blob: 11ba9aab68e1d1564da046cd759c35588621c157 [file] [log] [blame]
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/intrapred.h"
#include "src/utils/cpu.h"
#if LIBGAV1_ENABLE_SSE4_1
#include <xmmintrin.h>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring> // memcpy
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_sse4.h"
#include "src/dsp/x86/transpose_sse4.h"
#include "src/utils/common.h"
namespace libgav1 {
namespace dsp {
namespace {
//------------------------------------------------------------------------------
// Utility Functions
// This is a fast way to divide by a number of the form 2^n + 2^k, n > k.
// Divide by 2^k by right shifting by k, leaving the denominator 2^m + 1. In the
// block size cases, n - k is 1 or 2 (block is proportional to 1x2 or 1x4), so
// we use a multiplier that reflects division by 2+1=3 or 4+1=5 in the high
// bits.
constexpr int kThreeInverse = 0x5556;
constexpr int kFiveInverse = 0x3334;
template <int shiftk, int multiplier>
inline __m128i DivideByMultiplyShift_U32(const __m128i dividend) {
const __m128i interm = _mm_srli_epi32(dividend, shiftk);
return _mm_mulhi_epi16(interm, _mm_cvtsi32_si128(multiplier));
}
// This shuffle mask selects 32-bit blocks in the order 0, 1, 0, 1, which
// duplicates the first 8 bytes of a 128-bit vector into the second 8 bytes.
constexpr int kDuplicateFirstHalf = 0x44;
//------------------------------------------------------------------------------
// DcPredFuncs_SSE4_1
using DcSumFunc = __m128i (*)(const void* ref);
using DcStoreFunc = void (*)(void* dest, ptrdiff_t stride, const __m128i dc);
using WriteDuplicateFunc = void (*)(void* dest, ptrdiff_t stride,
const __m128i column);
// For copying an entire column across a block.
using ColumnStoreFunc = void (*)(void* dest, ptrdiff_t stride,
const void* column);
// DC intra-predictors for non-square blocks.
template <int width_log2, int height_log2, DcSumFunc top_sumfn,
DcSumFunc left_sumfn, DcStoreFunc storefn, int shiftk, int dc_mult>
struct DcPredFuncs_SSE4_1 {
DcPredFuncs_SSE4_1() = delete;
static void DcTop(void* dest, ptrdiff_t stride, const void* top_row,
const void* left_column);
static void DcLeft(void* dest, ptrdiff_t stride, const void* top_row,
const void* left_column);
static void Dc(void* dest, ptrdiff_t stride, const void* top_row,
const void* left_column);
};
// Directional intra-predictors for square blocks.
template <ColumnStoreFunc col_storefn>
struct DirectionalPredFuncs_SSE4_1 {
DirectionalPredFuncs_SSE4_1() = delete;
static void Vertical(void* dest, ptrdiff_t stride, const void* top_row,
const void* left_column);
static void Horizontal(void* dest, ptrdiff_t stride, const void* top_row,
const void* left_column);
};
template <int width_log2, int height_log2, DcSumFunc top_sumfn,
DcSumFunc left_sumfn, DcStoreFunc storefn, int shiftk, int dc_mult>
void DcPredFuncs_SSE4_1<width_log2, height_log2, top_sumfn, left_sumfn, storefn,
shiftk, dc_mult>::DcTop(void* const dest,
ptrdiff_t stride,
const void* const top_row,
const void* /*left_column*/) {
const __m128i rounder = _mm_set1_epi32(1 << (width_log2 - 1));
const __m128i sum = top_sumfn(top_row);
const __m128i dc = _mm_srli_epi32(_mm_add_epi32(sum, rounder), width_log2);
storefn(dest, stride, dc);
}
template <int width_log2, int height_log2, DcSumFunc top_sumfn,
DcSumFunc left_sumfn, DcStoreFunc storefn, int shiftk, int dc_mult>
void DcPredFuncs_SSE4_1<width_log2, height_log2, top_sumfn, left_sumfn, storefn,
shiftk,
dc_mult>::DcLeft(void* const dest, ptrdiff_t stride,
const void* /*top_row*/,
const void* const left_column) {
const __m128i rounder = _mm_set1_epi32(1 << (height_log2 - 1));
const __m128i sum = left_sumfn(left_column);
const __m128i dc = _mm_srli_epi32(_mm_add_epi32(sum, rounder), height_log2);
storefn(dest, stride, dc);
}
template <int width_log2, int height_log2, DcSumFunc top_sumfn,
DcSumFunc left_sumfn, DcStoreFunc storefn, int shiftk, int dc_mult>
void DcPredFuncs_SSE4_1<width_log2, height_log2, top_sumfn, left_sumfn, storefn,
shiftk, dc_mult>::Dc(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i rounder =
_mm_set1_epi32((1 << (width_log2 - 1)) + (1 << (height_log2 - 1)));
const __m128i sum_top = top_sumfn(top_row);
const __m128i sum_left = left_sumfn(left_column);
const __m128i sum = _mm_add_epi32(sum_top, sum_left);
if (width_log2 == height_log2) {
const __m128i dc =
_mm_srli_epi32(_mm_add_epi32(sum, rounder), width_log2 + 1);
storefn(dest, stride, dc);
} else {
const __m128i dc =
DivideByMultiplyShift_U32<shiftk, dc_mult>(_mm_add_epi32(sum, rounder));
storefn(dest, stride, dc);
}
}
//------------------------------------------------------------------------------
// DcPredFuncs_SSE4_1 directional predictors
template <ColumnStoreFunc col_storefn>
void DirectionalPredFuncs_SSE4_1<col_storefn>::Horizontal(
void* const dest, ptrdiff_t stride, const void* /*top_row*/,
const void* const left_column) {
col_storefn(dest, stride, left_column);
}
} // namespace
//------------------------------------------------------------------------------
namespace low_bitdepth {
namespace {
// |ref| points to 4 bytes containing 4 packed ints.
inline __m128i DcSum4_SSE4_1(const void* const ref) {
const __m128i vals = Load4(ref);
const __m128i zero = _mm_setzero_si128();
return _mm_sad_epu8(vals, zero);
}
inline __m128i DcSum8_SSE4_1(const void* const ref) {
const __m128i vals = LoadLo8(ref);
const __m128i zero = _mm_setzero_si128();
return _mm_sad_epu8(vals, zero);
}
inline __m128i DcSum16_SSE4_1(const void* const ref) {
const __m128i zero = _mm_setzero_si128();
const __m128i vals = LoadUnaligned16(ref);
const __m128i partial_sum = _mm_sad_epu8(vals, zero);
return _mm_add_epi16(partial_sum, _mm_srli_si128(partial_sum, 8));
}
inline __m128i DcSum32_SSE4_1(const void* const ref) {
const __m128i zero = _mm_setzero_si128();
const __m128i vals1 = LoadUnaligned16(ref);
const __m128i vals2 = LoadUnaligned16(static_cast<const uint8_t*>(ref) + 16);
const __m128i partial_sum1 = _mm_sad_epu8(vals1, zero);
const __m128i partial_sum2 = _mm_sad_epu8(vals2, zero);
const __m128i partial_sum = _mm_add_epi16(partial_sum1, partial_sum2);
return _mm_add_epi16(partial_sum, _mm_srli_si128(partial_sum, 8));
}
inline __m128i DcSum64_SSE4_1(const void* const ref) {
const auto* const ref_ptr = static_cast<const uint8_t*>(ref);
const __m128i zero = _mm_setzero_si128();
const __m128i vals1 = LoadUnaligned16(ref_ptr);
const __m128i vals2 = LoadUnaligned16(ref_ptr + 16);
const __m128i vals3 = LoadUnaligned16(ref_ptr + 32);
const __m128i vals4 = LoadUnaligned16(ref_ptr + 48);
const __m128i partial_sum1 = _mm_sad_epu8(vals1, zero);
const __m128i partial_sum2 = _mm_sad_epu8(vals2, zero);
__m128i partial_sum = _mm_add_epi16(partial_sum1, partial_sum2);
const __m128i partial_sum3 = _mm_sad_epu8(vals3, zero);
partial_sum = _mm_add_epi16(partial_sum, partial_sum3);
const __m128i partial_sum4 = _mm_sad_epu8(vals4, zero);
partial_sum = _mm_add_epi16(partial_sum, partial_sum4);
return _mm_add_epi16(partial_sum, _mm_srli_si128(partial_sum, 8));
}
template <int height>
inline void DcStore4xH_SSE4_1(void* const dest, ptrdiff_t stride,
const __m128i dc) {
const __m128i zero = _mm_setzero_si128();
const __m128i dc_dup = _mm_shuffle_epi8(dc, zero);
int y = height - 1;
auto* dst = static_cast<uint8_t*>(dest);
do {
Store4(dst, dc_dup);
dst += stride;
} while (--y != 0);
Store4(dst, dc_dup);
}
template <int height>
inline void DcStore8xH_SSE4_1(void* const dest, ptrdiff_t stride,
const __m128i dc) {
const __m128i zero = _mm_setzero_si128();
const __m128i dc_dup = _mm_shuffle_epi8(dc, zero);
int y = height - 1;
auto* dst = static_cast<uint8_t*>(dest);
do {
StoreLo8(dst, dc_dup);
dst += stride;
} while (--y != 0);
StoreLo8(dst, dc_dup);
}
template <int height>
inline void DcStore16xH_SSE4_1(void* const dest, ptrdiff_t stride,
const __m128i dc) {
const __m128i zero = _mm_setzero_si128();
const __m128i dc_dup = _mm_shuffle_epi8(dc, zero);
int y = height - 1;
auto* dst = static_cast<uint8_t*>(dest);
do {
StoreUnaligned16(dst, dc_dup);
dst += stride;
} while (--y != 0);
StoreUnaligned16(dst, dc_dup);
}
template <int height>
inline void DcStore32xH_SSE4_1(void* const dest, ptrdiff_t stride,
const __m128i dc) {
const __m128i zero = _mm_setzero_si128();
const __m128i dc_dup = _mm_shuffle_epi8(dc, zero);
int y = height - 1;
auto* dst = static_cast<uint8_t*>(dest);
do {
StoreUnaligned16(dst, dc_dup);
StoreUnaligned16(dst + 16, dc_dup);
dst += stride;
} while (--y != 0);
StoreUnaligned16(dst, dc_dup);
StoreUnaligned16(dst + 16, dc_dup);
}
template <int height>
inline void DcStore64xH_SSE4_1(void* const dest, ptrdiff_t stride,
const __m128i dc) {
const __m128i zero = _mm_setzero_si128();
const __m128i dc_dup = _mm_shuffle_epi8(dc, zero);
int y = height - 1;
auto* dst = static_cast<uint8_t*>(dest);
do {
StoreUnaligned16(dst, dc_dup);
StoreUnaligned16(dst + 16, dc_dup);
StoreUnaligned16(dst + 32, dc_dup);
StoreUnaligned16(dst + 48, dc_dup);
dst += stride;
} while (--y != 0);
StoreUnaligned16(dst, dc_dup);
StoreUnaligned16(dst + 16, dc_dup);
StoreUnaligned16(dst + 32, dc_dup);
StoreUnaligned16(dst + 48, dc_dup);
}
// WriteDuplicateN assumes dup has 4 sets of 4 identical bytes that are meant to
// be copied for width N into dest.
