blob: 875b250e4a1b86ed876de53d6df6e16d38a3852b [file] [log] [blame]
SQLHIST(1)
==========
NAME
----
sqlhist - Tool that uses SQL language to create / show creation of tracefs histograms and synthetic events.
SYNOPSIS
--------
*sqlhist* ['OPTIONS'] ['SQL-select-command']
DESCRIPTION
-----------
The sqlhist(1) will take an SQL like statement to create tracefs histograms and
synthetic events that can perform various actions for various handling of the
data.
The tracefs file system interfaces with the Linux tracing infrastructure that
has various dynamic and static events through out the kernel. Each of these
events can have a "histogram" attached to it, where the fields of the event
will define the buckets of the histogram.
A synthetic event is a way to attach two separate events and use the fields
and time stamps of those events to create a new dynamic event. This new
dynamic event is call a synthetic event. The fields of each event can have
simple calculations done on them where, for example, the delta between
a field of one event to a field of the other event can be taken. This also
works for the time stamps of the events where the time delta between the
two events can also be extracted and placed into the synthetic event.
Other actions can be done from the fields of the events. A snapshot can
be taken of the kernel ring buffer a variable used in the synthetic
event creating hits a max, or simply changes.
The commands to create histograms and synthetic events are complex and
not easy to remember. *sqlhist* is used to convert SQL syntax into the
commands needed to create the histogram or synthetic event.
The *SQL-select-command* is a SQL string defined by *tracefs_sql*(3).
Note, this must be run as root (or sudo) as interacting with the tracefs
directory requires root privilege, unless the *-t* option is given with
a copy of the _tracefs_ directory and its events.
The *sqlhist* is a simple program where its code actual exists in the
*tracefs_sql*(3) man page.
OPTIONS
-------
*-n* 'name'::
The name of the synthetic event to create. This event can then be
used like any other event, and enabled via *trace-cmd*(1).
*-t* 'tracefs-dir'::
In order to test this out as non root user, a copy of the tracefs directory
can be used, and passing that directory with this option will allow
the program to work. Obviously, *-e* will not work as non-root because
it will not be able to execute.
# mkdir /tmp/tracing
# cp -r /sys/kernel/tracing/events /tmp/tracing
# exit
$ ./sqlhist -t /tmp/tracing ...
*-e*::
Not only display the commands to create the histogram, but also execute them.
This requires root privilege.
*-f* 'file'::
Instead of reading the SQL commands from the command line, read them from
_file_. If _file_ is '-' then read from standard input.
*-m* 'var'::
Do the given action when the variable _var_ hits a new maximum. This can
not be used with *-c*.
*-c* 'var'::
Do the given action when the variable _var_ changes its value. This can
not be used with *-m*.
*-s*::
Perform a snapshot instead of calling the synthetic event.
*-T*::
Perform both a snapshot and trace the synthetic event.
*-S* 'fields[,fields]'::
Save the given fields. The fields must be fields of the "end" event given
in the *SQL-select-command*
*-B* 'instance'::
For simple statements that only produce a histogram, the instance given here
will be where the histogram will be created. This is ignored for full synthetic
event creation, as sythetic events have a global affect on all tracing instances,
where as, histograms only affect a single instance.
EXAMPLES
--------
Create the sqlhist executable:
[source, c]
--
man tracefs_sql | sed -ne '/^EXAMPLE/,/FILES/ { /EXAMPLE/d ; /FILES/d ; p}' > sqlhist.c
gcc -o sqlhist sqlhist.c `pkg-config --cflags --libs libtracefs`
--
As described above, for testing purposes, make a copy of the event directory:
[source, c]
--
$ mkdir /tmp/tracing
$ sudo cp -r /sys/kernel/tracing/events /tmp/tracing/
$ sudo chmod -R 0644 /tmp/tracing/
--
For an example of simple histogram output using the copy of the tracefs directory.
