blob: 1863e34758da6fd6a6d8c7adbed86b8da5e41353 [file] [log] [blame]
/* By Guido Vranken <guidovranken@gmail.com> --
* https://guidovranken.wordpress.com/ */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include <limits.h>
#include "srtp.h"
#include "srtp_priv.h"
#include "ekt.h"
#include "fuzzer.h"
#include "mt19937.h"
#include "testmem.h"
/* Global variables */
static bool g_no_align = false; /* Can be enabled with --no_align */
static bool g_post_init =
false; /* Set to true once past initialization phase */
static bool g_write_input = false;
#ifdef FUZZ_32BIT
#include <sys/mman.h>
static bool g_no_mmap = false; /* Can be enabled with --no_mmap */
static void *g_mmap_allocation =
NULL; /* Keeps current mmap() allocation address */
static size_t g_mmap_allocation_size =
0; /* Keeps current mmap() allocation size */
#endif
/* Custom allocator functions */
static void *fuzz_alloc(const size_t size, const bool do_zero)
{
void *ret = NULL;
#ifdef FUZZ_32BIT
bool do_malloc = true;
#endif
bool do_mmap, mmap_high = true;
if (size == 0) {
size_t ret;
/* Allocations of size 0 are not illegal, but are a bad practice, since
* writing just a single byte to this region constitutes undefined
* behavior per the C spec. glibc will return a small, valid memory
* region
* whereas OpenBSD will crash upon writing to it.
* Intentionally return a pointer to an invalid page to detect
* unsound code efficiently.
* fuzz_free is aware of this pointer range and will not attempt
* to free()/munmap() it.
*/
ret = 0x01 + (fuzz_mt19937_get() % 1024);
return (void *)ret;
}
/* Don't do mmap()-based allocations during initialization */
if (g_post_init == true) {
/* Even extract these values if --no_mmap is specified.
* This keeps the PRNG output stream consistent across
* fuzzer configurations.
*/
do_mmap = (fuzz_mt19937_get() % 64) == 0 ? true : false;
if (do_mmap == true) {
mmap_high = (fuzz_mt19937_get() % 2) == 0 ? true : false;
}
} else {
do_mmap = false;
}
#ifdef FUZZ_32BIT
/* g_mmap_allocation must be NULL because we only support a single
* concurrent mmap allocation at a time
*/
if (g_mmap_allocation == NULL && g_no_mmap == false && do_mmap == true) {
void *mmap_address;
if (mmap_high == true) {
mmap_address = (void *)0xFFFF0000;
} else {
mmap_address = (void *)0x00010000;
}
g_mmap_allocation_size = size;
ret = mmap(mmap_address, g_mmap_allocation_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (ret == MAP_FAILED) {
/* That's okay -- just return NULL to the caller */
ret = NULL;
/* Reset this for the sake of cleanliness */
g_mmap_allocation_size = 0;
}
/* ret not being MAP_FAILED does not mean that ret is the requested
* address (mmap_address). That's okay. We're not going to perform
* a munmap() on it and call malloc() instead. It won't gain us
* anything.
*/
g_mmap_allocation = ret;
do_malloc = false;
}
if (do_malloc == true)
#endif
{
ret = malloc(size);
}
/* Mimic calloc() if so requested */
if (ret != NULL && do_zero) {
memset(ret, 0, size);
}
return ret;
}
/* Internal allocations by this fuzzer must on one hand (sometimes)
* receive memory from mmap(), but on the other hand these requests for
* memory may not fail. By calling this function, the allocation is
* guaranteed to succeed; it first tries with fuzz_alloc(), which may
* fail if it uses mmap(), and if that is the case, memory is allocated
* via the libc allocator (malloc, calloc) which should always succeed */
static void *fuzz_alloc_succeed(const size_t size, const bool do_zero)
{
void *ret = fuzz_alloc(size, do_zero);
if (ret == NULL) {
if (do_zero == false) {
ret = malloc(size);
} else {
ret = calloc(1, size);
}
}
return ret;
}
void *fuzz_calloc(const size_t nmemb, const size_t size)
{
/* We must be past srtp_init() to prevent that that function fails */
if (g_post_init == true) {
/* Fail 1 in 64 allocations on average to test whether the library
* can deal with this properly.
