| /****************************************************************************** |
| * |
| * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| ******************************************************************************/ |
| /** |
| ******************************************************************************* |
| * @file |
| * ihevc_itrans_recon_8x8.c |
| * |
| * @brief |
| * Contains function definitions for inverse transform and reconstruction 8x8 |
| * |
| * |
| * @author |
| * 100470 |
| * |
| * @par List of Functions: |
| * - ihevc_itrans_recon_8x8() |
| * |
| * @remarks |
| * None |
| * |
| ******************************************************************************* |
| */ |
| #include <stdio.h> |
| #include <string.h> |
| #include "ihevc_typedefs.h" |
| #include "ihevc_macros.h" |
| #include "ihevc_platform_macros.h" |
| #include "ihevc_defs.h" |
| #include "ihevc_trans_tables.h" |
| #include "ihevc_itrans_recon.h" |
| #include "ihevc_func_selector.h" |
| #include "ihevc_trans_macros.h" |
| |
| /** |
| ******************************************************************************* |
| * |
| * @brief |
| * This function performs Inverse transform and reconstruction for 8x8 |
| * input block |
| * |
| * @par Description: |
| * Performs inverse transform and adds the prediction data and clips output |
| * to 8 bit |
| * |
| * @param[in] pi2_src |
| * Input 8x8 coefficients |
| * |
| * @param[in] pi2_tmp |
| * Temporary 8x8 buffer for storing inverse |
| * |
| * transform |
| * 1st stage output |
| * |
| * @param[in] pu1_pred |
| * Prediction 8x8 block |
| * |
| * @param[out] pu1_dst |
| * Output 8x8 block |
| * |
| * @param[in] src_strd |
| * Input stride |
| * |
| * @param[in] pred_strd |
| * Prediction stride |
| * |
| * @param[in] dst_strd |
| * Output Stride |
| * |
| * @param[in] shift |
| * Output shift |
| * |
| * @param[in] zero_cols |
| * Zero columns in pi2_src |
| * |
| * @returns Void |
| * |
| * @remarks |
| * None |
| * |
| ******************************************************************************* |
| */ |
| |
| void ihevc_itrans_recon_8x8(WORD16 *pi2_src, |
| WORD16 *pi2_tmp, |
| UWORD8 *pu1_pred, |
| UWORD8 *pu1_dst, |
| WORD32 src_strd, |
| WORD32 pred_strd, |
| WORD32 dst_strd, |
| WORD32 zero_cols, |
| WORD32 zero_rows) |
| { |
| WORD32 j, k; |
| WORD32 e[4], o[4]; |
| WORD32 ee[2], eo[2]; |
| WORD32 add; |
| WORD32 shift; |
| WORD16 *pi2_tmp_orig; |
| WORD32 trans_size; |
| WORD32 zero_rows_2nd_stage = zero_cols; |
| WORD32 row_limit_2nd_stage; |
| |
| trans_size = TRANS_SIZE_8; |
| |
| pi2_tmp_orig = pi2_tmp; |
| |
| if((zero_cols & 0xF0) == 0xF0) |
| row_limit_2nd_stage = 4; |
| else |
| row_limit_2nd_stage = TRANS_SIZE_8; |
| |
| |
| if((zero_rows & 0xF0) == 0xF0) /* First 4 rows of input are non-zero */ |
| { |
| /************************************************************************************************/ |
| /**********************************START - IT_RECON_8x8******************************************/ |
| /************************************************************************************************/ |
| |
| /* Inverse Transform 1st stage */ |
| shift = IT_SHIFT_STAGE_1; |
| add = 1 << (shift - 1); |
| |
| for(j = 0; j < row_limit_2nd_stage; j++) |
| { |
| /* Checking for Zero Cols */ |
| if((zero_cols & 1) == 1) |
| { |
| memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); |
| } |
| else |
| { |
| /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| for(k = 0; k < 4; k++) |
| { |
| o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd] |
| + g_ai2_ihevc_trans_8[3][k] |
| * pi2_src[3 * src_strd]; |
| } |
| eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd]; |
| eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd]; |
| ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0]; |
| ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0]; |
| |
| /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| e[0] = ee[0] + eo[0]; |
| e[3] = ee[0] - eo[0]; |
| e[1] = ee[1] + eo[1]; |
| e[2] = ee[1] - eo[1]; |
| for(k = 0; k < 4; k++) |
| { |
| pi2_tmp[k] = |
| CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| pi2_tmp[k + 4] = |
| CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); |
| } |
| } |
| pi2_src++; |
| pi2_tmp += trans_size; |
| zero_cols = zero_cols >> 1; |
| } |
| |
| pi2_tmp = pi2_tmp_orig; |
| |
| /* Inverse Transform 2nd stage */ |
| shift = IT_SHIFT_STAGE_2; |
| add = 1 << (shift - 1); |
| if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */ |
| { |
| for(j = 0; j < trans_size; j++) |
| { |
| /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| for(k = 0; k < 4; k++) |
| { |
| o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size] |
| + g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size]; |
| } |
| eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]; |
| eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]; |
| ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]; |
| ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]; |
| |
| /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| e[0] = ee[0] + eo[0]; |
| e[3] = ee[0] - eo[0]; |
| e[1] = ee[1] + eo[1]; |
| e[2] = ee[1] - eo[1]; |
| for(k = 0; k < 4; k++) |
| { |
| WORD32 itrans_out; |
| itrans_out = |
| CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| itrans_out = |
| CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); |
| pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4])); |
| } |
| pi2_tmp++; |
| pu1_pred += pred_strd; |
| pu1_dst += dst_strd; |
| } |
| } |
| else /* All rows of output of 1st stage are non-zero */ |
| { |
| for(j = 0; j < trans_size; j++) |
| { |
| /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| for(k = 0; k < 4; k++) |
| { |
| o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size] |
| + g_ai2_ihevc_trans_8[3][k] |
| * pi2_tmp[3 * trans_size] |
| + g_ai2_ihevc_trans_8[5][k] |
| * pi2_tmp[5 * trans_size] |
| + g_ai2_ihevc_trans_8[7][k] |
| * pi2_tmp[7 * trans_size]; |
| } |
| |
| eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size] |
| + g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size]; |
| eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size] |