inline void WriteDuplicate4x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
auto* dst = static_cast<uint8_t*>(dest);
Store4(dst, dup32);
dst += stride;
const int row1 = _mm_extract_epi32(dup32, 1);
memcpy(dst, &row1, 4);
dst += stride;
const int row2 = _mm_extract_epi32(dup32, 2);
memcpy(dst, &row2, 4);
dst += stride;
const int row3 = _mm_extract_epi32(dup32, 3);
memcpy(dst, &row3, 4);
}
inline void WriteDuplicate8x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
const __m128i dup64_lo = _mm_unpacklo_epi32(dup32, dup32);
const __m128i dup64_hi = _mm_unpackhi_epi32(dup32, dup32);
auto* dst = static_cast<uint8_t*>(dest);
_mm_storel_epi64(reinterpret_cast<__m128i*>(dst), dup64_lo);
dst += stride;
_mm_storeh_pi(reinterpret_cast<__m64*>(dst), _mm_castsi128_ps(dup64_lo));
dst += stride;
_mm_storel_epi64(reinterpret_cast<__m128i*>(dst), dup64_hi);
dst += stride;
_mm_storeh_pi(reinterpret_cast<__m64*>(dst), _mm_castsi128_ps(dup64_hi));
}
inline void WriteDuplicate16x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
const __m128i dup64_lo = _mm_unpacklo_epi32(dup32, dup32);
const __m128i dup64_hi = _mm_unpackhi_epi32(dup32, dup32);
auto* dst = static_cast<uint8_t*>(dest);
const __m128i dup128_0 = _mm_unpacklo_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_0);
dst += stride;
const __m128i dup128_1 = _mm_unpackhi_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_1);
dst += stride;
const __m128i dup128_2 = _mm_unpacklo_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_2);
dst += stride;
const __m128i dup128_3 = _mm_unpackhi_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_3);
}
inline void WriteDuplicate32x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
const __m128i dup64_lo = _mm_unpacklo_epi32(dup32, dup32);
const __m128i dup64_hi = _mm_unpackhi_epi32(dup32, dup32);
auto* dst = static_cast<uint8_t*>(dest);
const __m128i dup128_0 = _mm_unpacklo_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_0);
dst += stride;
const __m128i dup128_1 = _mm_unpackhi_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_1);
dst += stride;
const __m128i dup128_2 = _mm_unpacklo_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_2);
dst += stride;
const __m128i dup128_3 = _mm_unpackhi_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_3);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_3);
}
inline void WriteDuplicate64x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
const __m128i dup64_lo = _mm_unpacklo_epi32(dup32, dup32);
const __m128i dup64_hi = _mm_unpackhi_epi32(dup32, dup32);
auto* dst = static_cast<uint8_t*>(dest);
const __m128i dup128_0 = _mm_unpacklo_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 32), dup128_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 48), dup128_0);
dst += stride;
const __m128i dup128_1 = _mm_unpackhi_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 32), dup128_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 48), dup128_1);
dst += stride;
const __m128i dup128_2 = _mm_unpacklo_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 32), dup128_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 48), dup128_2);
dst += stride;
const __m128i dup128_3 = _mm_unpackhi_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_3);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_3);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 32), dup128_3);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 48), dup128_3);
}
// ColStoreN<height> copies each of the |height| values in |column| across its
// corresponding in dest.
template <WriteDuplicateFunc writefn>
inline void ColStore4_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const __m128i col_data = Load4(column);
const __m128i col_dup16 = _mm_unpacklo_epi8(col_data, col_data);
const __m128i col_dup32 = _mm_unpacklo_epi16(col_dup16, col_dup16);
writefn(dest, stride, col_dup32);
}
template <WriteDuplicateFunc writefn>
inline void ColStore8_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const ptrdiff_t stride4 = stride << 2;
const __m128i col_data = LoadLo8(column);
const __m128i col_dup16 = _mm_unpacklo_epi8(col_data, col_data);
const __m128i col_dup32_lo = _mm_unpacklo_epi16(col_dup16, col_dup16);
auto* dst = static_cast<uint8_t*>(dest);
writefn(dst, stride, col_dup32_lo);
dst += stride4;
const __m128i col_dup32_hi = _mm_unpackhi_epi16(col_dup16, col_dup16);
writefn(dst, stride, col_dup32_hi);
}
template <WriteDuplicateFunc writefn>
inline void ColStore16_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const ptrdiff_t stride4 = stride << 2;
const __m128i col_data = _mm_loadu_si128(static_cast<const __m128i*>(column));
const __m128i col_dup16_lo = _mm_unpacklo_epi8(col_data, col_data);
const __m128i col_dup16_hi = _mm_unpackhi_epi8(col_data, col_data);
const __m128i col_dup32_lolo = _mm_unpacklo_epi16(col_dup16_lo, col_dup16_lo);
auto* dst = static_cast<uint8_t*>(dest);
writefn(dst, stride, col_dup32_lolo);
dst += stride4;
const __m128i col_dup32_lohi = _mm_unpackhi_epi16(col_dup16_lo, col_dup16_lo);
writefn(dst, stride, col_dup32_lohi);
dst += stride4;
const __m128i col_dup32_hilo = _mm_unpacklo_epi16(col_dup16_hi, col_dup16_hi);
writefn(dst, stride, col_dup32_hilo);
dst += stride4;
const __m128i col_dup32_hihi = _mm_unpackhi_epi16(col_dup16_hi, col_dup16_hi);
writefn(dst, stride, col_dup32_hihi);
}
template <WriteDuplicateFunc writefn>
inline void ColStore32_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const ptrdiff_t stride4 = stride << 2;
auto* dst = static_cast<uint8_t*>(dest);
for (int y = 0; y < 32; y += 16) {
const __m128i col_data =
LoadUnaligned16(static_cast<const uint8_t*>(column) + y);
const __m128i col_dup16_lo = _mm_unpacklo_epi8(col_data, col_data);
const __m128i col_dup16_hi = _mm_unpackhi_epi8(col_data, col_data);
const __m128i col_dup32_lolo =
_mm_unpacklo_epi16(col_dup16_lo, col_dup16_lo);
writefn(dst, stride, col_dup32_lolo);
dst += stride4;
const __m128i col_dup32_lohi =
_mm_unpackhi_epi16(col_dup16_lo, col_dup16_lo);
writefn(dst, stride, col_dup32_lohi);
dst += stride4;
const __m128i col_dup32_hilo =
_mm_unpacklo_epi16(col_dup16_hi, col_dup16_hi);
writefn(dst, stride, col_dup32_hilo);
dst += stride4;
const __m128i col_dup32_hihi =
_mm_unpackhi_epi16(col_dup16_hi, col_dup16_hi);
writefn(dst, stride, col_dup32_hihi);
dst += stride4;
}
}
template <WriteDuplicateFunc writefn>
inline void ColStore64_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const ptrdiff_t stride4 = stride << 2;
auto* dst = static_cast<uint8_t*>(dest);
for (int y = 0; y < 64; y += 16) {
const __m128i col_data =
LoadUnaligned16(static_cast<const uint8_t*>(column) + y);
const __m128i col_dup16_lo = _mm_unpacklo_epi8(col_data, col_data);
const __m128i col_dup16_hi = _mm_unpackhi_epi8(col_data, col_data);
const __m128i col_dup32_lolo =
_mm_unpacklo_epi16(col_dup16_lo, col_dup16_lo);
writefn(dst, stride, col_dup32_lolo);
dst += stride4;
const __m128i col_dup32_lohi =
_mm_unpackhi_epi16(col_dup16_lo, col_dup16_lo);
writefn(dst, stride, col_dup32_lohi);
dst += stride4;
const __m128i col_dup32_hilo =
_mm_unpacklo_epi16(col_dup16_hi, col_dup16_hi);
writefn(dst, stride, col_dup32_hilo);
dst += stride4;
const __m128i col_dup32_hihi =
_mm_unpackhi_epi16(col_dup16_hi, col_dup16_hi);
writefn(dst, stride, col_dup32_hihi);
dst += stride4;
}
}
struct DcDefs {
DcDefs() = delete;
using _4x4 = DcPredFuncs_SSE4_1<2, 2, DcSum4_SSE4_1, DcSum4_SSE4_1,
DcStore4xH_SSE4_1<4>, 0, 0>;
// shiftk is the smaller of width_log2 and height_log2.
// dc_mult corresponds to the ratio of the smaller block size to the larger.
using _4x8 = DcPredFuncs_SSE4_1<2, 3, DcSum4_SSE4_1, DcSum8_SSE4_1,
DcStore4xH_SSE4_1<8>, 2, kThreeInverse>;
using _4x16 = DcPredFuncs_SSE4_1<2, 4, DcSum4_SSE4_1, DcSum16_SSE4_1,
DcStore4xH_SSE4_1<16>, 2, kFiveInverse>;
using _8x4 = DcPredFuncs_SSE4_1<3, 2, DcSum8_SSE4_1, DcSum4_SSE4_1,
DcStore8xH_SSE4_1<4>, 2, kThreeInverse>;
using _8x8 = DcPredFuncs_SSE4_1<3, 3, DcSum8_SSE4_1, DcSum8_SSE4_1,
DcStore8xH_SSE4_1<8>, 0, 0>;
using _8x16 = DcPredFuncs_SSE4_1<3, 4, DcSum8_SSE4_1, DcSum16_SSE4_1,
DcStore8xH_SSE4_1<16>, 3, kThreeInverse>;
using _8x32 = DcPredFuncs_SSE4_1<3, 5, DcSum8_SSE4_1, DcSum32_SSE4_1,
DcStore8xH_SSE4_1<32>, 3, kFiveInverse>;
using _16x4 = DcPredFuncs_SSE4_1<4, 2, DcSum16_SSE4_1, DcSum4_SSE4_1,
DcStore16xH_SSE4_1<4>, 2, kFiveInverse>;
using _16x8 = DcPredFuncs_SSE4_1<4, 3, DcSum16_SSE4_1, DcSum8_SSE4_1,
DcStore16xH_SSE4_1<8>, 3, kThreeInverse>;
using _16x16 = DcPredFuncs_SSE4_1<4, 4, DcSum16_SSE4_1, DcSum16_SSE4_1,
DcStore16xH_SSE4_1<16>, 0, 0>;
using _16x32 = DcPredFuncs_SSE4_1<4, 5, DcSum16_SSE4_1, DcSum32_SSE4_1,
DcStore16xH_SSE4_1<32>, 4, kThreeInverse>;
using _16x64 = DcPredFuncs_SSE4_1<4, 6, DcSum16_SSE4_1, DcSum64_SSE4_1,
DcStore16xH_SSE4_1<64>, 4, kFiveInverse>;
using _32x8 = DcPredFuncs_SSE4_1<5, 3, DcSum32_SSE4_1, DcSum8_SSE4_1,
DcStore32xH_SSE4_1<8>, 3, kFiveInverse>;
using _32x16 = DcPredFuncs_SSE4_1<5, 4, DcSum32_SSE4_1, DcSum16_SSE4_1,
DcStore32xH_SSE4_1<16>, 4, kThreeInverse>;
using _32x32 = DcPredFuncs_SSE4_1<5, 5, DcSum32_SSE4_1, DcSum32_SSE4_1,
DcStore32xH_SSE4_1<32>, 0, 0>;
using _32x64 = DcPredFuncs_SSE4_1<5, 6, DcSum32_SSE4_1, DcSum64_SSE4_1,
DcStore32xH_SSE4_1<64>, 5, kThreeInverse>;
using _64x16 = DcPredFuncs_SSE4_1<6, 4, DcSum64_SSE4_1, DcSum16_SSE4_1,
DcStore64xH_SSE4_1<16>, 4, kFiveInverse>;
using _64x32 = DcPredFuncs_SSE4_1<6, 5, DcSum64_SSE4_1, DcSum32_SSE4_1,
DcStore64xH_SSE4_1<32>, 5, kThreeInverse>;
using _64x64 = DcPredFuncs_SSE4_1<6, 6, DcSum64_SSE4_1, DcSum64_SSE4_1,
DcStore64xH_SSE4_1<64>, 0, 0>;
};
struct DirDefs {
DirDefs() = delete;
using _4x4 = DirectionalPredFuncs_SSE4_1<ColStore4_SSE4_1<WriteDuplicate4x4>>;
using _4x8 = DirectionalPredFuncs_SSE4_1<ColStore8_SSE4_1<WriteDuplicate4x4>>;
using _4x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate4x4>>;
using _8x4 = DirectionalPredFuncs_SSE4_1<ColStore4_SSE4_1<WriteDuplicate8x4>>;
using _8x8 = DirectionalPredFuncs_SSE4_1<ColStore8_SSE4_1<WriteDuplicate8x4>>;
using _8x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate8x4>>;
using _8x32 =
DirectionalPredFuncs_SSE4_1<ColStore32_SSE4_1<WriteDuplicate8x4>>;
using _16x4 =
DirectionalPredFuncs_SSE4_1<ColStore4_SSE4_1<WriteDuplicate16x4>>;
using _16x8 =
DirectionalPredFuncs_SSE4_1<ColStore8_SSE4_1<WriteDuplicate16x4>>;
using _16x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate16x4>>;
using _16x32 =
DirectionalPredFuncs_SSE4_1<ColStore32_SSE4_1<WriteDuplicate16x4>>;
using _16x64 =
DirectionalPredFuncs_SSE4_1<ColStore64_SSE4_1<WriteDuplicate16x4>>;
using _32x8 =
DirectionalPredFuncs_SSE4_1<ColStore8_SSE4_1<WriteDuplicate32x4>>;
using _32x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate32x4>>;
using _32x32 =
DirectionalPredFuncs_SSE4_1<ColStore32_SSE4_1<WriteDuplicate32x4>>;
using _32x64 =
DirectionalPredFuncs_SSE4_1<ColStore64_SSE4_1<WriteDuplicate32x4>>;
using _64x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate64x4>>;
using _64x32 =
DirectionalPredFuncs_SSE4_1<ColStore32_SSE4_1<WriteDuplicate64x4>>;
using _64x64 =
DirectionalPredFuncs_SSE4_1<ColStore64_SSE4_1<WriteDuplicate64x4>>;
};
template <int y_mask>
inline void WritePaethLine4(uint8_t* dst, const __m128i& top,
const __m128i& left, const __m128i& top_lefts,
const __m128i& top_dists, const __m128i& left_dists,
const __m128i& top_left_diffs) {
const __m128i top_dists_y = _mm_shuffle_epi32(top_dists, y_mask);
const __m128i lefts_y = _mm_shuffle_epi32(left, y_mask);
const __m128i top_left_dists =
_mm_abs_epi32(_mm_add_epi32(lefts_y, top_left_diffs));
// Section 7.11.2.2 specifies the logic and terms here. The less-or-equal
// operation is unavailable, so the logic for selecting top, left, or
// top_left is inverted.