[source, c]
--
$ ./sqlhist -t /tmp/tracing/ 'SELECT CAST(call_site as SYM-OFFSET), bytes_req, CAST(bytes_alloc AS _COUNTER_) FROM kmalloc'
--
Produces the output:
[source, c]
--
echo 'hist:keys=call_site.sym-offset,bytes_req:vals=bytes_alloc' > /sys/kernel/tracing/events/kmem/kmalloc/trigger
--
Which could be used by root:
[source, c]
--
# echo 'hist:keys=call_site.sym-offset,bytes_req:vals=bytes_alloc' > /sys/kernel/tracing/events/kmem/kmalloc/trigger
# cat /sys/kernel/tracing/events/kmem/kmalloc/hist
# event histogram
#
# trigger info: hist:keys=call_site.sym-offset,bytes_req:vals=hitcount,bytes_alloc:sort=hitcount:size=2048 [active]
#
{ call_site: [ffffffff813f8d8a] load_elf_phdrs+0x4a/0xb0 , bytes_req: 728 } hitcount: 1 bytes_alloc: 1024
{ call_site: [ffffffffc0c69e74] nf_ct_ext_add+0xd4/0x1d0 [nf_conntrack] , bytes_req: 128 } hitcount: 1 bytes_alloc: 128
{ call_site: [ffffffff818355e6] dma_resv_get_fences+0xf6/0x440 , bytes_req: 8 } hitcount: 1 bytes_alloc: 8
{ call_site: [ffffffffc06dc73f] intel_gt_get_buffer_pool+0x15f/0x290 [i915] , bytes_req: 424 } hitcount: 1 bytes_alloc: 512
{ call_site: [ffffffff813f8d8a] load_elf_phdrs+0x4a/0xb0 , bytes_req: 616 } hitcount: 1 bytes_alloc: 1024
{ call_site: [ffffffff8161a44c] __sg_alloc_table+0x11c/0x180 , bytes_req: 32 } hitcount: 1 bytes_alloc: 32
{ call_site: [ffffffffc070749d] shmem_get_pages+0xad/0x5d0 [i915] , bytes_req: 16 } hitcount: 1 bytes_alloc: 16
{ call_site: [ffffffffc07507f5] intel_framebuffer_create+0x25/0x60 [i915] , bytes_req: 408 } hitcount: 1 bytes_alloc: 512
{ call_site: [ffffffffc06fc20f] eb_parse+0x34f/0x910 [i915] , bytes_req: 408 } hitcount: 1 bytes_alloc: 512
{ call_site: [ffffffffc0700ebd] i915_gem_object_get_pages_internal+0x5d/0x270 [i915] , bytes_req: 16 } hitcount: 1 bytes_alloc: 16
{ call_site: [ffffffffc0771188] intel_frontbuffer_get+0x38/0x220 [i915] , bytes_req: 400 } hitcount: 1 bytes_alloc: 512
{ call_site: [ffffffff8161a44c] __sg_alloc_table+0x11c/0x180 , bytes_req: 128 } hitcount: 1 bytes_alloc: 128
{ call_site: [ffffffff813f8f45] load_elf_binary+0x155/0x1680 , bytes_req: 28 } hitcount: 1 bytes_alloc: 32
{ call_site: [ffffffffc07038c8] __assign_mmap_offset+0x208/0x3d0 [i915] , bytes_req: 288 } hitcount: 1 bytes_alloc: 512
{ call_site: [ffffffff813737b2] alloc_bprm+0x32/0x2f0 , bytes_req: 416 } hitcount: 1 bytes_alloc: 512
{ call_site: [ffffffff813f9027] load_elf_binary+0x237/0x1680 , bytes_req: 64 } hitcount: 1 bytes_alloc: 64
{ call_site: [ffffffff8161a44c] __sg_alloc_table+0x11c/0x180 , bytes_req: 64 } hitcount: 1 bytes_alloc: 64
{ call_site: [ffffffffc040ffe7] drm_vma_node_allow+0x27/0xe0 [drm] , bytes_req: 40 } hitcount: 2 bytes_alloc: 128
{ call_site: [ffffffff813cda98] __do_sys_timerfd_create+0x58/0x1c0 , bytes_req: 336 } hitcount: 2 bytes_alloc: 1024
{ call_site: [ffffffff818355e6] dma_resv_get_fences+0xf6/0x440 , bytes_req: 40 } hitcount: 2 bytes_alloc: 128
{ call_site: [ffffffff8139b75a] single_open+0x2a/0xa0 , bytes_req: 32 } hitcount: 2 bytes_alloc: 64
