blob: 4c9e716ee7446227f88bc888ec64a49b124b5e2c [file] [log] [blame]
// Copyright 2020 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/warp.h"
#include "src/utils/cpu.h"
#if LIBGAV1_ENABLE_SSE4_1
#include <smmintrin.h>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <type_traits>
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_sse4.h"
#include "src/dsp/x86/transpose_sse4.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"
namespace libgav1 {
namespace dsp {
namespace low_bitdepth {
namespace {
// Number of extra bits of precision in warped filtering.
constexpr int kWarpedDiffPrecisionBits = 10;
// This assumes the two filters contain filter[x] and filter[x+2].
inline __m128i AccumulateFilter(const __m128i sum, const __m128i filter_0,
const __m128i filter_1,
const __m128i& src_window) {
const __m128i filter_taps = _mm_unpacklo_epi8(filter_0, filter_1);
const __m128i src =
_mm_unpacklo_epi8(src_window, _mm_srli_si128(src_window, 2));
return _mm_add_epi16(sum, _mm_maddubs_epi16(src, filter_taps));
}
constexpr int kFirstPassOffset = 1 << 14;
constexpr int kOffsetRemoval =
(kFirstPassOffset >> kInterRoundBitsHorizontal) * 128;
// Applies the horizontal filter to one source row and stores the result in
// |intermediate_result_row|. |intermediate_result_row| is a row in the 15x8
// |intermediate_result| two-dimensional array.
inline void HorizontalFilter(const int sx4, const int16_t alpha,
const __m128i src_row,
int16_t intermediate_result_row[8]) {
int sx = sx4 - MultiplyBy4(alpha);
__m128i filter[8];
for (__m128i& f : filter) {
const int offset = RightShiftWithRounding(sx, kWarpedDiffPrecisionBits) +
kWarpedPixelPrecisionShifts;
f = LoadLo8(kWarpedFilters8[offset]);
sx += alpha;
}
Transpose8x8To4x16_U8(filter, filter);
// |filter| now contains two filters per register.
// Staggered combinations allow us to take advantage of _mm_maddubs_epi16
// without overflowing the sign bit. The sign bit is hit only where two taps
// paired in a single madd add up to more than 128. This is only possible with
// two adjacent "inner" taps. Therefore, pairing odd with odd and even with
// even guarantees safety. |sum| is given a negative offset to allow for large
// intermediate values.
// k = 0, 2.
__m128i src_row_window = src_row;
__m128i sum = _mm_set1_epi16(-kFirstPassOffset);
sum = AccumulateFilter(sum, filter[0], filter[1], src_row_window);
// k = 1, 3.
src_row_window = _mm_srli_si128(src_row_window, 1);
sum = AccumulateFilter(sum, _mm_srli_si128(filter[0], 8),
_mm_srli_si128(filter[1], 8), src_row_window);
// k = 4, 6.
src_row_window = _mm_srli_si128(src_row_window, 3);
sum = AccumulateFilter(sum, filter[2], filter[3], src_row_window);
// k = 5, 7.