__m128i not_select_left = _mm_cmpgt_epi32(left_dists, top_left_dists);
not_select_left =
_mm_or_si128(not_select_left, _mm_cmpgt_epi32(left_dists, top_dists_y));
const __m128i not_select_top = _mm_cmpgt_epi32(top_dists_y, top_left_dists);
const __m128i left_out = _mm_andnot_si128(not_select_left, lefts_y);
const __m128i top_left_out = _mm_and_si128(not_select_top, top_lefts);
__m128i top_or_top_left_out = _mm_andnot_si128(not_select_top, top);
top_or_top_left_out = _mm_or_si128(top_or_top_left_out, top_left_out);
top_or_top_left_out = _mm_and_si128(not_select_left, top_or_top_left_out);
// The sequence of 32-bit packed operations was found (see CL via blame) to
// outperform 16-bit operations, despite the availability of the packus
// function, when tested on a Xeon E7 v3.
const __m128i cvtepi32_epi8 = _mm_set1_epi32(0x0C080400);
const __m128i pred = _mm_shuffle_epi8(
_mm_or_si128(left_out, top_or_top_left_out), cvtepi32_epi8);
Store4(dst, pred);
}
// top_left_diffs is the only variable whose ints may exceed 8 bits. Otherwise
// we would be able to do all of these operations as epi8 for a 16-pixel version
// of this function. Still, since lefts_y is just a vector of duplicates, it
// could pay off to accommodate top_left_dists for cmpgt, and repack into epi8
// for the blends.
template <int y_mask>
inline void WritePaethLine8(uint8_t* dst, const __m128i& top,
const __m128i& left, const __m128i& top_lefts,
const __m128i& top_dists, const __m128i& left_dists,
const __m128i& top_left_diffs) {
const __m128i select_y = _mm_set1_epi32(y_mask);
const __m128i top_dists_y = _mm_shuffle_epi8(top_dists, select_y);
const __m128i lefts_y = _mm_shuffle_epi8(left, select_y);
const __m128i top_left_dists =
_mm_abs_epi16(_mm_add_epi16(lefts_y, top_left_diffs));
// Section 7.11.2.2 specifies the logic and terms here. The less-or-equal
// operation is unavailable, so the logic for selecting top, left, or
// top_left is inverted.
__m128i not_select_left = _mm_cmpgt_epi16(left_dists, top_left_dists);
not_select_left =
_mm_or_si128(not_select_left, _mm_cmpgt_epi16(left_dists, top_dists_y));
const __m128i not_select_top = _mm_cmpgt_epi16(top_dists_y, top_left_dists);
const __m128i left_out = _mm_andnot_si128(not_select_left, lefts_y);
const __m128i top_left_out = _mm_and_si128(not_select_top, top_lefts);
__m128i top_or_top_left_out = _mm_andnot_si128(not_select_top, top);
top_or_top_left_out = _mm_or_si128(top_or_top_left_out, top_left_out);
top_or_top_left_out = _mm_and_si128(not_select_left, top_or_top_left_out);
const __m128i pred = _mm_packus_epi16(
_mm_or_si128(left_out, top_or_top_left_out), /* unused */ left_out);
_mm_storel_epi64(reinterpret_cast<__m128i*>(dst), pred);
}
// |top| is an epi8 of length 16
// |left| is epi8 of unknown length, as y_mask specifies access
// |top_lefts| is an epi8 of 16 duplicates
// |top_dists| is an epi8 of unknown length, as y_mask specifies access
// |left_dists| is an epi8 of length 16
// |left_dists_lo| is an epi16 of length 8
// |left_dists_hi| is an epi16 of length 8
// |top_left_diffs_lo| is an epi16 of length 8
// |top_left_diffs_hi| is an epi16 of length 8
// The latter two vectors are epi16 because their values may reach -510.
// |left_dists| is provided alongside its spread out version because it doesn't
// change between calls and interacts with both kinds of packing.
template <int y_mask>
inline void WritePaethLine16(uint8_t* dst, const __m128i& top,
const __m128i& left, const __m128i& top_lefts,
const __m128i& top_dists,
const __m128i& left_dists,
const __m128i& left_dists_lo,
const __m128i& left_dists_hi,
const __m128i& top_left_diffs_lo,
const __m128i& top_left_diffs_hi) {
const __m128i select_y = _mm_set1_epi32(y_mask);
const __m128i top_dists_y8 = _mm_shuffle_epi8(top_dists, select_y);
const __m128i top_dists_y16 = _mm_cvtepu8_epi16(top_dists_y8);
const __m128i lefts_y8 = _mm_shuffle_epi8(left, select_y);
const __m128i lefts_y16 = _mm_cvtepu8_epi16(lefts_y8);
const __m128i top_left_dists_lo =
_mm_abs_epi16(_mm_add_epi16(lefts_y16, top_left_diffs_lo));
const __m128i top_left_dists_hi =
_mm_abs_epi16(_mm_add_epi16(lefts_y16, top_left_diffs_hi));
const __m128i left_gt_top_left_lo = _mm_packs_epi16(
_mm_cmpgt_epi16(left_dists_lo, top_left_dists_lo), left_dists_lo);
const __m128i left_gt_top_left_hi =
_mm_packs_epi16(_mm_cmpgt_epi16(left_dists_hi, top_left_dists_hi),
/* unused second arg for pack */ left_dists_hi);
const __m128i left_gt_top_left = _mm_alignr_epi8(
left_gt_top_left_hi, _mm_slli_si128(left_gt_top_left_lo, 8), 8);
const __m128i not_select_top_lo =
_mm_packs_epi16(_mm_cmpgt_epi16(top_dists_y16, top_left_dists_lo),
/* unused second arg for pack */ top_dists_y16);
const __m128i not_select_top_hi =
_mm_packs_epi16(_mm_cmpgt_epi16(top_dists_y16, top_left_dists_hi),
/* unused second arg for pack */ top_dists_y16);
const __m128i not_select_top = _mm_alignr_epi8(
not_select_top_hi, _mm_slli_si128(not_select_top_lo, 8), 8);
const __m128i left_leq_top =
_mm_cmpeq_epi8(left_dists, _mm_min_epu8(top_dists_y8, left_dists));
const __m128i select_left = _mm_andnot_si128(left_gt_top_left, left_leq_top);
// Section 7.11.2.2 specifies the logic and terms here. The less-or-equal
// operation is unavailable, so the logic for selecting top, left, or
// top_left is inverted.