*/
if ((fuzz_mt19937_get() % 64) == 0) {
return NULL;
}
}
return fuzz_alloc(nmemb * size, true);
}
static bool fuzz_is_special_pointer(void *ptr)
{
/* Special, invalid pointers introduced when code attempted
* to do size = 0 allocations.
*/
if ((size_t)ptr >= 0x01 && (size_t)ptr < (0x01 + 1024)) {
return true;
} else {
return false;
}
}
void fuzz_free(void *ptr)
{
if (fuzz_is_special_pointer(ptr) == true) {
return;
}
#ifdef FUZZ_32BIT
if (g_post_init == true && ptr != NULL && ptr == g_mmap_allocation) {
if (munmap(g_mmap_allocation, g_mmap_allocation_size) == -1) {
/* Shouldn't happen */
abort();
}
g_mmap_allocation = NULL;
} else
#endif
{
free(ptr);
}
}
static srtp_err_status_t fuzz_srtp_protect(srtp_t srtp_sender,
void *hdr,
int *len,
uint8_t use_mki,
unsigned int mki)
{
return srtp_protect(srtp_sender, hdr, len);
}
static srtp_err_status_t fuzz_srtp_unprotect(srtp_t srtp_sender,
void *hdr,
int *len,
uint8_t use_mki,
unsigned int mki)
{
return srtp_unprotect(srtp_sender, hdr, len);
}
static srtp_err_status_t fuzz_srtp_protect_rtcp(srtp_t srtp_sender,
void *hdr,
int *len,
uint8_t use_mki,
unsigned int mki)
{
return srtp_protect_rtcp(srtp_sender, hdr, len);
}
static srtp_err_status_t fuzz_srtp_unprotect_rtcp(srtp_t srtp_sender,
void *hdr,
int *len,
uint8_t use_mki,
unsigned int mki)
{
return srtp_unprotect_rtcp(srtp_sender, hdr, len);
}
static srtp_err_status_t fuzz_srtp_protect_mki(srtp_t srtp_sender,
void *hdr,
int *len,
uint8_t use_mki,
unsigned int mki)
{
return srtp_protect_mki(srtp_sender, hdr, len, use_mki, mki);
}
static srtp_err_status_t fuzz_srtp_protect_rtcp_mki(srtp_t srtp_sender,
void *hdr,
int *len,
uint8_t use_mki,
unsigned int mki)
{
return srtp_protect_rtcp_mki(srtp_sender, hdr, len, use_mki, mki);
}
static srtp_err_status_t fuzz_srtp_unprotect_mki(srtp_t srtp_sender,
void *hdr,
int *len,
uint8_t use_mki,
unsigned int mki)
{
return srtp_unprotect_mki(srtp_sender, hdr, len, use_mki);
}
static srtp_err_status_t fuzz_srtp_unprotect_rtcp_mki(srtp_t srtp_sender,
void *hdr,
int *len,
uint8_t use_mki,
unsigned int mki)
{
return srtp_unprotect_rtcp_mki(srtp_sender, hdr, len, use_mki);
}
/* Get protect length functions */
static srtp_err_status_t fuzz_srtp_get_protect_length(const srtp_t srtp_ctx,
uint8_t use_mki,
unsigned int mki,
uint32_t *length)
{
return srtp_get_protect_trailer_length(srtp_ctx, 0, 0, length);
}
static srtp_err_status_t fuzz_srtp_get_protect_rtcp_length(
const srtp_t srtp_ctx,
uint8_t use_mki,
unsigned int mki,
uint32_t *length)
{
return srtp_get_protect_rtcp_trailer_length(srtp_ctx, 0, 0, length);
}
static srtp_err_status_t fuzz_srtp_get_protect_mki_length(const srtp_t srtp_ctx,
uint8_t use_mki,
unsigned int mki,
uint32_t *length)
{
return srtp_get_protect_trailer_length(srtp_ctx, use_mki, mki, length);
}
static srtp_err_status_t fuzz_srtp_get_protect_rtcp_mki_length(
const srtp_t srtp_ctx,
uint8_t use_mki,
unsigned int mki,
uint32_t *length)
{
return srtp_get_protect_rtcp_trailer_length(srtp_ctx, use_mki, mki, length);
}
static uint8_t *extract_key(const uint8_t **data,
size_t *size,
const size_t key_size)
{
uint8_t *ret;
if (*size < key_size) {
return NULL;
}
ret = fuzz_alloc_succeed(key_size, false);
EXTRACT(ret, *data, *size, key_size);
return ret;
}