{ call_site: [ffffffff815df715] bio_kmalloc+0x25/0x80 , bytes_req: 136 } hitcount: 2 bytes_alloc: 384
{ call_site: [ffffffffc071e5cd] i915_vma_work+0x1d/0x50 [i915] , bytes_req: 416 } hitcount: 3 bytes_alloc: 1536
{ call_site: [ffffffff81390d0d] alloc_fdtable+0x4d/0x100 , bytes_req: 56 } hitcount: 3 bytes_alloc: 192
{ call_site: [ffffffffc06ff65f] i915_gem_do_execbuffer+0x158f/0x2440 [i915] , bytes_req: 16 } hitcount: 4 bytes_alloc: 64
{ call_site: [ffffffff8137713c] alloc_pipe_info+0x5c/0x230 , bytes_req: 384 } hitcount: 5 bytes_alloc: 2560
{ call_site: [ffffffff813771b4] alloc_pipe_info+0xd4/0x230 , bytes_req: 640 } hitcount: 5 bytes_alloc: 5120
{ call_site: [ffffffff81834cdb] dma_resv_list_alloc+0x1b/0x40 , bytes_req: 40 } hitcount: 6 bytes_alloc: 384
{ call_site: [ffffffff81834cdb] dma_resv_list_alloc+0x1b/0x40 , bytes_req: 56 } hitcount: 9 bytes_alloc: 576
{ call_site: [ffffffff8120086e] tracing_map_sort_entries+0x9e/0x3e0 , bytes_req: 24 } hitcount: 60 bytes_alloc: 1920
Totals:
Hits: 122
Entries: 30
Dropped: 0
--
Note, although the examples use uppercase for the SQL keywords, they do not have
to be. 'SELECT' could also be 'select' or even 'sElEcT'.
By using the full SQL language, synthetic events can be made and processed.
For example, using *sqlhist* along with *trace-cmd*(1), wake up latency can
be recorded by creating a synthetic event by attaching the _sched_waking_
and the _sched_switch_ events.
[source, c]
--
# sqlhist -n wakeup_lat -e -T -m lat 'SELECT end.next_comm AS comm, (end.TIMESTAMP_USECS - start.TIMESTAMP_USECS) AS lat FROM ' \
'sched_waking AS start JOIN sched_switch AS end ON start.pid = end.next_pid WHERE end.next_prio < 100 && end.next_comm == "cyclictest"'
# trace-cmd start -e all -e wakeup_lat -R stacktrace
# cyclictest -l 1000 -p80 -i250 -a -t -q -m -d 0 -b 1000 --tracemark
# trace-cmd show -s | tail -30
<idle>-0 [002] dNh4 23454.902246: sched_wakeup: comm=cyclictest pid=12272 prio=120 target_cpu=002
<idle>-0 [005] ...1 23454.902246: cpu_idle: state=4294967295 cpu_id=5
<idle>-0 [007] d..1 23454.902246: cpu_idle: state=0 cpu_id=7
<idle>-0 [002] dNh1 23454.902247: hrtimer_expire_exit: hrtimer=0000000037956dc2
<idle>-0 [005] d..1 23454.902248: cpu_idle: state=0 cpu_id=5
<idle>-0 [002] dNh1 23454.902248: write_msr: 6e0, value 4866ce957272
<idle>-0 [006] ...1 23454.902248: cpu_idle: state=4294967295 cpu_id=6
<idle>-0 [002] dNh1 23454.902249: local_timer_exit: vector=236
<idle>-0 [006] d..1 23454.902250: cpu_idle: state=0 cpu_id=6
<idle>-0 [002] .N.1 23454.902250: cpu_idle: state=4294967295 cpu_id=2
<idle>-0 [002] dN.1 23454.902251: rcu_utilization: Start context switch
<idle>-0 [002] dN.1 23454.902252: rcu_utilization: End context switch
<idle>-0 [001] ...1 23454.902252: cpu_idle: state=4294967295 cpu_id=1
<idle>-0 [002] dN.3 23454.902253: prandom_u32: ret=3692516021
<idle>-0 [001] d..1 23454.902254: cpu_idle: state=0 cpu_id=1