const __m128i left_out = _mm_and_si128(select_left, lefts_y8);
const __m128i top_left_out = _mm_and_si128(not_select_top, top_lefts);
__m128i top_or_top_left_out = _mm_andnot_si128(not_select_top, top);
top_or_top_left_out = _mm_or_si128(top_or_top_left_out, top_left_out);
top_or_top_left_out = _mm_andnot_si128(select_left, top_or_top_left_out);
const __m128i pred = _mm_or_si128(left_out, top_or_top_left_out);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), pred);
}
void Paeth4x4_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row, const void* const left_column) {
const __m128i left = _mm_cvtepu8_epi32(Load4(left_column));
const __m128i top = _mm_cvtepu8_epi32(Load4(top_row));
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_lefts = _mm_set1_epi32(top_ptr[-1]);
// Given that the spec defines "base" as top[x] + left[y] - top[-1],
// pLeft = abs(base - left[y]) = abs(top[x] - top[-1])
// pTop = abs(base - top[x]) = abs(left[y] - top[-1])
const __m128i left_dists = _mm_abs_epi32(_mm_sub_epi32(top, top_lefts));
const __m128i top_dists = _mm_abs_epi32(_mm_sub_epi32(left, top_lefts));
const __m128i top_left_x2 = _mm_add_epi32(top_lefts, top_lefts);
const __m128i top_left_diff = _mm_sub_epi32(top, top_left_x2);
auto* dst = static_cast<uint8_t*>(dest);
WritePaethLine4<0>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0x55>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xAA>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xFF>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
}
void Paeth4x8_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row, const void* const left_column) {
const __m128i left = LoadLo8(left_column);
const __m128i left_lo = _mm_cvtepu8_epi32(left);
const __m128i left_hi = _mm_cvtepu8_epi32(_mm_srli_si128(left, 4));
const __m128i top = _mm_cvtepu8_epi32(Load4(top_row));
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_lefts = _mm_set1_epi32(top_ptr[-1]);
// Given that the spec defines "base" as top[x] + left[y] - top[-1],
// pLeft = abs(base - left[y]) = abs(top[x] - top[-1])
// pTop = abs(base - top[x]) = abs(left[y] - top[-1])
const __m128i left_dists = _mm_abs_epi32(_mm_sub_epi32(top, top_lefts));
const __m128i top_dists_lo = _mm_abs_epi32(_mm_sub_epi32(left_lo, top_lefts));
const __m128i top_dists_hi = _mm_abs_epi32(_mm_sub_epi32(left_hi, top_lefts));
const __m128i top_left_x2 = _mm_add_epi32(top_lefts, top_lefts);
const __m128i top_left_diff = _mm_sub_epi32(top, top_left_x2);
auto* dst = static_cast<uint8_t*>(dest);
WritePaethLine4<0>(dst, top, left_lo, top_lefts, top_dists_lo, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0x55>(dst, top, left_lo, top_lefts, top_dists_lo, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xAA>(dst, top, left_lo, top_lefts, top_dists_lo, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xFF>(dst, top, left_lo, top_lefts, top_dists_lo, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0>(dst, top, left_hi, top_lefts, top_dists_hi, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0x55>(dst, top, left_hi, top_lefts, top_dists_hi, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xAA>(dst, top, left_hi, top_lefts, top_dists_hi, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xFF>(dst, top, left_hi, top_lefts, top_dists_hi, left_dists,
top_left_diff);
}
void Paeth4x16_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i left = LoadUnaligned16(left_column);
const __m128i left_0 = _mm_cvtepu8_epi32(left);
const __m128i left_1 = _mm_cvtepu8_epi32(_mm_srli_si128(left, 4));
const __m128i left_2 = _mm_cvtepu8_epi32(_mm_srli_si128(left, 8));
const __m128i left_3 = _mm_cvtepu8_epi32(_mm_srli_si128(left, 12));
const __m128i top = _mm_cvtepu8_epi32(Load4(top_row));
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_lefts = _mm_set1_epi32(top_ptr[-1]);
// Given that the spec defines "base" as top[x] + left[y] - top[-1],
// pLeft = abs(base - left[y]) = abs(top[x] - top[-1])
// pTop = abs(base - top[x]) = abs(left[y] - top[-1])
const __m128i left_dists = _mm_abs_epi32(_mm_sub_epi32(top, top_lefts));
const __m128i top_dists_0 = _mm_abs_epi32(_mm_sub_epi32(left_0, top_lefts));
const __m128i top_dists_1 = _mm_abs_epi32(_mm_sub_epi32(left_1, top_lefts));
const __m128i top_dists_2 = _mm_abs_epi32(_mm_sub_epi32(left_2, top_lefts));
const __m128i top_dists_3 = _mm_abs_epi32(_mm_sub_epi32(left_3, top_lefts));
const __m128i top_left_x2 = _mm_add_epi32(top_lefts, top_lefts);
const __m128i top_left_diff = _mm_sub_epi32(top, top_left_x2);
auto* dst = static_cast<uint8_t*>(dest);
WritePaethLine4<0>(dst, top, left_0, top_lefts, top_dists_0, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0x55>(dst, top, left_0, top_lefts, top_dists_0, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xAA>(dst, top, left_0, top_lefts, top_dists_0, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xFF>(dst, top, left_0, top_lefts, top_dists_0, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0>(dst, top, left_1, top_lefts, top_dists_1, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0x55>(dst, top, left_1, top_lefts, top_dists_1, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xAA>(dst, top, left_1, top_lefts, top_dists_1, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xFF>(dst, top, left_1, top_lefts, top_dists_1, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0>(dst, top, left_2, top_lefts, top_dists_2, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0x55>(dst, top, left_2, top_lefts, top_dists_2, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xAA>(dst, top, left_2, top_lefts, top_dists_2, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xFF>(dst, top, left_2, top_lefts, top_dists_2, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0>(dst, top, left_3, top_lefts, top_dists_3, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0x55>(dst, top, left_3, top_lefts, top_dists_3, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xAA>(dst, top, left_3, top_lefts, top_dists_3, left_dists,
top_left_diff);
dst += stride;
WritePaethLine4<0xFF>(dst, top, left_3, top_lefts, top_dists_3, left_dists,
top_left_diff);
}
void Paeth8x4_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row, const void* const left_column) {
const __m128i left = _mm_cvtepu8_epi16(Load4(left_column));
const __m128i top = _mm_cvtepu8_epi16(LoadLo8(top_row));
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_lefts = _mm_set1_epi16(top_ptr[-1]);
// Given that the spec defines "base" as top[x] + left[y] - top[-1],
// pLeft = abs(base - left[y]) = abs(top[x] - top[-1])
// pTop = abs(base - top[x]) = abs(left[y] - top[-1])
const __m128i left_dists = _mm_abs_epi16(_mm_sub_epi16(top, top_lefts));
const __m128i top_dists = _mm_abs_epi16(_mm_sub_epi16(left, top_lefts));
const __m128i top_left_x2 = _mm_add_epi16(top_lefts, top_lefts);
const __m128i top_left_diff = _mm_sub_epi16(top, top_left_x2);
auto* dst = static_cast<uint8_t*>(dest);
WritePaethLine8<0x01000100>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x03020302>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x05040504>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x07060706>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
}
void Paeth8x8_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row, const void* const left_column) {
const __m128i left = _mm_cvtepu8_epi16(LoadLo8(left_column));
const __m128i top = _mm_cvtepu8_epi16(LoadLo8(top_row));
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_lefts = _mm_set1_epi16(top_ptr[-1]);
// Given that the spec defines "base" as top[x] + left[y] - top[-1],
// pLeft = abs(base - left[y]) = abs(top[x] - top[-1])
// pTop = abs(base - top[x]) = abs(left[y] - top[-1])
const __m128i left_dists = _mm_abs_epi16(_mm_sub_epi16(top, top_lefts));
const __m128i top_dists = _mm_abs_epi16(_mm_sub_epi16(left, top_lefts));
const __m128i top_left_x2 = _mm_add_epi16(top_lefts, top_lefts);
const __m128i top_left_diff = _mm_sub_epi16(top, top_left_x2);
auto* dst = static_cast<uint8_t*>(dest);
WritePaethLine8<0x01000100>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x03020302>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x05040504>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x07060706>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x09080908>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x0B0A0B0A>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x0D0C0D0C>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
dst += stride;
WritePaethLine8<0x0F0E0F0E>(dst, top, left, top_lefts, top_dists, left_dists,
top_left_diff);
}
void Paeth8x16_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i left = LoadUnaligned16(left_column);
const __m128i left_lo = _mm_cvtepu8_epi16(left);
const __m128i left_hi = _mm_cvtepu8_epi16(_mm_srli_si128(left, 8));
const __m128i top = _mm_cvtepu8_epi16(LoadLo8(top_row));
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_lefts = _mm_set1_epi16(top_ptr[-1]);
// Given that the spec defines "base" as top[x] + left[y] - top[-1],
// pLeft = abs(base - left[y]) = abs(top[x] - top[-1])
// pTop = abs(base - top[x]) = abs(left[y] - top[-1])
const __m128i left_dists = _mm_abs_epi16(_mm_sub_epi16(top, top_lefts));
const __m128i top_dists_lo = _mm_abs_epi16(_mm_sub_epi16(left_lo, top_lefts));
const __m128i top_dists_hi = _mm_abs_epi16(_mm_sub_epi16(left_hi, top_lefts));
const __m128i top_left_x2 = _mm_add_epi16(top_lefts, top_lefts);
const __m128i top_left_diff = _mm_sub_epi16(top, top_left_x2);
auto* dst = static_cast<uint8_t*>(dest);
WritePaethLine8<0x01000100>(dst, top, left_lo, top_lefts, top_dists_lo,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x03020302>(dst, top, left_lo, top_lefts, top_dists_lo,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x05040504>(dst, top, left_lo, top_lefts, top_dists_lo,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x07060706>(dst, top, left_lo, top_lefts, top_dists_lo,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x09080908>(dst, top, left_lo, top_lefts, top_dists_lo,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x0B0A0B0A>(dst, top, left_lo, top_lefts, top_dists_lo,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x0D0C0D0C>(dst, top, left_lo, top_lefts, top_dists_lo,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x0F0E0F0E>(dst, top, left_lo, top_lefts, top_dists_lo,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x01000100>(dst, top, left_hi, top_lefts, top_dists_hi,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x03020302>(dst, top, left_hi, top_lefts, top_dists_hi,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x05040504>(dst, top, left_hi, top_lefts, top_dists_hi,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x07060706>(dst, top, left_hi, top_lefts, top_dists_hi,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x09080908>(dst, top, left_hi, top_lefts, top_dists_hi,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x0B0A0B0A>(dst, top, left_hi, top_lefts, top_dists_hi,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x0D0C0D0C>(dst, top, left_hi, top_lefts, top_dists_hi,
left_dists, top_left_diff);
dst += stride;
WritePaethLine8<0x0F0E0F0E>(dst, top, left_hi, top_lefts, top_dists_hi,
left_dists, top_left_diff);
}
void Paeth8x32_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
auto* const dst = static_cast<uint8_t*>(dest);
Paeth8x16_SSE4_1(dst, stride, top_row, left_column);
Paeth8x16_SSE4_1(dst + (stride << 4), stride, top_row, left_ptr + 16);
}
void Paeth16x4_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i left = Load4(left_column);
const __m128i top = LoadUnaligned16(top_row);
const __m128i top_lo = _mm_cvtepu8_epi16(top);
const __m128i top_hi = _mm_cvtepu8_epi16(_mm_srli_si128(top, 8));
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_lefts16 = _mm_set1_epi16(top_ptr[-1]);
const __m128i top_lefts8 = _mm_set1_epi8(static_cast<int8_t>(top_ptr[-1]));
// Given that the spec defines "base" as top[x] + left[y] - top[-1],
// pLeft = abs(base - left[y]) = abs(top[x] - top[-1])
// pTop = abs(base - top[x]) = abs(left[y] - top[-1])
const __m128i left_dists = _mm_or_si128(_mm_subs_epu8(top, top_lefts8),
_mm_subs_epu8(top_lefts8, top));
const __m128i left_dists_lo = _mm_cvtepu8_epi16(left_dists);
const __m128i left_dists_hi =
_mm_cvtepu8_epi16(_mm_srli_si128(left_dists, 8));
const __m128i top_dists = _mm_or_si128(_mm_subs_epu8(left, top_lefts8),
_mm_subs_epu8(top_lefts8, left));
const __m128i top_left_x2 = _mm_add_epi16(top_lefts16, top_lefts16);
const __m128i top_left_diff_lo = _mm_sub_epi16(top_lo, top_left_x2);
const __m128i top_left_diff_hi = _mm_sub_epi16(top_hi, top_left_x2);
auto* dst = static_cast<uint8_t*>(dest);
WritePaethLine16<0>(dst, top, left, top_lefts8, top_dists, left_dists,
left_dists_lo, left_dists_hi, top_left_diff_lo,
top_left_diff_hi);
dst += stride;
WritePaethLine16<0x01010101>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x02020202>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x03030303>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
}
// Inlined for calling with offsets in larger transform sizes, mainly to
// preserve top_left.