src_row_window = _mm_srli_si128(src_row_window, 1);
sum = AccumulateFilter(sum, _mm_srli_si128(filter[2], 8),
_mm_srli_si128(filter[3], 8), src_row_window);
sum = RightShiftWithRounding_S16(sum, kInterRoundBitsHorizontal);
StoreUnaligned16(intermediate_result_row, sum);
}
template <bool is_compound>
inline void WriteVerticalFilter(const __m128i filter[8],
const int16_t intermediate_result[15][8], int y,
void* dst_row) {
constexpr int kRoundBitsVertical =
is_compound ? kInterRoundBitsCompoundVertical : kInterRoundBitsVertical;
__m128i sum_low = _mm_set1_epi32(kOffsetRemoval);
__m128i sum_high = sum_low;
for (int k = 0; k < 8; k += 2) {
const __m128i filters_low = _mm_unpacklo_epi16(filter[k], filter[k + 1]);
const __m128i filters_high = _mm_unpackhi_epi16(filter[k], filter[k + 1]);
const __m128i intermediate_0 = LoadUnaligned16(intermediate_result[y + k]);
const __m128i intermediate_1 =
LoadUnaligned16(intermediate_result[y + k + 1]);
const __m128i intermediate_low =
_mm_unpacklo_epi16(intermediate_0, intermediate_1);
const __m128i intermediate_high =
_mm_unpackhi_epi16(intermediate_0, intermediate_1);
const __m128i product_low = _mm_madd_epi16(filters_low, intermediate_low);
const __m128i product_high =
_mm_madd_epi16(filters_high, intermediate_high);
sum_low = _mm_add_epi32(sum_low, product_low);
sum_high = _mm_add_epi32(sum_high, product_high);
}
sum_low = RightShiftWithRounding_S32(sum_low, kRoundBitsVertical);
sum_high = RightShiftWithRounding_S32(sum_high, kRoundBitsVertical);
if (is_compound) {
const __m128i sum = _mm_packs_epi32(sum_low, sum_high);
StoreUnaligned16(static_cast<int16_t*>(dst_row), sum);
} else {
const __m128i sum = _mm_packus_epi32(sum_low, sum_high);
StoreLo8(static_cast<uint8_t*>(dst_row), _mm_packus_epi16(sum, sum));
}
}
template <bool is_compound>
inline void WriteVerticalFilter(const __m128i filter[8],
const int16_t* intermediate_result_column,
void* dst_row) {
constexpr int kRoundBitsVertical =
is_compound ? kInterRoundBitsCompoundVertical : kInterRoundBitsVertical;
__m128i sum_low = _mm_setzero_si128();
__m128i sum_high = _mm_setzero_si128();
for (int k = 0; k < 8; k += 2) {
const __m128i filters_low = _mm_unpacklo_epi16(filter[k], filter[k + 1]);
const __m128i filters_high = _mm_unpackhi_epi16(filter[k], filter[k + 1]);
// Equivalent to unpacking two vectors made by duplicating int16_t values.
const __m128i intermediate =
_mm_set1_epi32((intermediate_result_column[k + 1] << 16) |
intermediate_result_column[k]);
const __m128i product_low = _mm_madd_epi16(filters_low, intermediate);
const __m128i product_high = _mm_madd_epi16(filters_high, intermediate);
sum_low = _mm_add_epi32(sum_low, product_low);
sum_high = _mm_add_epi32(sum_high, product_high);
}
sum_low = RightShiftWithRounding_S32(sum_low, kRoundBitsVertical);
sum_high = RightShiftWithRounding_S32(sum_high, kRoundBitsVertical);
if (is_compound) {
const __m128i sum = _mm_packs_epi32(sum_low, sum_high);
StoreUnaligned16(static_cast<int16_t*>(dst_row), sum);
} else {
const __m128i sum = _mm_packus_epi32(sum_low, sum_high);
StoreLo8(static_cast<uint8_t*>(dst_row), _mm_packus_epi16(sum, sum));
}
}
template <bool is_compound, typename DestType>
inline void VerticalFilter(const int16_t source[15][8], int y4, int gamma,
int delta, DestType* dest_row,
ptrdiff_t dest_stride) {
int sy4 = (y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta);
for (int y = 0; y < 8; ++y) {
int sy = sy4 - MultiplyBy4(gamma);
__m128i filter[8];
for (__m128i& f : filter) {
const int offset = RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) +
kWarpedPixelPrecisionShifts;
f = LoadUnaligned16(kWarpedFilters[offset]);
sy += gamma;
}
Transpose8x8_U16(filter, filter);
WriteVerticalFilter<is_compound>(filter, source, y, dest_row);
dest_row += dest_stride;
sy4 += delta;
}
}
template <bool is_compound, typename DestType>
inline void VerticalFilter(const int16_t* source_cols, int y4, int gamma,
int delta, DestType* dest_row,
ptrdiff_t dest_stride) {
int sy4 = (y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta);
for (int y = 0; y < 8; ++y) {
int sy = sy4 - MultiplyBy4(gamma);
__m128i filter[8];
for (__m128i& f : filter) {
const int offset = RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) +
kWarpedPixelPrecisionShifts;
f = LoadUnaligned16(kWarpedFilters[offset]);
sy += gamma;
}
Transpose8x8_U16(filter, filter);
WriteVerticalFilter<is_compound>(filter, &source_cols[y], dest_row);
dest_row += dest_stride;
sy4 += delta;
}
}
template <bool is_compound, typename DestType>
inline void WarpRegion1(const uint8_t* src, ptrdiff_t source_stride,
int source_width, int source_height, int ix4, int iy4,
DestType* dst_row, ptrdiff_t dest_stride) {
// Region 1
// Points to the left or right border of the first row of |src|.