static srtp_master_key_t *extract_master_key(const uint8_t **data,
size_t *size,
const size_t key_size,
bool simulate,
bool *success)
{
srtp_master_key_t *ret = NULL;
uint16_t mki_id_size;
if (simulate == true) {
*success = false;
}
EXTRACT_IF(&mki_id_size, *data, *size, sizeof(mki_id_size));
if (*size < key_size + mki_id_size) {
goto end;
}
if (simulate == true) {
*data += key_size + mki_id_size;
*size -= key_size + mki_id_size;
*success = true;
goto end;
}
ret = fuzz_alloc_succeed(sizeof(srtp_master_key_t), false);
ret->key = fuzz_alloc_succeed(key_size, false);
ret->mki_id = fuzz_alloc_succeed(mki_id_size, false);
EXTRACT(ret->key, *data, *size, key_size);
EXTRACT(ret->mki_id, *data, *size, mki_id_size);
ret->mki_size = mki_id_size;
end:
return ret;
}
static srtp_master_key_t **extract_master_keys(const uint8_t **data,
size_t *size,
const size_t key_size,
unsigned long *num_master_keys)
{
const uint8_t *data_orig = *data;
size_t size_orig = *size;
size_t i = 0;
srtp_master_key_t **ret = NULL;
*num_master_keys = 0;
/* First pass -- dry run, determine how many keys we want and can extract */
while (1) {
uint8_t do_extract_master_key;
bool success;
if (*size < sizeof(do_extract_master_key)) {
goto next;
}
EXTRACT(&do_extract_master_key, *data, *size,
sizeof(do_extract_master_key));
/* Decide whether to extract another key */
if ((do_extract_master_key % 2) == 0) {
break;
}
extract_master_key(data, size, key_size, true, &success);
if (success == false) {
break;
}
(*num_master_keys)++;
}
next:
*data = data_orig;
*size = size_orig;
/* Allocate array of pointers */
ret = fuzz_alloc_succeed(*num_master_keys * sizeof(srtp_master_key_t *),
false);
/* Second pass -- perform the actual extractions */
for (i = 0; i < *num_master_keys; i++) {
uint8_t do_extract_master_key;
EXTRACT_IF(&do_extract_master_key, *data, *size,
sizeof(do_extract_master_key));
if ((do_extract_master_key % 2) == 0) {
break;
}
ret[i] = extract_master_key(data, size, key_size, false, NULL);
if (ret[i] == NULL) {
/* Shouldn't happen */
abort();
}
}
end:
return ret;
}
static srtp_ekt_policy_t extract_ekt_policy(const uint8_t **data, size_t *size)
{
srtp_ekt_policy_t ret = NULL;
struct {
srtp_ekt_spi_t spi;
uint8_t key[16];
} params;
EXTRACT_IF(&params, *data, *size, sizeof(params));
ret = fuzz_alloc_succeed(sizeof(struct srtp_ekt_policy_ctx_t), false);
ret->spi = params.spi;
/* The only supported cipher type */
ret->ekt_cipher_type = SRTP_EKT_CIPHER_AES_128_ECB;
ret->ekt_key = fuzz_alloc_succeed(sizeof(params.key), false);
memcpy(ret->ekt_key, params.key, sizeof(params.key));
ret->next_ekt_policy = NULL;
end:
return ret;
}
static srtp_policy_t *extract_policy(const uint8_t **data, size_t *size)
{
srtp_policy_t *policy = NULL;
struct {
uint8_t srtp_crypto_policy_func;
uint64_t window_size;
uint8_t allow_repeat_tx;
uint8_t ssrc_type;
uint32_t ssrc_value;
uint8_t num_xtn_hdr;
uint8_t with_ekt;
srtp_ekt_spi_t ekt_spi;
uint8_t do_extract_key;
uint8_t do_extract_master_keys;
} params;
EXTRACT_IF(&params, *data, *size, sizeof(params));
params.srtp_crypto_policy_func %= sizeof(fuzz_srtp_crypto_policies) /
sizeof(fuzz_srtp_crypto_policies[0]);
params.allow_repeat_tx %= 2;
params.ssrc_type %=
sizeof(fuzz_ssrc_type_map) / sizeof(fuzz_ssrc_type_map[0]);