inline void WritePaeth16x8(void* const dest, ptrdiff_t stride,
const uint8_t top_left, const __m128i top,
const __m128i left) {
const __m128i top_lo = _mm_cvtepu8_epi16(top);
const __m128i top_hi = _mm_cvtepu8_epi16(_mm_srli_si128(top, 8));
const __m128i top_lefts16 = _mm_set1_epi16(top_left);
const __m128i top_lefts8 = _mm_set1_epi8(static_cast<int8_t>(top_left));
// Given that the spec defines "base" as top[x] + left[y] - top_left,
// pLeft = abs(base - left[y]) = abs(top[x] - top[-1])
// pTop = abs(base - top[x]) = abs(left[y] - top[-1])
const __m128i left_dists = _mm_or_si128(_mm_subs_epu8(top, top_lefts8),
_mm_subs_epu8(top_lefts8, top));
const __m128i left_dists_lo = _mm_cvtepu8_epi16(left_dists);
const __m128i left_dists_hi =
_mm_cvtepu8_epi16(_mm_srli_si128(left_dists, 8));
const __m128i top_dists = _mm_or_si128(_mm_subs_epu8(left, top_lefts8),
_mm_subs_epu8(top_lefts8, left));
const __m128i top_left_x2 = _mm_add_epi16(top_lefts16, top_lefts16);
const __m128i top_left_diff_lo = _mm_sub_epi16(top_lo, top_left_x2);
const __m128i top_left_diff_hi = _mm_sub_epi16(top_hi, top_left_x2);
auto* dst = static_cast<uint8_t*>(dest);
WritePaethLine16<0>(dst, top, left, top_lefts8, top_dists, left_dists,
left_dists_lo, left_dists_hi, top_left_diff_lo,
top_left_diff_hi);
dst += stride;
WritePaethLine16<0x01010101>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x02020202>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x03030303>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x04040404>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x05050505>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x06060606>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x07070707>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
}
void Paeth16x8_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i top = LoadUnaligned16(top_row);
const __m128i left = LoadLo8(left_column);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
WritePaeth16x8(static_cast<uint8_t*>(dest), stride, top_ptr[-1], top, left);
}
void WritePaeth16x16(void* const dest, ptrdiff_t stride, const uint8_t top_left,
const __m128i top, const __m128i left) {
const __m128i top_lo = _mm_cvtepu8_epi16(top);
const __m128i top_hi = _mm_cvtepu8_epi16(_mm_srli_si128(top, 8));
const __m128i top_lefts16 = _mm_set1_epi16(top_left);
const __m128i top_lefts8 = _mm_set1_epi8(static_cast<int8_t>(top_left));
// Given that the spec defines "base" as top[x] + left[y] - top[-1],
// pLeft = abs(base - left[y]) = abs(top[x] - top[-1])
// pTop = abs(base - top[x]) = abs(left[y] - top[-1])
const __m128i left_dists = _mm_or_si128(_mm_subs_epu8(top, top_lefts8),
_mm_subs_epu8(top_lefts8, top));
const __m128i left_dists_lo = _mm_cvtepu8_epi16(left_dists);
const __m128i left_dists_hi =
_mm_cvtepu8_epi16(_mm_srli_si128(left_dists, 8));
const __m128i top_dists = _mm_or_si128(_mm_subs_epu8(left, top_lefts8),
_mm_subs_epu8(top_lefts8, left));
const __m128i top_left_x2 = _mm_add_epi16(top_lefts16, top_lefts16);
const __m128i top_left_diff_lo = _mm_sub_epi16(top_lo, top_left_x2);
const __m128i top_left_diff_hi = _mm_sub_epi16(top_hi, top_left_x2);
auto* dst = static_cast<uint8_t*>(dest);
WritePaethLine16<0>(dst, top, left, top_lefts8, top_dists, left_dists,
left_dists_lo, left_dists_hi, top_left_diff_lo,
top_left_diff_hi);
dst += stride;
WritePaethLine16<0x01010101>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x02020202>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x03030303>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x04040404>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x05050505>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x06060606>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x07070707>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x08080808>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x09090909>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x0A0A0A0A>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x0B0B0B0B>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x0C0C0C0C>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x0D0D0D0D>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x0E0E0E0E>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
dst += stride;
WritePaethLine16<0x0F0F0F0F>(dst, top, left, top_lefts8, top_dists,
left_dists, left_dists_lo, left_dists_hi,
top_left_diff_lo, top_left_diff_hi);
}
void Paeth16x16_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i left = LoadUnaligned16(left_column);
const __m128i top = LoadUnaligned16(top_row);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
WritePaeth16x16(static_cast<uint8_t*>(dest), stride, top_ptr[-1], top, left);
}
void Paeth16x32_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i left_0 = LoadUnaligned16(left_column);
const __m128i top = LoadUnaligned16(top_row);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const uint8_t top_left = top_ptr[-1];
auto* const dst = static_cast<uint8_t*>(dest);
WritePaeth16x16(dst, stride, top_left, top, left_0);
const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
const __m128i left_1 = LoadUnaligned16(left_ptr + 16);
WritePaeth16x16(dst + (stride << 4), stride, top_left, top, left_1);
}
void Paeth16x64_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const ptrdiff_t stride16 = stride << 4;
const __m128i left_0 = LoadUnaligned16(left_column);
const __m128i top = LoadUnaligned16(top_row);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const uint8_t top_left = top_ptr[-1];
auto* dst = static_cast<uint8_t*>(dest);
WritePaeth16x16(dst, stride, top_left, top, left_0);
dst += stride16;
const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
const __m128i left_1 = LoadUnaligned16(left_ptr + 16);
WritePaeth16x16(dst, stride, top_left, top, left_1);
dst += stride16;
const __m128i left_2 = LoadUnaligned16(left_ptr + 32);
WritePaeth16x16(dst, stride, top_left, top, left_2);
dst += stride16;
const __m128i left_3 = LoadUnaligned16(left_ptr + 48);
WritePaeth16x16(dst, stride, top_left, top, left_3);
}
void Paeth32x8_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i left = LoadLo8(left_column);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_0 = LoadUnaligned16(top_row);
const uint8_t top_left = top_ptr[-1];
auto* const dst = static_cast<uint8_t*>(dest);
WritePaeth16x8(dst, stride, top_left, top_0, left);
const __m128i top_1 = LoadUnaligned16(top_ptr + 16);
WritePaeth16x8(dst + 16, stride, top_left, top_1, left);
}
void Paeth32x16_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i left = LoadUnaligned16(left_column);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_0 = LoadUnaligned16(top_row);
const uint8_t top_left = top_ptr[-1];
auto* const dst = static_cast<uint8_t*>(dest);
WritePaeth16x16(dst, stride, top_left, top_0, left);
const __m128i top_1 = LoadUnaligned16(top_ptr + 16);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left);
}
void Paeth32x32_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
const __m128i left_0 = LoadUnaligned16(left_ptr);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_0 = LoadUnaligned16(top_ptr);
const __m128i left_1 = LoadUnaligned16(left_ptr + 16);
const __m128i top_1 = LoadUnaligned16(top_ptr + 16);
const uint8_t top_left = top_ptr[-1];
auto* dst = static_cast<uint8_t*>(dest);
WritePaeth16x16(dst, stride, top_left, top_0, left_0);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_0);
dst += (stride << 4);
WritePaeth16x16(dst, stride, top_left, top_0, left_1);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_1);
}
void Paeth32x64_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
const __m128i left_0 = LoadUnaligned16(left_ptr);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_0 = LoadUnaligned16(top_ptr);
const __m128i left_1 = LoadUnaligned16(left_ptr + 16);
const __m128i top_1 = LoadUnaligned16(top_ptr + 16);
const __m128i left_2 = LoadUnaligned16(left_ptr + 32);
const __m128i left_3 = LoadUnaligned16(left_ptr + 48);
const uint8_t top_left = top_ptr[-1];
auto* dst = static_cast<uint8_t*>(dest);
WritePaeth16x16(dst, stride, top_left, top_0, left_0);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_0);
dst += (stride << 4);
WritePaeth16x16(dst, stride, top_left, top_0, left_1);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_1);
dst += (stride << 4);
WritePaeth16x16(dst, stride, top_left, top_0, left_2);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_2);
dst += (stride << 4);
WritePaeth16x16(dst, stride, top_left, top_0, left_3);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_3);
}
void Paeth64x16_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const __m128i left = LoadUnaligned16(left_column);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_0 = LoadUnaligned16(top_ptr);
const __m128i top_1 = LoadUnaligned16(top_ptr + 16);
const __m128i top_2 = LoadUnaligned16(top_ptr + 32);
const __m128i top_3 = LoadUnaligned16(top_ptr + 48);
const uint8_t top_left = top_ptr[-1];
auto* dst = static_cast<uint8_t*>(dest);
WritePaeth16x16(dst, stride, top_left, top_0, left);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left);
WritePaeth16x16(dst + 32, stride, top_left, top_2, left);
WritePaeth16x16(dst + 48, stride, top_left, top_3, left);
}
void Paeth64x32_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
const __m128i left_0 = LoadUnaligned16(left_ptr);
const __m128i left_1 = LoadUnaligned16(left_ptr + 16);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_0 = LoadUnaligned16(top_ptr);
const __m128i top_1 = LoadUnaligned16(top_ptr + 16);
const __m128i top_2 = LoadUnaligned16(top_ptr + 32);
const __m128i top_3 = LoadUnaligned16(top_ptr + 48);
const uint8_t top_left = top_ptr[-1];
auto* dst = static_cast<uint8_t*>(dest);
WritePaeth16x16(dst, stride, top_left, top_0, left_0);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_0);
WritePaeth16x16(dst + 32, stride, top_left, top_2, left_0);
WritePaeth16x16(dst + 48, stride, top_left, top_3, left_0);
dst += (stride << 4);
WritePaeth16x16(dst, stride, top_left, top_0, left_1);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_1);
WritePaeth16x16(dst + 32, stride, top_left, top_2, left_1);
WritePaeth16x16(dst + 48, stride, top_left, top_3, left_1);
}
void Paeth64x64_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column) {
const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
const __m128i left_0 = LoadUnaligned16(left_ptr);
const __m128i left_1 = LoadUnaligned16(left_ptr + 16);
const __m128i left_2 = LoadUnaligned16(left_ptr + 32);
const __m128i left_3 = LoadUnaligned16(left_ptr + 48);
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const __m128i top_0 = LoadUnaligned16(top_ptr);
const __m128i top_1 = LoadUnaligned16(top_ptr + 16);
const __m128i top_2 = LoadUnaligned16(top_ptr + 32);
const __m128i top_3 = LoadUnaligned16(top_ptr + 48);
const uint8_t top_left = top_ptr[-1];
auto* dst = static_cast<uint8_t*>(dest);
WritePaeth16x16(dst, stride, top_left, top_0, left_0);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_0);
WritePaeth16x16(dst + 32, stride, top_left, top_2, left_0);
WritePaeth16x16(dst + 48, stride, top_left, top_3, left_0);
dst += (stride << 4);
WritePaeth16x16(dst, stride, top_left, top_0, left_1);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_1);
WritePaeth16x16(dst + 32, stride, top_left, top_2, left_1);
WritePaeth16x16(dst + 48, stride, top_left, top_3, left_1);
dst += (stride << 4);
WritePaeth16x16(dst, stride, top_left, top_0, left_2);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_2);
WritePaeth16x16(dst + 32, stride, top_left, top_2, left_2);
WritePaeth16x16(dst + 48, stride, top_left, top_3, left_2);
dst += (stride << 4);
WritePaeth16x16(dst, stride, top_left, top_0, left_3);
WritePaeth16x16(dst + 16, stride, top_left, top_1, left_3);
WritePaeth16x16(dst + 32, stride, top_left, top_2, left_3);
WritePaeth16x16(dst + 48, stride, top_left, top_3, left_3);
}
//------------------------------------------------------------------------------
// 7.11.2.4. Directional intra prediction process
// Special case: An |xstep| of 64 corresponds to an angle delta of 45, meaning
// upsampling is ruled out. In addition, the bits masked by 0x3F for
// |shift_val| are 0 for all multiples of 64, so the formula
// val = top[top_base_x]*shift + top[top_base_x+1]*(32-shift), reduces to
// val = top[top_base_x+1] << 5, meaning only the second set of pixels is
// involved in the output. Hence |top| is offset by 1.