<idle>-0 [002] d..2 23454.902254: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=cyclictest next_pid=12275 next_prio=19
<idle>-0 [002] d..4 23454.902256: wakeup_lat: next_comm=cyclictest lat=17
<idle>-0 [002] d..5 23454.902258: <stack trace>
=> trace_event_raw_event_synth
=> action_trace
=> event_hist_trigger
=> event_triggers_call
=> trace_event_buffer_commit
=> trace_event_raw_event_sched_switch
=> __traceiter_sched_switch
=> __schedule
=> schedule_idle
=> do_idle
=> cpu_startup_entry
=> secondary_startup_64_no_verify
--
Here's the options for *sqlhist* explained:
*-n wakeup_lat* ::
Name the synthetic event to use *wakeup_lat*.
*-e*::
Execute the commands that are printed.
*-T*::
Perform both a trace action and then a snapshot action (swap the buffer into the static 'snapshot' buffer).
*-m lat*::
Trigger the actions whenever 'lat' hits a new maximum value.
Now a breakdown of the SQL statement:
[source, c]
--
'SELECT end.next_comm AS comm, (end.TIMESTAMP_USECS - start.TIMESTAMP_USECS) AS lat FROM ' \
'sched_waking AS start JOIN sched_switch AS end ON start.pid = end.next_pid WHERE end.next_prio < 100 && end.next_comm == "cyclictest"'
--
*end.next_comm AS comm*::
Save the 'sched_switch' field *next_comm* and place it into the *comm* field of the 'wakeup_lat' synthetic event.
*(end.TIMESTAMP_USECS - start.TIMESTAMP_USECS) AS lat*::
Take the delta of the time stamps from the 'sched_switch' event and the 'sched_waking' event.
As time stamps are usually recorded in nanoseconds, *TIMESTAMP* would give the full nanosecond time stamp,
but here, the *TIMESTAMP_USECS* will truncate it into microseconds. The value is saved in the
variable *lat*, which will also be recorded in the synthetic event.
*FROM 'sched_waking' AS start JOIN sched_switch AS end ON start.pid = end.next_pid*::
Create the synthetic event by joining _sched_waking_ to _sched_switch_, matching
the _sched_waking_ 'pid' field with the _sched_switch_ 'next_pid' field.
Also make *start* an alias for _sched_waking_ and *end* an alias for _sched_switch_
which then an use *start* and *end* as a subsitute for _sched_waking_ and _sched_switch_
respectively through out the rest of the SQL statement.
*WHERE end.next_prio < 100 && end.next_comm == "cyclictest"*::
Filter the logic where it executes only if _sched_waking_ 'next_prio' field
is less than 100. (Note, in the Kernel, priorities are inverse, and the real-time
priorities are represented from 0-100 where 0 is the highest priority).
Also only trace when the 'next_comm' (the task scheduling in) of the _sched_switch_
event has the name "cyclictest".
For the *trace-cmd*(3) command:
[source, c]
--
trace-cmd start -e all -e wakeup_lat -R stacktrace
--
*trace-cmd start*::
Enables tracing (does not record to a file).
*-e all*::
Enable all events
*-e wakeup_lat -R stacktrace*::
have the "wakeup_lat" event (our synthetic event) enable the *stacktrace* trigger, were
for every instance of the "wakeup_lat" event, a kernel stack trace will be recorded
in the ring buffer.