const uint8_t* first_row_border =
(ix4 + 7 <= 0) ? src : src + source_width - 1;
// In general, for y in [-7, 8), the row number iy4 + y is clipped:
// const int row = Clip3(iy4 + y, 0, source_height - 1);
// In two special cases, iy4 + y is clipped to either 0 or
// source_height - 1 for all y. In the rest of the cases, iy4 + y is
// bounded and we can avoid clipping iy4 + y by relying on a reference
// frame's boundary extension on the top and bottom.
// Region 1.
// Every sample used to calculate the prediction block has the same
// value. So the whole prediction block has the same value.
const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1;
const uint8_t row_border_pixel = first_row_border[row * source_stride];
if (is_compound) {
const __m128i sum =
_mm_set1_epi16(row_border_pixel << (kInterRoundBitsVertical -
kInterRoundBitsCompoundVertical));
StoreUnaligned16(dst_row, sum);
} else {
memset(dst_row, row_border_pixel, 8);
}
const DestType* const first_dst_row = dst_row;
dst_row += dest_stride;
for (int y = 1; y < 8; ++y) {
memcpy(dst_row, first_dst_row, 8 * sizeof(*dst_row));
dst_row += dest_stride;
}
}
template <bool is_compound, typename DestType>
inline void WarpRegion2(const uint8_t* src, ptrdiff_t source_stride,
int source_width, int y4, int ix4, int iy4, int gamma,
int delta, int16_t intermediate_result_column[15],
DestType* dst_row, ptrdiff_t dest_stride) {
// Region 2.
// Points to the left or right border of the first row of |src|.
const uint8_t* first_row_border =
(ix4 + 7 <= 0) ? src : src + source_width - 1;
// In general, for y in [-7, 8), the row number iy4 + y is clipped:
// const int row = Clip3(iy4 + y, 0, source_height - 1);
// In two special cases, iy4 + y is clipped to either 0 or
// source_height - 1 for all y. In the rest of the cases, iy4 + y is
// bounded and we can avoid clipping iy4 + y by relying on a reference
// frame's boundary extension on the top and bottom.
// Region 2.
// Horizontal filter.
// The input values in this region are generated by extending the border
// which makes them identical in the horizontal direction. This
// computation could be inlined in the vertical pass but most
// implementations will need a transpose of some sort.
// It is not necessary to use the offset values here because the
// horizontal pass is a simple shift and the vertical pass will always
// require using 32 bits.
for (int y = -7; y < 8; ++y) {
// We may over-read up to 13 pixels above the top source row, or up
// to 13 pixels below the bottom source row. This is proved in
// warp.cc.
const int row = iy4 + y;
int sum = first_row_border[row * source_stride];
sum <<= (kFilterBits - kInterRoundBitsHorizontal);
intermediate_result_column[y + 7] = sum;
}
// Region 2 vertical filter.
VerticalFilter<is_compound, DestType>(intermediate_result_column, y4, gamma,
delta, dst_row, dest_stride);
}
template <bool is_compound, typename DestType>
inline void WarpRegion3(const uint8_t* src, ptrdiff_t source_stride,
int source_height, int alpha, int beta, int x4, int ix4,
int iy4, int16_t intermediate_result[15][8]) {
// Region 3
// At this point, we know ix4 - 7 < source_width - 1 and ix4 + 7 > 0.
// In general, for y in [-7, 8), the row number iy4 + y is clipped:
// const int row = Clip3(iy4 + y, 0, source_height - 1);
// In two special cases, iy4 + y is clipped to either 0 or
// source_height - 1 for all y. In the rest of the cases, iy4 + y is
// bounded and we can avoid clipping iy4 + y by relying on a reference
// frame's boundary extension on the top and bottom.
// Horizontal filter.
const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1;
const uint8_t* const src_row = src + row * source_stride;
// Read 15 samples from &src_row[ix4 - 7]. The 16th sample is also
// read but is ignored.