inline void DirectionalZone1_Step64(uint8_t* dst, ptrdiff_t stride,
const uint8_t* const top, const int width,
const int height) {
ptrdiff_t offset = 1;
if (height == 4) {
memcpy(dst, top + offset, width);
dst += stride;
memcpy(dst, top + offset + 1, width);
dst += stride;
memcpy(dst, top + offset + 2, width);
dst += stride;
memcpy(dst, top + offset + 3, width);
return;
}
int y = 0;
do {
memcpy(dst, top + offset, width);
dst += stride;
memcpy(dst, top + offset + 1, width);
dst += stride;
memcpy(dst, top + offset + 2, width);
dst += stride;
memcpy(dst, top + offset + 3, width);
dst += stride;
memcpy(dst, top + offset + 4, width);
dst += stride;
memcpy(dst, top + offset + 5, width);
dst += stride;
memcpy(dst, top + offset + 6, width);
dst += stride;
memcpy(dst, top + offset + 7, width);
dst += stride;
offset += 8;
y += 8;
} while (y < height);
}
inline void DirectionalZone1_4xH(uint8_t* dst, ptrdiff_t stride,
const uint8_t* const top, const int height,
const int xstep, const bool upsampled) {
const int upsample_shift = static_cast<int>(upsampled);
const int scale_bits = 6 - upsample_shift;
const int rounding_bits = 5;
const int max_base_x = (height + 3 /* width - 1 */) << upsample_shift;
const __m128i final_top_val = _mm_set1_epi16(top[max_base_x]);
const __m128i sampler = upsampled ? _mm_set_epi64x(0, 0x0706050403020100)
: _mm_set_epi64x(0, 0x0403030202010100);
// Each 16-bit value here corresponds to a position that may exceed
// |max_base_x|. When added to the top_base_x, it is used to mask values
// that pass the end of |top|. Starting from 1 to simulate "cmpge" which is
// not supported for packed integers.
const __m128i offsets =
_mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
// All rows from |min_corner_only_y| down will simply use memcpy. |max_base_x|
// is always greater than |height|, so clipping to 1 is enough to make the
// logic work.
const int xstep_units = std::max(xstep >> scale_bits, 1);
const int min_corner_only_y = std::min(max_base_x / xstep_units, height);
// Rows up to this y-value can be computed without checking for bounds.
int y = 0;
int top_x = xstep;
for (; y < min_corner_only_y; ++y, dst += stride, top_x += xstep) {
const int top_base_x = top_x >> scale_bits;
// Permit negative values of |top_x|.
const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
const __m128i shift = _mm_set1_epi8(shift_val);
const __m128i max_shift = _mm_set1_epi8(32);
const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
__m128i top_index_vect = _mm_set1_epi16(top_base_x);
top_index_vect = _mm_add_epi16(top_index_vect, offsets);
const __m128i max_base_x_vect = _mm_set1_epi16(max_base_x);
// Load 8 values because we will select the sampled values based on
// |upsampled|.
const __m128i values = LoadLo8(top + top_base_x);
const __m128i sampled_values = _mm_shuffle_epi8(values, sampler);
const __m128i past_max = _mm_cmpgt_epi16(top_index_vect, max_base_x_vect);
__m128i prod = _mm_maddubs_epi16(sampled_values, shifts);
prod = RightShiftWithRounding_U16(prod, rounding_bits);
// Replace pixels from invalid range with top-right corner.
prod = _mm_blendv_epi8(prod, final_top_val, past_max);
Store4(dst, _mm_packus_epi16(prod, prod));
}
// Fill in corner-only rows.
for (; y < height; ++y) {
memset(dst, top[max_base_x], /* width */ 4);
dst += stride;
}
}
// 7.11.2.4 (7) angle < 90
inline void DirectionalZone1_Large(uint8_t* dest, ptrdiff_t stride,
const uint8_t* const top_row,
const int width, const int height,
const int xstep, const bool upsampled) {
const int upsample_shift = static_cast<int>(upsampled);
const __m128i sampler =
upsampled ? _mm_set_epi32(0x0F0E0D0C, 0x0B0A0908, 0x07060504, 0x03020100)
: _mm_set_epi32(0x08070706, 0x06050504, 0x04030302, 0x02010100);
const int scale_bits = 6 - upsample_shift;
const int max_base_x = ((width + height) - 1) << upsample_shift;
const __m128i max_shift = _mm_set1_epi8(32);
const int rounding_bits = 5;
const int base_step = 1 << upsample_shift;
const int base_step8 = base_step << 3;
// All rows from |min_corner_only_y| down will simply use memcpy. |max_base_x|
// is always greater than |height|, so clipping to 1 is enough to make the
// logic work.
const int xstep_units = std::max(xstep >> scale_bits, 1);
const int min_corner_only_y = std::min(max_base_x / xstep_units, height);
// Rows up to this y-value can be computed without checking for bounds.
const int max_no_corner_y = std::min(
LeftShift((max_base_x - (base_step * width)), scale_bits) / xstep,
height);
// No need to check for exceeding |max_base_x| in the first loop.
int y = 0;
int top_x = xstep;
for (; y < max_no_corner_y; ++y, dest += stride, top_x += xstep) {
int top_base_x = top_x >> scale_bits;
// Permit negative values of |top_x|.
const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
const __m128i shift = _mm_set1_epi8(shift_val);
const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
int x = 0;
do {
const __m128i top_vals = LoadUnaligned16(top_row + top_base_x);
__m128i vals = _mm_shuffle_epi8(top_vals, sampler);
vals = _mm_maddubs_epi16(vals, shifts);
vals = RightShiftWithRounding_U16(vals, rounding_bits);
StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
top_base_x += base_step8;
x += 8;
} while (x < width);
}
// Each 16-bit value here corresponds to a position that may exceed
// |max_base_x|. When added to the top_base_x, it is used to mask values
// that pass the end of |top|. Starting from 1 to simulate "cmpge" which is
// not supported for packed integers.
const __m128i offsets =
_mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
const __m128i max_base_x_vect = _mm_set1_epi16(max_base_x);
const __m128i final_top_val = _mm_set1_epi16(top_row[max_base_x]);
const __m128i base_step8_vect = _mm_set1_epi16(base_step8);
for (; y < min_corner_only_y; ++y, dest += stride, top_x += xstep) {
int top_base_x = top_x >> scale_bits;
const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
const __m128i shift = _mm_set1_epi8(shift_val);
const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
__m128i top_index_vect = _mm_set1_epi16(top_base_x);
top_index_vect = _mm_add_epi16(top_index_vect, offsets);
int x = 0;
const int min_corner_only_x =
std::min(width, ((max_base_x - top_base_x) >> upsample_shift) + 7) & ~7;
for (; x < min_corner_only_x;
x += 8, top_base_x += base_step8,
top_index_vect = _mm_add_epi16(top_index_vect, base_step8_vect)) {
const __m128i past_max = _mm_cmpgt_epi16(top_index_vect, max_base_x_vect);
// Assuming a buffer zone of 8 bytes at the end of top_row, this prevents
// reading out of bounds. If all indices are past max and we don't need to
// use the loaded bytes at all, |top_base_x| becomes 0. |top_base_x| will
// reset for the next |y|.
top_base_x &= ~_mm_cvtsi128_si32(past_max);
const __m128i top_vals = LoadUnaligned16(top_row + top_base_x);
__m128i vals = _mm_shuffle_epi8(top_vals, sampler);
vals = _mm_maddubs_epi16(vals, shifts);
vals = RightShiftWithRounding_U16(vals, rounding_bits);
vals = _mm_blendv_epi8(vals, final_top_val, past_max);
StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
}
// Corner-only section of the row.
memset(dest + x, top_row[max_base_x], width - x);
}
// Fill in corner-only rows.
for (; y < height; ++y) {
memset(dest, top_row[max_base_x], width);
dest += stride;
}
}
// 7.11.2.4 (7) angle < 90
inline void DirectionalZone1_SSE4_1(uint8_t* dest, ptrdiff_t stride,
const uint8_t* const top_row,
const int width, const int height,
const int xstep, const bool upsampled) {
const int upsample_shift = static_cast<int>(upsampled);
if (xstep == 64) {
DirectionalZone1_Step64(dest, stride, top_row, width, height);
return;
}
if (width == 4) {
DirectionalZone1_4xH(dest, stride, top_row, height, xstep, upsampled);
return;
}
if (width >= 32) {
DirectionalZone1_Large(dest, stride, top_row, width, height, xstep,
upsampled);
return;
}
const __m128i sampler =
upsampled ? _mm_set_epi32(0x0F0E0D0C, 0x0B0A0908, 0x07060504, 0x03020100)
: _mm_set_epi32(0x08070706, 0x06050504, 0x04030302, 0x02010100);
const int scale_bits = 6 - upsample_shift;
const int max_base_x = ((width + height) - 1) << upsample_shift;
const __m128i max_shift = _mm_set1_epi8(32);
const int rounding_bits = 5;
const int base_step = 1 << upsample_shift;
const int base_step8 = base_step << 3;
// No need to check for exceeding |max_base_x| in the loops.
if (((xstep * height) >> scale_bits) + base_step * width < max_base_x) {
int top_x = xstep;
int y = 0;
do {
int top_base_x = top_x >> scale_bits;
// Permit negative values of |top_x|.
const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
const __m128i shift = _mm_set1_epi8(shift_val);
const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
int x = 0;
do {
const __m128i top_vals = LoadUnaligned16(top_row + top_base_x);
__m128i vals = _mm_shuffle_epi8(top_vals, sampler);
vals = _mm_maddubs_epi16(vals, shifts);
vals = RightShiftWithRounding_U16(vals, rounding_bits);
StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
top_base_x += base_step8;
x += 8;
} while (x < width);
dest += stride;
top_x += xstep;
} while (++y < height);
return;
}
// Each 16-bit value here corresponds to a position that may exceed
// |max_base_x|. When added to the top_base_x, it is used to mask values
// that pass the end of |top|. Starting from 1 to simulate "cmpge" which is
// not supported for packed integers.
const __m128i offsets =
_mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
const __m128i max_base_x_vect = _mm_set1_epi16(max_base_x);
const __m128i final_top_val = _mm_set1_epi16(top_row[max_base_x]);
const __m128i base_step8_vect = _mm_set1_epi16(base_step8);
int top_x = xstep;
int y = 0;
do {
int top_base_x = top_x >> scale_bits;
if (top_base_x >= max_base_x) {
for (int i = y; i < height; ++i) {
memset(dest, top_row[max_base_x], width);
dest += stride;
}
return;
}
const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
const __m128i shift = _mm_set1_epi8(shift_val);
const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
__m128i top_index_vect = _mm_set1_epi16(top_base_x);
top_index_vect = _mm_add_epi16(top_index_vect, offsets);
int x = 0;
for (; x < width - 8;
x += 8, top_base_x += base_step8,
top_index_vect = _mm_add_epi16(top_index_vect, base_step8_vect)) {
const __m128i past_max = _mm_cmpgt_epi16(top_index_vect, max_base_x_vect);
// Assuming a buffer zone of 8 bytes at the end of top_row, this prevents
// reading out of bounds. If all indices are past max and we don't need to
// use the loaded bytes at all, |top_base_x| becomes 0. |top_base_x| will
// reset for the next |y|.