params.with_ekt %= 2;
policy = fuzz_alloc_succeed(sizeof(*policy), true);
fuzz_srtp_crypto_policies[params.srtp_crypto_policy_func]
.crypto_policy_func(&policy->rtp);
fuzz_srtp_crypto_policies[params.srtp_crypto_policy_func]
.crypto_policy_func(&policy->rtcp);
if (policy->rtp.cipher_key_len > MAX_KEY_LEN) {
/* Shouldn't happen */
abort();
}
policy->ssrc.type = fuzz_ssrc_type_map[params.ssrc_type].srtp_ssrc_type;
policy->ssrc.value = params.ssrc_value;
if ((params.do_extract_key % 2) == 0) {
policy->key = extract_key(data, size, policy->rtp.cipher_key_len);
if (policy->key == NULL) {
fuzz_free(policy);
return NULL;
}
}
if (params.num_xtn_hdr != 0) {
const size_t xtn_hdr_size = params.num_xtn_hdr * sizeof(int);
if (*size < xtn_hdr_size) {
fuzz_free(policy->key);
fuzz_free(policy);
return NULL;
}
policy->enc_xtn_hdr = fuzz_alloc_succeed(xtn_hdr_size, false);
EXTRACT(policy->enc_xtn_hdr, *data, *size, xtn_hdr_size);
policy->enc_xtn_hdr_count = params.num_xtn_hdr;
}
if ((params.do_extract_master_keys % 2) == 0) {
policy->keys = extract_master_keys(
data, size, policy->rtp.cipher_key_len, &policy->num_master_keys);
if (policy->keys == NULL) {
fuzz_free(policy->key);
fuzz_free(policy->enc_xtn_hdr);
fuzz_free(policy);
return NULL;
}
}
if (params.with_ekt) {
policy->ekt = extract_ekt_policy(data, size);
}
policy->window_size = params.window_size;
policy->allow_repeat_tx = params.allow_repeat_tx;
policy->next = NULL;
end:
return policy;
}
static srtp_policy_t *extract_policies(const uint8_t **data, size_t *size)
{
srtp_policy_t *curpolicy = NULL, *policy_chain = NULL;
curpolicy = extract_policy(data, size);
if (curpolicy == NULL) {
return NULL;
}
policy_chain = curpolicy;
while (1) {
uint8_t do_extract_policy;
EXTRACT_IF(&do_extract_policy, *data, *size, sizeof(do_extract_policy));
/* Decide whether to extract another policy */
if ((do_extract_policy % 2) == 0) {
break;
}
curpolicy->next = extract_policy(data, size);
if (curpolicy->next == NULL) {
break;
}
curpolicy = curpolicy->next;
}
end:
return policy_chain;
}
static uint32_t *extract_remove_stream_ssrc(const uint8_t **data,
size_t *size,
uint8_t *num_remove_stream)
{
uint32_t *ret = NULL;
uint8_t _num_remove_stream;
size_t total_size;
*num_remove_stream = 0;
EXTRACT_IF(&_num_remove_stream, *data, *size, sizeof(_num_remove_stream));
if (_num_remove_stream == 0) {
goto end;
}
total_size = _num_remove_stream * sizeof(uint32_t);
if (*size < total_size) {
goto end;
}
ret = fuzz_alloc_succeed(total_size, false);
EXTRACT(ret, *data, *size, total_size);
*num_remove_stream = _num_remove_stream;
end:
return ret;
}
static uint32_t *extract_set_roc(const uint8_t **data,
size_t *size,
uint8_t *num_set_roc)
{
uint32_t *ret = NULL;
uint8_t _num_set_roc;
size_t total_size;
*num_set_roc = 0;
EXTRACT_IF(&_num_set_roc, *data, *size, sizeof(_num_set_roc));
if (_num_set_roc == 0) {
goto end;
}
/* Tuples of 2 uint32_t's */
total_size = _num_set_roc * sizeof(uint32_t) * 2;
if (*size < total_size) {
goto end;
}
ret = fuzz_alloc_succeed(total_size, false);
EXTRACT(ret, *data, *size, total_size);
*num_set_roc = _num_set_roc;
end:
return ret;
}
static void free_policies(srtp_policy_t *curpolicy)
{
size_t i;
while (curpolicy) {
srtp_policy_t *next = curpolicy->next;