After calling *cyclictest* (a real-time tool to measure wakeup latency), read the snapshot
buffer.
*trace-cmd show -s*::
*trace-cmd show* reads the kernel ring buffer, and the *-s* option will read the *snapshot*
buffer instead of the normal one.
[source, c]
--
<idle>-0 [002] d..4 23454.902256: wakeup_lat: next_comm=cyclictest lat=17
--
We see on the "wakeup_lat" event happened on CPU 2, with a wake up latency 17 microseconds.
This can be extracted into a *trace.dat* file that *trace-cmd*(3) can read and do further
analysis, as well as *kernelshark*.
[source, c]
--
# trace-cmd extract -s
# trace-cmd report --cpu 2 | tail -30
<idle>-0 [002] 23454.902238: prandom_u32: ret=1633425088
<idle>-0 [002] 23454.902239: sched_wakeup: cyclictest:12275 [19] CPU:002
<idle>-0 [002] 23454.902241: hrtimer_expire_exit: hrtimer=0xffffbbd68286fe60
<idle>-0 [002] 23454.902241: hrtimer_cancel: hrtimer=0xffffbbd6826efe70
<idle>-0 [002] 23454.902242: hrtimer_expire_entry: hrtimer=0xffffbbd6826efe70 now=23455294430750 function=hrtimer_wakeup/0x0
<idle>-0 [002] 23454.902243: sched_waking: comm=cyclictest pid=12272 prio=120 target_cpu=002
<idle>-0 [002] 23454.902244: prandom_u32: ret=1102749734
<idle>-0 [002] 23454.902246: sched_wakeup: cyclictest:12272 [120] CPU:002
<idle>-0 [002] 23454.902247: hrtimer_expire_exit: hrtimer=0xffffbbd6826efe70
<idle>-0 [002] 23454.902248: write_msr: 6e0, value 4866ce957272
<idle>-0 [002] 23454.902249: local_timer_exit: vector=236
<idle>-0 [002] 23454.902250: cpu_idle: state=4294967295 cpu_id=2
<idle>-0 [002] 23454.902251: rcu_utilization: Start context switch
<idle>-0 [002] 23454.902252: rcu_utilization: End context switch
<idle>-0 [002] 23454.902253: prandom_u32: ret=3692516021
<idle>-0 [002] 23454.902254: sched_switch: swapper/2:0 [120] R ==> cyclictest:12275 [19]
<idle>-0 [002] 23454.902256: wakeup_lat: next_comm=cyclictest lat=17
<idle>-0 [002] 23454.902258: kernel_stack: <stack trace >
=> trace_event_raw_event_synth (ffffffff8121a0db)
=> action_trace (ffffffff8121e9fb)
=> event_hist_trigger (ffffffff8121ca8d)
=> event_triggers_call (ffffffff81216c72)
=> trace_event_buffer_commit (ffffffff811f7618)
=> trace_event_raw_event_sched_switch (ffffffff8110fda4)
=> __traceiter_sched_switch (ffffffff8110d449)
=> __schedule (ffffffff81c02002)
=> schedule_idle (ffffffff81c02c86)
=> do_idle (ffffffff8111e898)
=> cpu_startup_entry (ffffffff8111eba9)
=> secondary_startup_64_no_verify (ffffffff81000107)
--
BUGS
----
As *sqlhist* is just example code from a man page, it is guaranteed to contain
lots of bugs. For one thing, not all error paths are covered properly.
SEE ALSO
--------
trace-cmd(1), tracefs_sql(3)
AUTHOR
------
Written by Steven Rostedt, <rostedt@goodmis.org>
RESOURCES
---------
https://git.kernel.org/pub/scm/utils/trace-cmd/trace-cmd.git/
COPYING
-------
Copyright \(C) 2021 , Inc. Free use of this software is granted under
the terms of the GNU Public License (GPL).