top_base_x &= ~_mm_cvtsi128_si32(past_max);
const __m128i top_vals = LoadUnaligned16(top_row + top_base_x);
__m128i vals = _mm_shuffle_epi8(top_vals, sampler);
vals = _mm_maddubs_epi16(vals, shifts);
vals = RightShiftWithRounding_U16(vals, rounding_bits);
vals = _mm_blendv_epi8(vals, final_top_val, past_max);
StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
}
const __m128i past_max = _mm_cmpgt_epi16(top_index_vect, max_base_x_vect);
__m128i vals;
if (upsampled) {
vals = LoadUnaligned16(top_row + top_base_x);
} else {
const __m128i top_vals = LoadLo8(top_row + top_base_x);
vals = _mm_shuffle_epi8(top_vals, sampler);
vals = _mm_insert_epi8(vals, top_row[top_base_x + 8], 15);
}
vals = _mm_maddubs_epi16(vals, shifts);
vals = RightShiftWithRounding_U16(vals, rounding_bits);
vals = _mm_blendv_epi8(vals, final_top_val, past_max);
StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
dest += stride;
top_x += xstep;
} while (++y < height);
}
void DirectionalIntraPredictorZone1_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const int width, const int height,
const int xstep,
const bool upsampled_top) {
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
auto* dst = static_cast<uint8_t*>(dest);
DirectionalZone1_SSE4_1(dst, stride, top_ptr, width, height, xstep,
upsampled_top);
}
template <bool upsampled>
inline void DirectionalZone3_4x4(uint8_t* dest, ptrdiff_t stride,
const uint8_t* const left_column,
const int base_left_y, const int ystep) {
// For use in the non-upsampled case.
const __m128i sampler = _mm_set_epi64x(0, 0x0403030202010100);
const int upsample_shift = static_cast<int>(upsampled);
const int scale_bits = 6 - upsample_shift;
const __m128i max_shift = _mm_set1_epi8(32);
const int rounding_bits = 5;
__m128i result_block[4];
for (int x = 0, left_y = base_left_y; x < 4; x++, left_y += ystep) {
const int left_base_y = left_y >> scale_bits;
const int shift_val = ((left_y << upsample_shift) & 0x3F) >> 1;
const __m128i shift = _mm_set1_epi8(shift_val);
const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
__m128i vals;
if (upsampled) {
vals = LoadLo8(left_column + left_base_y);
} else {
const __m128i top_vals = LoadLo8(left_column + left_base_y);
vals = _mm_shuffle_epi8(top_vals, sampler);
}
vals = _mm_maddubs_epi16(vals, shifts);
vals = RightShiftWithRounding_U16(vals, rounding_bits);
result_block[x] = _mm_packus_epi16(vals, vals);
}
const __m128i result = Transpose4x4_U8(result_block);
// This is result_row0.
Store4(dest, result);
dest += stride;
const int result_row1 = _mm_extract_epi32(result, 1);
memcpy(dest, &result_row1, sizeof(result_row1));
dest += stride;
const int result_row2 = _mm_extract_epi32(result, 2);
memcpy(dest, &result_row2, sizeof(result_row2));
dest += stride;
const int result_row3 = _mm_extract_epi32(result, 3);
memcpy(dest, &result_row3, sizeof(result_row3));
}
template <bool upsampled, int height>
inline void DirectionalZone3_8xH(uint8_t* dest, ptrdiff_t stride,
const uint8_t* const left_column,
const int base_left_y, const int ystep) {
// For use in the non-upsampled case.
const __m128i sampler =
_mm_set_epi64x(0x0807070606050504, 0x0403030202010100);
const int upsample_shift = static_cast<int>(upsampled);
const int scale_bits = 6 - upsample_shift;
const __m128i max_shift = _mm_set1_epi8(32);
const int rounding_bits = 5;
__m128i result_block[8];
for (int x = 0, left_y = base_left_y; x < 8; x++, left_y += ystep) {
const int left_base_y = left_y >> scale_bits;
const int shift_val = (LeftShift(left_y, upsample_shift) & 0x3F) >> 1;
const __m128i shift = _mm_set1_epi8(shift_val);
const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
__m128i vals;
if (upsampled) {
vals = LoadUnaligned16(left_column + left_base_y);
} else {
const __m128i top_vals = LoadUnaligned16(left_column + left_base_y);
vals = _mm_shuffle_epi8(top_vals, sampler);
}
vals = _mm_maddubs_epi16(vals, shifts);
result_block[x] = RightShiftWithRounding_U16(vals, rounding_bits);
}
Transpose8x8_U16(result_block, result_block);
for (int y = 0; y < height; ++y) {
StoreLo8(dest, _mm_packus_epi16(result_block[y], result_block[y]));
dest += stride;
}
}
// 7.11.2.4 (9) angle > 180
void DirectionalIntraPredictorZone3_SSE4_1(void* dest, ptrdiff_t stride,
const void* const left_column,
const int width, const int height,
const int ystep,
const bool upsampled) {
const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
auto* dst = static_cast<uint8_t*>(dest);
const int upsample_shift = static_cast<int>(upsampled);
if (width == 4 || height == 4) {
const ptrdiff_t stride4 = stride << 2;
if (upsampled) {
int left_y = ystep;
int x = 0;
do {
uint8_t* dst_x = dst + x;
int y = 0;
do {
DirectionalZone3_4x4<true>(
dst_x, stride, left_ptr + (y << upsample_shift), left_y, ystep);
dst_x += stride4;
y += 4;
} while (y < height);
left_y += ystep << 2;
x += 4;
} while (x < width);
} else {
int left_y = ystep;
int x = 0;
do {
uint8_t* dst_x = dst + x;
int y = 0;
do {
DirectionalZone3_4x4<false>(dst_x, stride, left_ptr + y, left_y,
ystep);
dst_x += stride4;
y += 4;
} while (y < height);
left_y += ystep << 2;
x += 4;
} while (x < width);
}
return;
}
const ptrdiff_t stride8 = stride << 3;
if (upsampled) {
int left_y = ystep;
int x = 0;
do {
uint8_t* dst_x = dst + x;
int y = 0;
do {
DirectionalZone3_8xH<true, 8>(
dst_x, stride, left_ptr + (y << upsample_shift), left_y, ystep);
dst_x += stride8;
y += 8;
} while (y < height);
left_y += ystep << 3;
x += 8;
} while (x < width);
} else {
int left_y = ystep;
int x = 0;
do {
uint8_t* dst_x = dst + x;
int y = 0;
do {
DirectionalZone3_8xH<false, 8>(
dst_x, stride, left_ptr + (y << upsample_shift), left_y, ystep);
dst_x += stride8;
y += 8;
} while (y < height);
left_y += ystep << 3;
x += 8;
} while (x < width);
}
}
//------------------------------------------------------------------------------
// Directional Zone 2 Functions
// 7.11.2.4 (8)
// DirectionalBlend* selectively overwrites the values written by
// DirectionalZone2FromLeftCol*. |zone_bounds| has one 16-bit index for each
// row.
template <int y_selector>
inline void DirectionalBlend4_SSE4_1(uint8_t* dest,
const __m128i& dest_index_vect,
const __m128i& vals,
const __m128i& zone_bounds) {
const __m128i max_dest_x_vect = _mm_shufflelo_epi16(zone_bounds, y_selector);
const __m128i use_left = _mm_cmplt_epi16(dest_index_vect, max_dest_x_vect);
const __m128i original_vals = _mm_cvtepu8_epi16(Load4(dest));
const __m128i blended_vals = _mm_blendv_epi8(vals, original_vals, use_left);
Store4(dest, _mm_packus_epi16(blended_vals, blended_vals));
}
inline void DirectionalBlend8_SSE4_1(uint8_t* dest,
const __m128i& dest_index_vect,
const __m128i& vals,
const __m128i& zone_bounds,
const __m128i& bounds_selector) {
const __m128i max_dest_x_vect =
_mm_shuffle_epi8(zone_bounds, bounds_selector);
const __m128i use_left = _mm_cmplt_epi16(dest_index_vect, max_dest_x_vect);
const __m128i original_vals = _mm_cvtepu8_epi16(LoadLo8(dest));
const __m128i blended_vals = _mm_blendv_epi8(vals, original_vals, use_left);
StoreLo8(dest, _mm_packus_epi16(blended_vals, blended_vals));
}
constexpr int kDirectionalWeightBits = 5;
// |source| is packed with 4 or 8 pairs of 8-bit values from left or top.
// |shifts| is named to match the specification, with 4 or 8 pairs of (32 -
// shift) and shift. Shift is guaranteed to be between 0 and 32.
inline __m128i DirectionalZone2FromSource_SSE4_1(const uint8_t* const source,
const __m128i& shifts,
const __m128i& sampler) {
const __m128i src_vals = LoadUnaligned16(source);
__m128i vals = _mm_shuffle_epi8(src_vals, sampler);
vals = _mm_maddubs_epi16(vals, shifts);
return RightShiftWithRounding_U16(vals, kDirectionalWeightBits);
}
// Because the source values "move backwards" as the row index increases, the
// indices derived from ystep are generally negative. This is accommodated by
// making sure the relative indices are within [-15, 0] when the function is
// called, and sliding them into the inclusive range [0, 15], relative to a
// lower base address.
constexpr int kPositiveIndexOffset = 15;
template <bool upsampled>
inline void DirectionalZone2FromLeftCol_4x4_SSE4_1(
uint8_t* dst, ptrdiff_t stride, const uint8_t* const left_column_base,
__m128i left_y) {
const int upsample_shift = static_cast<int>(upsampled);
const int scale_bits = 6 - upsample_shift;
const __m128i max_shifts = _mm_set1_epi8(32);
const __m128i shift_mask = _mm_set1_epi32(0x003F003F);
const __m128i index_increment = _mm_cvtsi32_si128(0x01010101);
const __m128i positive_offset = _mm_set1_epi8(kPositiveIndexOffset);
// Left_column and sampler are both offset by 15 so the indices are always
// positive.
const uint8_t* left_column = left_column_base - kPositiveIndexOffset;
for (int y = 0; y < 4; dst += stride, ++y) {
__m128i offset_y = _mm_srai_epi16(left_y, scale_bits);
offset_y = _mm_packs_epi16(offset_y, offset_y);
const __m128i adjacent = _mm_add_epi8(offset_y, index_increment);
__m128i sampler = _mm_unpacklo_epi8(offset_y, adjacent);
// Slide valid |offset_y| indices from range [-15, 0] to [0, 15] so they
// can work as shuffle indices. Some values may be out of bounds, but their
// pred results will be masked over by top prediction.
sampler = _mm_add_epi8(sampler, positive_offset);
__m128i shifts = _mm_srli_epi16(
_mm_and_si128(_mm_slli_epi16(left_y, upsample_shift), shift_mask), 1);
shifts = _mm_packus_epi16(shifts, shifts);
const __m128i opposite_shifts = _mm_sub_epi8(max_shifts, shifts);
shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
const __m128i vals = DirectionalZone2FromSource_SSE4_1(
left_column + (y << upsample_shift), shifts, sampler);
Store4(dst, _mm_packus_epi16(vals, vals));
}
}
// The height at which a load of 16 bytes will not contain enough source pixels
// from |left_column| to supply an accurate row when computing 8 pixels at a
// time. The values are found by inspection. By coincidence, all angles that
// satisfy (ystep >> 6) == 2 map to the same value, so it is enough to look up
// by ystep >> 6. The largest index for this lookup is 1023 >> 6 == 15.
constexpr int kDirectionalZone2ShuffleInvalidHeight[16] = {
1024, 1024, 16, 16, 16, 16, 0, 0, 18, 0, 0, 0, 0, 0, 0, 40};
template <bool upsampled>
inline void DirectionalZone2FromLeftCol_8x8_SSE4_1(
uint8_t* dst, ptrdiff_t stride, const uint8_t* const left_column,
__m128i left_y) {
const int upsample_shift = static_cast<int>(upsampled);
const int scale_bits = 6 - upsample_shift;
const __m128i max_shifts = _mm_set1_epi8(32);
const __m128i shift_mask = _mm_set1_epi32(0x003F003F);
const __m128i index_increment = _mm_set1_epi8(1);
const __m128i denegation = _mm_set1_epi8(kPositiveIndexOffset);
for (int y = 0; y < 8; dst += stride, ++y) {
__m128i offset_y = _mm_srai_epi16(left_y, scale_bits);
offset_y = _mm_packs_epi16(offset_y, offset_y);
const __m128i adjacent = _mm_add_epi8(offset_y, index_increment);
// Offset the relative index because ystep is negative in Zone 2 and shuffle
// indices must be nonnegative.