fuzz_free(curpolicy->key);
for (i = 0; i < curpolicy->num_master_keys; i++) {
fuzz_free(curpolicy->keys[i]->key);
fuzz_free(curpolicy->keys[i]->mki_id);
fuzz_free(curpolicy->keys[i]);
}
fuzz_free(curpolicy->keys);
fuzz_free(curpolicy->enc_xtn_hdr);
if (curpolicy->ekt) {
fuzz_free(curpolicy->ekt->ekt_key);
fuzz_free(curpolicy->ekt);
}
fuzz_free(curpolicy);
curpolicy = next;
}
}
static uint8_t *run_srtp_func(const srtp_t srtp_ctx,
const uint8_t **data,
size_t *size)
{
uint8_t *ret = NULL;
uint8_t *copy = NULL, *copy_2 = NULL;
struct {
uint16_t size;
uint8_t srtp_func;
uint8_t use_mki;
uint32_t mki;
uint8_t stretch;
} params_1;
struct {
uint8_t srtp_func;
uint8_t use_mki;
uint32_t mki;
} params_2;
int ret_size;
EXTRACT_IF(&params_1, *data, *size, sizeof(params_1));
params_1.srtp_func %= sizeof(srtp_funcs) / sizeof(srtp_funcs[0]);
params_1.use_mki %= 2;
if (*size < params_1.size) {
goto end;
}
/* Enforce 4 byte alignment */
if (g_no_align == false) {
params_1.size -= params_1.size % 4;
}
if (params_1.size == 0) {
goto end;
}
ret_size = params_1.size;
if (srtp_funcs[params_1.srtp_func].protect == true) {
/* Intentionally not initialized to trigger MemorySanitizer, if
* applicable */
uint32_t alloc_size;
if (srtp_funcs[params_1.srtp_func].get_length(
srtp_ctx, params_1.use_mki, params_1.mki, &alloc_size) !=
srtp_err_status_ok) {
goto end;
}
copy = fuzz_alloc_succeed(ret_size + alloc_size, false);
} else {
copy = fuzz_alloc_succeed(ret_size, false);
}
EXTRACT(copy, *data, *size, params_1.size);
if (srtp_funcs[params_1.srtp_func].srtp_func(
srtp_ctx, copy, &ret_size, params_1.use_mki, params_1.mki) !=
srtp_err_status_ok) {
fuzz_free(copy);
goto end;
}
// fuzz_free(copy);
fuzz_testmem(copy, ret_size);
ret = copy;
EXTRACT_IF(&params_2, *data, *size, sizeof(params_2));
params_2.srtp_func %= sizeof(srtp_funcs) / sizeof(srtp_funcs[0]);
params_2.use_mki %= 2;
if (ret_size == 0) {
goto end;
}
if (srtp_funcs[params_2.srtp_func].protect == true) {
/* Intentionally not initialized to trigger MemorySanitizer, if
* applicable */
uint32_t alloc_size;
if (srtp_funcs[params_2.srtp_func].get_length(
srtp_ctx, params_2.use_mki, params_2.mki, &alloc_size) !=
srtp_err_status_ok) {
goto end;
}
copy_2 = fuzz_alloc_succeed(ret_size + alloc_size, false);
} else {
copy_2 = fuzz_alloc_succeed(ret_size, false);
}
memcpy(copy_2, copy, ret_size);
fuzz_free(copy);
copy = copy_2;
if (srtp_funcs[params_2.srtp_func].srtp_func(
srtp_ctx, copy, &ret_size, params_2.use_mki, params_2.mki) !=
srtp_err_status_ok) {
fuzz_free(copy);
ret = NULL;
goto end;
}
fuzz_testmem(copy, ret_size);
ret = copy;
end:
return ret;
}
void fuzz_srtp_event_handler(srtp_event_data_t *data)
{
fuzz_testmem(data, sizeof(srtp_event_data_t));
if (data->session != NULL) {
fuzz_testmem(data->session, sizeof(*data->session));
}
}
static void fuzz_write_input(const uint8_t *data, size_t size)
{
FILE *fp = fopen("input.bin", "wb");
if (fp == NULL) {
/* Shouldn't happen */
abort();
}
if (size != 0 && fwrite(data, size, 1, fp) != 1) {
printf("Cannot write\n");
/* Shouldn't happen */
abort();
}
fclose(fp);
}
int LLVMFuzzerInitialize(int *argc, char ***argv)
{
char **_argv = *argv;
int i;
bool no_custom_event_handler = false;
if (srtp_init() != srtp_err_status_ok) {