//
// NOTE: This may read up to 13 bytes before src_row[0] or up to 14
// bytes after src_row[source_width - 1]. We assume the source frame
// has left and right borders of at least 13 bytes that extend the
// frame boundary pixels. We also assume there is at least one extra
// padding byte after the right border of the last source row.
const __m128i src_row_v = LoadUnaligned16(&src_row[ix4 - 7]);
int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7;
for (int y = -7; y < 8; ++y) {
HorizontalFilter(sx4, alpha, src_row_v, intermediate_result[y + 7]);
sx4 += beta;
}
}
template <bool is_compound, typename DestType>
inline void WarpRegion4(const uint8_t* src, ptrdiff_t source_stride, int alpha,
int beta, int x4, int ix4, int iy4,
int16_t intermediate_result[15][8]) {
// Region 4.
// At this point, we know ix4 - 7 < source_width - 1 and ix4 + 7 > 0.
// In general, for y in [-7, 8), the row number iy4 + y is clipped:
// const int row = Clip3(iy4 + y, 0, source_height - 1);
// In two special cases, iy4 + y is clipped to either 0 or
// source_height - 1 for all y. In the rest of the cases, iy4 + y is
// bounded and we can avoid clipping iy4 + y by relying on a reference
// frame's boundary extension on the top and bottom.
// Horizontal filter.
int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7;
for (int y = -7; y < 8; ++y) {
// We may over-read up to 13 pixels above the top source row, or up
// to 13 pixels below the bottom source row. This is proved in
// warp.cc.
const int row = iy4 + y;
const uint8_t* const src_row = src + row * source_stride;
// Read 15 samples from &src_row[ix4 - 7]. The 16th sample is also
// read but is ignored.
//
// NOTE: This may read up to 13 bytes before src_row[0] or up to 14
// bytes after src_row[source_width - 1]. We assume the source frame
// has left and right borders of at least 13 bytes that extend the
// frame boundary pixels. We also assume there is at least one extra
// padding byte after the right border of the last source row.
const __m128i src_row_v = LoadUnaligned16(&src_row[ix4 - 7]);
// Convert src_row_v to int8 (subtract 128).
HorizontalFilter(sx4, alpha, src_row_v, intermediate_result[y + 7]);
sx4 += beta;
}
}
template <bool is_compound, typename DestType>
inline void HandleWarpBlock(const uint8_t* src, ptrdiff_t source_stride,
int source_width, int source_height,
const int* warp_params, int subsampling_x,
int subsampling_y, int src_x, int src_y,
int16_t alpha, int16_t beta, int16_t gamma,
int16_t delta, DestType* dst_row,
ptrdiff_t dest_stride) {
union {
// Intermediate_result is the output of the horizontal filtering and
// rounding. The range is within 13 (= bitdepth + kFilterBits + 1 -
// kInterRoundBitsHorizontal) bits (unsigned). We use the signed int16_t
// type so that we can start with a negative offset and restore it on the
// final filter sum.
int16_t intermediate_result[15][8]; // 15 rows, 8 columns.
// In the simple special cases where the samples in each row are all the
// same, store one sample per row in a column vector.
int16_t intermediate_result_column[15];
};
const int dst_x =
src_x * warp_params[2] + src_y * warp_params[3] + warp_params[0];
const int dst_y =
src_x * warp_params[4] + src_y * warp_params[5] + warp_params[1];
const int x4 = dst_x >> subsampling_x;
const int y4 = dst_y >> subsampling_y;
const int ix4 = x4 >> kWarpedModelPrecisionBits;
const int iy4 = y4 >> kWarpedModelPrecisionBits;
// A prediction block may fall outside the frame's boundaries. If a
// prediction block is calculated using only samples outside the frame's
// boundary, the filtering can be simplified. We can divide the plane
// into several regions and handle them differently.
//
// | |
// 1 | 3 | 1
// | |
// -------+-----------+-------
// |***********|
// 2 |*****4*****| 2
// |***********|
// -------+-----------+-------
// | |
// 1 | 3 | 1
// | |
//
// At the center, region 4 represents the frame and is the general case.
//
// In regions 1 and 2, the prediction block is outside the frame's
// boundary horizontally. Therefore the horizontal filtering can be
// simplified. Furthermore, in the region 1 (at the four corners), the
// prediction is outside the frame's boundary both horizontally and
// vertically, so we get a constant prediction block.
