dist == 0.0f) return e1;
float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]);
float e2_dist = pythDistance(x_map - static_cast<float>(x_lower),
y_map - static_cast<float>(y_upper));
if (e2_dist == 0.0f) return e2;
float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]);
float e3_dist = pythDistance(x_map - static_cast<float>(x_upper),
y_map - static_cast<float>(y_lower));
if (e3_dist == 0.0f) return e3;
float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]);
float e4_dist = pythDistance(x_map - static_cast<float>(x_upper),
y_map - static_cast<float>(y_upper));
if (e4_dist == 0.0f) return e2;
float e1_weight = 1.0f / e1_dist;
float e2_weight = 1.0f / e2_dist;
float e3_weight = 1.0f / e3_dist;
float e4_weight = 1.0f / e4_dist;
float total_weight = e1_weight + e2_weight + e3_weight + e4_weight;
return e1 * (e1_weight / total_weight)
+ e2 * (e2_weight / total_weight)
+ e3 * (e3_weight / total_weight)
+ e4 * (e4_weight / total_weight);
}
float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y,
ShepardsIDW& weightTables) {
// TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
// following by computing log2(map_scale_factor) once and then using >> log2(map_scale_factor)
int x_lower = x / map_scale_factor;
int x_upper = x_lower + 1;
int y_lower = y / map_scale_factor;
int y_upper = y_lower + 1;
x_lower = std::min(x_lower, map->width - 1);
x_upper = std::min(x_upper, map->width - 1);
y_lower = std::min(y_lower, map->height - 1);
y_upper = std::min(y_upper, map->height - 1);
float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]);
float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]);
float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]);
float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]);
// TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
// following by using & (map_scale_factor - 1)
int offset_x = x % map_scale_factor;
int offset_y = y % map_scale_factor;
float* weights = weightTables.mWeights;
if (x_lower == x_upper && y_lower == y_upper) weights = weightTables.mWeightsC;
else if (x_lower == x_upper) weights = weightTables.mWeightsNR;
else if (y_lower == y_upper) weights = weightTables.mWeightsNB;
weights += offset_y * map_scale_factor * 4 + offset_x * 4;
return e1 * weights[0] + e2 * weights[1] + e3 * weights[2] + e4 * weights[3];
}
uint32_t colorToRgba1010102(Color e_gamma) {
return (0x3ff & static_cast<uint32_t>(e_gamma.r * 1023.0f))
| ((0x3ff & static_cast<uint32_t>(e_gamma.g * 1023.0f)) << 10)
| ((0x3ff & static_cast<uint32_t>(e_gamma.b * 1023.0f)) << 20)
| (0x3 << 30); // Set alpha to 1.0
}
uint64_t colorToRgbaF16(Color e_gamma) {
return (uint64_t) floatToHalf(e_gamma.r)
| (((uint64_t) floatToHalf(e_gamma.g)) << 16)
| (((uint64_t) floatToHalf(e_gamma.b)) << 32)
| (((uint64_t) floatToHalf(1.0f)) << 48);
}
} // namespace android::ultrahdr