| + g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size]; |
| ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0] |
| + g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size]; |
| ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0] |
| + g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size]; |
| |
| /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| e[0] = ee[0] + eo[0]; |
| e[3] = ee[0] - eo[0]; |
| e[1] = ee[1] + eo[1]; |
| e[2] = ee[1] - eo[1]; |
| for(k = 0; k < 4; k++) |
| { |
| WORD32 itrans_out; |
| itrans_out = |
| CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| itrans_out = |
| CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); |
| pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4])); |
| } |
| pi2_tmp++; |
| pu1_pred += pred_strd; |
| pu1_dst += dst_strd; |
| } |
| } |
| /************************************************************************************************/ |
| /************************************END - IT_RECON_8x8******************************************/ |
| /************************************************************************************************/ |
| } |
| else /* All rows of input are non-zero */ |
| { |
| /************************************************************************************************/ |
| /**********************************START - IT_RECON_8x8******************************************/ |
| /************************************************************************************************/ |
| |
| /* Inverse Transform 1st stage */ |
| shift = IT_SHIFT_STAGE_1; |
| add = 1 << (shift - 1); |
| |
| for(j = 0; j < row_limit_2nd_stage; j++) |
| { |
| /* Checking for Zero Cols */ |
| if((zero_cols & 1) == 1) |
| { |
| memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); |
| } |
| else |
| { |
| /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| for(k = 0; k < 4; k++) |
| { |
| o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd] |
| + g_ai2_ihevc_trans_8[3][k] |
| * pi2_src[3 * src_strd] |
| + g_ai2_ihevc_trans_8[5][k] |
| * pi2_src[5 * src_strd] |
| + g_ai2_ihevc_trans_8[7][k] |
| * pi2_src[7 * src_strd]; |
| } |
| |
| eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd] |
| + g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd]; |
| eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd] |
| + g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd]; |
| ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0] |
| + g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd]; |
| ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0] |
| + g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd]; |
| |
| /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| e[0] = ee[0] + eo[0]; |
| e[3] = ee[0] - eo[0]; |
| e[1] = ee[1] + eo[1]; |
| e[2] = ee[1] - eo[1]; |
| for(k = 0; k < 4; k++) |
| { |
| pi2_tmp[k] = |
| CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| pi2_tmp[k + 4] = |
| CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); |
| } |
| } |
| pi2_src++; |
| pi2_tmp += trans_size; |
| zero_cols = zero_cols >> 1; |
| } |
| |
| pi2_tmp = pi2_tmp_orig; |
| |
| /* Inverse Transform 2nd stage */ |
| shift = IT_SHIFT_STAGE_2; |
| add = 1 << (shift - 1); |
| if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */ |
| { |
| for(j = 0; j < trans_size; j++) |
| { |
| /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| for(k = 0; k < 4; k++) |
| { |
| o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size] |
| + g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size]; |
| } |
| eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]; |
| eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]; |
| ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]; |
| ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]; |
| |
| /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| e[0] = ee[0] + eo[0]; |
| e[3] = ee[0] - eo[0]; |
| e[1] = ee[1] + eo[1]; |
| e[2] = ee[1] - eo[1]; |
| for(k = 0; k < 4; k++) |
| { |
| WORD32 itrans_out; |
| itrans_out = |
| CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| itrans_out = |
| CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); |
| pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4])); |
| } |
| pi2_tmp++; |
| pu1_pred += pred_strd; |
| pu1_dst += dst_strd; |
| } |
| } |
| else /* All rows of output of 1st stage are non-zero */ |
| { |
| for(j = 0; j < trans_size; j++) |
| { |
| /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ |
| for(k = 0; k < 4; k++) |
| { |
| o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size] |
| + g_ai2_ihevc_trans_8[3][k] |
| * pi2_tmp[3 * trans_size] |
| + g_ai2_ihevc_trans_8[5][k] |
| * pi2_tmp[5 * trans_size] |
| + g_ai2_ihevc_trans_8[7][k] |
| * pi2_tmp[7 * trans_size]; |
| } |
| |
| eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size] |
| + g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size]; |
| eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size] |
| + g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size]; |
| ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0] |
| + g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size]; |
| ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0] |
| + g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size]; |
| |
| /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ |
| e[0] = ee[0] + eo[0]; |
| e[3] = ee[0] - eo[0]; |
| e[1] = ee[1] + eo[1]; |
| e[2] = ee[1] - eo[1]; |
| for(k = 0; k < 4; k++) |
| { |
| WORD32 itrans_out; |
| itrans_out = |
| CLIP_S16(((e[k] + o[k] + add) >> shift)); |
| pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); |
| itrans_out = |
| CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); |
| pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4])); |
| } |
| pi2_tmp++; |
| pu1_pred += pred_strd; |
| pu1_dst += dst_strd; |
| } |
| } |
| /************************************************************************************************/ |
| /************************************END - IT_RECON_8x8******************************************/ |
| /************************************************************************************************/ |
| } |
| } |
| |