//
// In region 3, the prediction block is outside the frame's boundary
// vertically. Unfortunately because we apply the horizontal filters
// first, by the time we apply the vertical filters, they no longer see
// simple inputs. So the only simplification is that all the rows are
// the same, but we still need to apply all the horizontal and vertical
// filters.
// Check for two simple special cases, where the horizontal filter can
// be significantly simplified.
//
// In general, for each row, the horizontal filter is calculated as
// follows:
// for (int x = -4; x < 4; ++x) {
// const int offset = ...;
// int sum = first_pass_offset;
// for (int k = 0; k < 8; ++k) {
// const int column = Clip3(ix4 + x + k - 3, 0, source_width - 1);
// sum += kWarpedFilters[offset][k] * src_row[column];
// }
// ...
// }
// The column index before clipping, ix4 + x + k - 3, varies in the range
// ix4 - 7 <= ix4 + x + k - 3 <= ix4 + 7. If ix4 - 7 >= source_width - 1
// or ix4 + 7 <= 0, then all the column indexes are clipped to the same
// border index (source_width - 1 or 0, respectively). Then for each x,
// the inner for loop of the horizontal filter is reduced to multiplying
// the border pixel by the sum of the filter coefficients.
if (ix4 - 7 >= source_width - 1 || ix4 + 7 <= 0) {
if ((iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0)) {
// Outside the frame in both directions. One repeated value.
WarpRegion1<is_compound, DestType>(src, source_stride, source_width,
source_height, ix4, iy4, dst_row,
dest_stride);
return;
}
// Outside the frame horizontally. Rows repeated.
WarpRegion2<is_compound, DestType>(
src, source_stride, source_width, y4, ix4, iy4, gamma, delta,
intermediate_result_column, dst_row, dest_stride);
return;
}
if ((iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0)) {
// Outside the frame vertically.
WarpRegion3<is_compound, DestType>(src, source_stride, source_height, alpha,
beta, x4, ix4, iy4, intermediate_result);
} else {
// Inside the frame.
WarpRegion4<is_compound, DestType>(src, source_stride, alpha, beta, x4, ix4,
iy4, intermediate_result);
}
// Region 3 and 4 vertical filter.
VerticalFilter<is_compound, DestType>(intermediate_result, y4, gamma, delta,
dst_row, dest_stride);
}
template <bool is_compound>
void Warp_SSE4_1(const void* source, ptrdiff_t source_stride, int source_width,
int source_height, const int* warp_params, int subsampling_x,
int subsampling_y, int block_start_x, int block_start_y,
int block_width, int block_height, int16_t alpha, int16_t beta,
int16_t gamma, int16_t delta, void* dest,
ptrdiff_t dest_stride) {
const auto* const src = static_cast<const uint8_t*>(source);
using DestType =
typename std::conditional<is_compound, int16_t, uint8_t>::type;
auto* dst = static_cast<DestType*>(dest);
// Warp process applies for each 8x8 block.
assert(block_width >= 8);
assert(block_height >= 8);
const int block_end_x = block_start_x + block_width;
const int block_end_y = block_start_y + block_height;
const int start_x = block_start_x;
const int start_y = block_start_y;
int src_x = (start_x + 4) << subsampling_x;
int src_y = (start_y + 4) << subsampling_y;
const int end_x = (block_end_x + 4) << subsampling_x;
const int end_y = (block_end_y + 4) << subsampling_y;
do {
DestType* dst_row = dst;
src_x = (start_x + 4) << subsampling_x;
do {
HandleWarpBlock<is_compound, DestType>(
src, source_stride, source_width, source_height, warp_params,
subsampling_x, subsampling_y, src_x, src_y, alpha, beta, gamma, delta,
dst_row, dest_stride);
src_x += (8 << subsampling_x);
dst_row += 8;
} while (src_x < end_x);
dst += 8 * dest_stride;
src_y += (8 << subsampling_y);
} while (src_y < end_y);
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
dsp->warp = Warp_SSE4_1</*is_compound=*/false>;
dsp->warp_compound = Warp_SSE4_1</*is_compound=*/true>;
}
} // namespace
} // namespace low_bitdepth
void WarpInit_SSE4_1() { low_bitdepth::Init8bpp(); }
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_ENABLE_SSE4_1
namespace libgav1 {
namespace dsp {
void WarpInit_SSE4_1() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_ENABLE_SSE4_1