/* Shouldn't happen */
abort();
}
for (i = 0; i < *argc; i++) {
if (strcmp("--no_align", _argv[i]) == 0) {
g_no_align = true;
} else if (strcmp("--no_custom_event_handler", _argv[i]) == 0) {
no_custom_event_handler = true;
} else if (strcmp("--write_input", _argv[i]) == 0) {
g_write_input = true;
}
#ifdef FUZZ_32BIT
else if (strcmp("--no_mmap", _argv[i]) == 0) {
g_no_mmap = true;
}
#endif
else if (strncmp("--", _argv[i], 2) == 0) {
printf("Invalid argument: %s\n", _argv[i]);
exit(0);
}
}
if (no_custom_event_handler == false) {
if (srtp_install_event_handler(fuzz_srtp_event_handler) !=
srtp_err_status_ok) {
/* Shouldn't happen */
abort();
}
}
/* Fully initialized -- past this point, simulated allocation failures
* are allowed to occur */
g_post_init = true;
return 0;
}
int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size)
{
uint8_t num_remove_stream;
uint32_t *remove_stream_ssrc = NULL;
uint8_t num_set_roc;
uint32_t *set_roc = NULL;
srtp_t srtp_ctx = NULL;
srtp_policy_t *policy_chain = NULL, *policy_chain_2 = NULL;
uint32_t randseed;
static bool firstrun = true;
if (firstrun == true) {
/* TODO version check etc and send it to MSAN */
}
#ifdef FUZZ_32BIT
/* Free the mmap allocation made during the previous iteration, if
* applicable */
fuzz_free(g_mmap_allocation);
#endif
if (g_write_input == true) {
fuzz_write_input(data, size);
}
EXTRACT_IF(&randseed, data, size, sizeof(randseed));
fuzz_mt19937_init(randseed);
srand(randseed);
/* policy_chain is used to initialize the srtp context with */
if ((policy_chain = extract_policies(&data, &size)) == NULL) {
goto end;
}
/* policy_chain_2 is used as an argument to srtp_update later on */
if ((policy_chain_2 = extract_policies(&data, &size)) == NULL) {
goto end;
}
/* Create context */
if (srtp_create(&srtp_ctx, policy_chain) != srtp_err_status_ok) {
goto end;
}
// free_policies(policy_chain);
// policy_chain = NULL;
/* Don't check for NULL result -- no extractions is fine */
remove_stream_ssrc =
extract_remove_stream_ssrc(&data, &size, &num_remove_stream);
/* Don't check for NULL result -- no extractions is fine */
set_roc = extract_set_roc(&data, &size, &num_set_roc);
{
uint8_t *ret;
int i = 0, j = 0;
while ((ret = run_srtp_func(srtp_ctx, &data, &size)) != NULL) {
fuzz_free(ret);
/* Keep removing streams until the set of SSRCs extracted from the
* fuzzer input is exhausted */
if (i < num_remove_stream) {
if (srtp_remove_stream(srtp_ctx, remove_stream_ssrc[i]) !=
srtp_err_status_ok) {
goto end;
}
i++;
}
/* Keep setting and getting ROCs until the set of SSRC/ROC tuples
* extracted from the fuzzer input is exhausted */
if (j < num_set_roc * 2) {
uint32_t roc;
if (srtp_set_stream_roc(srtp_ctx, set_roc[j], set_roc[j + 1]) !=
srtp_err_status_ok) {
goto end;
}
if (srtp_get_stream_roc(srtp_ctx, set_roc[j + 1], &roc) !=
srtp_err_status_ok) {
goto end;
}
j += 2;
}
if (policy_chain_2 != NULL) {
/* TODO srtp_update(srtp_ctx, policy_chain_2); */
/* Discard after using once */
free_policies(policy_chain_2);
policy_chain_2 = NULL;
}
}
}
end:
free_policies(policy_chain);
free_policies(policy_chain_2);
fuzz_free(remove_stream_ssrc);
fuzz_free(set_roc);
if (srtp_ctx != NULL) {
srtp_dealloc(srtp_ctx);
}
fuzz_mt19937_destroy();
return 0;
}