__m128i sampler = _mm_unpacklo_epi8(offset_y, adjacent);
sampler = _mm_add_epi8(sampler, denegation);
__m128i shifts = _mm_srli_epi16(
_mm_and_si128(_mm_slli_epi16(left_y, upsample_shift), shift_mask), 1);
shifts = _mm_packus_epi16(shifts, shifts);
const __m128i opposite_shifts = _mm_sub_epi8(max_shifts, shifts);
shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
// The specification adds (y << 6) to left_y, which is subject to
// upsampling, but this puts sampler indices out of the 0-15 range. It is
// equivalent to offset the source address by (y << upsample_shift) instead.
const __m128i vals = DirectionalZone2FromSource_SSE4_1(
left_column - kPositiveIndexOffset + (y << upsample_shift), shifts,
sampler);
StoreLo8(dst, _mm_packus_epi16(vals, vals));
}
}
// |zone_bounds| is an epi16 of the relative x index at which base >= -(1 <<
// upsampled_top), for each row. When there are 4 values, they can be duplicated
// with a non-register shuffle mask.
// |shifts| is one pair of weights that applies throughout a given row.
template <bool upsampled_top>
inline void DirectionalZone1Blend_4x4(
uint8_t* dest, const uint8_t* const top_row, ptrdiff_t stride,
__m128i sampler, const __m128i& zone_bounds, const __m128i& shifts,
const __m128i& dest_index_x, int top_x, const int xstep) {
const int upsample_shift = static_cast<int>(upsampled_top);
const int scale_bits_x = 6 - upsample_shift;
top_x -= xstep;
int top_base_x = (top_x >> scale_bits_x);
const __m128i vals0 = DirectionalZone2FromSource_SSE4_1(
top_row + top_base_x, _mm_shufflelo_epi16(shifts, 0x00), sampler);
DirectionalBlend4_SSE4_1<0x00>(dest, dest_index_x, vals0, zone_bounds);
top_x -= xstep;
dest += stride;
top_base_x = (top_x >> scale_bits_x);
const __m128i vals1 = DirectionalZone2FromSource_SSE4_1(
top_row + top_base_x, _mm_shufflelo_epi16(shifts, 0x55), sampler);
DirectionalBlend4_SSE4_1<0x55>(dest, dest_index_x, vals1, zone_bounds);
top_x -= xstep;
dest += stride;
top_base_x = (top_x >> scale_bits_x);
const __m128i vals2 = DirectionalZone2FromSource_SSE4_1(
top_row + top_base_x, _mm_shufflelo_epi16(shifts, 0xAA), sampler);
DirectionalBlend4_SSE4_1<0xAA>(dest, dest_index_x, vals2, zone_bounds);
top_x -= xstep;
dest += stride;
top_base_x = (top_x >> scale_bits_x);
const __m128i vals3 = DirectionalZone2FromSource_SSE4_1(
top_row + top_base_x, _mm_shufflelo_epi16(shifts, 0xFF), sampler);
DirectionalBlend4_SSE4_1<0xFF>(dest, dest_index_x, vals3, zone_bounds);
}
template <bool upsampled_top, int height>
inline void DirectionalZone1Blend_8xH(
uint8_t* dest, const uint8_t* const top_row, ptrdiff_t stride,
__m128i sampler, const __m128i& zone_bounds, const __m128i& shifts,
const __m128i& dest_index_x, int top_x, const int xstep) {
const int upsample_shift = static_cast<int>(upsampled_top);
const int scale_bits_x = 6 - upsample_shift;
__m128i y_selector = _mm_set1_epi32(0x01000100);
const __m128i index_increment = _mm_set1_epi32(0x02020202);
for (int y = 0; y < height; ++y,
y_selector = _mm_add_epi8(y_selector, index_increment),
dest += stride) {
top_x -= xstep;
const int top_base_x = top_x >> scale_bits_x;
const __m128i vals = DirectionalZone2FromSource_SSE4_1(
top_row + top_base_x, _mm_shuffle_epi8(shifts, y_selector), sampler);
DirectionalBlend8_SSE4_1(dest, dest_index_x, vals, zone_bounds, y_selector);
}
}
// 7.11.2.4 (8) 90 < angle > 180
// The strategy for this function is to know how many blocks can be processed
// with just pixels from |top_ptr|, then handle mixed blocks, then handle only
// blocks that take from |left_ptr|. Additionally, a fast index-shuffle
// approach is used for pred values from |left_column| in sections that permit
// it.
template <bool upsampled_left, bool upsampled_top>
inline void DirectionalZone2_SSE4_1(void* dest, ptrdiff_t stride,
const uint8_t* const top_row,
const uint8_t* const left_column,
const int width, const int height,
const int xstep, const int ystep) {
auto* dst = static_cast<uint8_t*>(dest);
const int upsample_left_shift = static_cast<int>(upsampled_left);
const int upsample_top_shift = static_cast<int>(upsampled_top);
const __m128i max_shift = _mm_set1_epi8(32);
const ptrdiff_t stride8 = stride << 3;
const __m128i dest_index_x =
_mm_set_epi32(0x00070006, 0x00050004, 0x00030002, 0x00010000);
const __m128i sampler_top =
upsampled_top
? _mm_set_epi32(0x0F0E0D0C, 0x0B0A0908, 0x07060504, 0x03020100)
: _mm_set_epi32(0x08070706, 0x06050504, 0x04030302, 0x02010100);
const __m128i shift_mask = _mm_set1_epi32(0x003F003F);
// All columns from |min_top_only_x| to the right will only need |top_row| to
// compute. This assumes minimum |xstep| is 3.
const int min_top_only_x = std::min((height * xstep) >> 6, width);
// For steep angles, the source pixels from left_column may not fit in a
// 16-byte load for shuffling.
// TODO(petersonab): Find a more precise formula for this subject to x.
const int max_shuffle_height =
std::min(height, kDirectionalZone2ShuffleInvalidHeight[ystep >> 6]);
const int xstep8 = xstep << 3;
const __m128i xstep8_vect = _mm_set1_epi16(xstep8);
// Accumulate xstep across 8 rows.
const __m128i xstep_dup = _mm_set1_epi16(-xstep);
const __m128i increments = _mm_set_epi16(8, 7, 6, 5, 4, 3, 2, 1);
const __m128i xstep_for_shift = _mm_mullo_epi16(xstep_dup, increments);
// Offsets the original zone bound value to simplify x < (y+1)*xstep/64 -1
const __m128i scaled_one = _mm_set1_epi16(-64);
__m128i xstep_bounds_base =
(xstep == 64) ? _mm_sub_epi16(scaled_one, xstep_for_shift)
: _mm_sub_epi16(_mm_set1_epi16(-1), xstep_for_shift);
const int left_base_increment = ystep >> 6;
const int ystep_remainder = ystep & 0x3F;
const int ystep8 = ystep << 3;
const int left_base_increment8 = ystep8 >> 6;
const int ystep_remainder8 = ystep8 & 0x3F;
const __m128i increment_left8 = _mm_set1_epi16(-ystep_remainder8);
// If the 64 scaling is regarded as a decimal point, the first value of the
// left_y vector omits the portion which is covered under the left_column
// offset. Following values need the full ystep as a relative offset.
const __m128i ystep_init = _mm_set1_epi16(-ystep_remainder);
const __m128i ystep_dup = _mm_set1_epi16(-ystep);
__m128i left_y = _mm_mullo_epi16(ystep_dup, dest_index_x);
left_y = _mm_add_epi16(ystep_init, left_y);
const __m128i increment_top8 = _mm_set1_epi16(8 << 6);
int x = 0;
// This loop treats each set of 4 columns in 3 stages with y-value boundaries.
// The first stage, before the first y-loop, covers blocks that are only
// computed from the top row. The second stage, comprising two y-loops, covers
// blocks that have a mixture of values computed from top or left. The final
// stage covers blocks that are only computed from the left.
for (int left_offset = -left_base_increment; x < min_top_only_x;
x += 8,
xstep_bounds_base = _mm_sub_epi16(xstep_bounds_base, increment_top8),
// Watch left_y because it can still get big.
left_y = _mm_add_epi16(left_y, increment_left8),
left_offset -= left_base_increment8) {
uint8_t* dst_x = dst + x;
// Round down to the nearest multiple of 8.
const int max_top_only_y = std::min(((x + 1) << 6) / xstep, height) & ~7;
DirectionalZone1_4xH(dst_x, stride, top_row + (x << upsample_top_shift),
max_top_only_y, -xstep, upsampled_top);
DirectionalZone1_4xH(dst_x + 4, stride,
top_row + ((x + 4) << upsample_top_shift),
max_top_only_y, -xstep, upsampled_top);
int y = max_top_only_y;
dst_x += stride * y;
const int xstep_y = xstep * y;
const __m128i xstep_y_vect = _mm_set1_epi16(xstep_y);
// All rows from |min_left_only_y| down for this set of columns, only need
// |left_column| to compute.
const int min_left_only_y = std::min(((x + 8) << 6) / xstep, height);
// At high angles such that min_left_only_y < 8, ystep is low and xstep is
// high. This means that max_shuffle_height is unbounded and xstep_bounds
// will overflow in 16 bits. This is prevented by stopping the first
// blending loop at min_left_only_y for such cases, which means we skip over
// the second blending loop as well.
const int left_shuffle_stop_y =
std::min(max_shuffle_height, min_left_only_y);
__m128i xstep_bounds = _mm_add_epi16(xstep_bounds_base, xstep_y_vect);
__m128i xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift, xstep_y_vect);
int top_x = -xstep_y;
for (; y < left_shuffle_stop_y;
y += 8, dst_x += stride8,
xstep_bounds = _mm_add_epi16(xstep_bounds, xstep8_vect),
xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift_y, xstep8_vect),
top_x -= xstep8) {
DirectionalZone2FromLeftCol_8x8_SSE4_1<upsampled_left>(
dst_x, stride,
left_column + ((left_offset + y) << upsample_left_shift), left_y);
__m128i shifts = _mm_srli_epi16(
_mm_and_si128(_mm_slli_epi16(xstep_for_shift_y, upsample_top_shift),
shift_mask),
1);
shifts = _mm_packus_epi16(shifts, shifts);
__m128i opposite_shifts = _mm_sub_epi8(max_shift, shifts);
shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
__m128i xstep_bounds_off = _mm_srai_epi16(xstep_bounds, 6);
DirectionalZone1Blend_8xH<upsampled_top, 8>(
dst_x, top_row + (x << upsample_top_shift), stride, sampler_top,
xstep_bounds_off, shifts, dest_index_x, top_x, xstep);
}
// Pick up from the last y-value, using the 10% slower but secure method for
// left prediction.
const auto base_left_y = static_cast<int16_t>(_mm_extract_epi16(left_y, 0));
for (; y < min_left_only_y;
y += 8, dst_x += stride8,
xstep_bounds = _mm_add_epi16(xstep_bounds, xstep8_vect),
xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift_y, xstep8_vect),
top_x -= xstep8) {
const __m128i xstep_bounds_off = _mm_srai_epi16(xstep_bounds, 6);
DirectionalZone3_8xH<upsampled_left, 8>(
dst_x, stride,
left_column + ((left_offset + y) << upsample_left_shift), base_left_y,
-ystep);
__m128i shifts = _mm_srli_epi16(
_mm_and_si128(_mm_slli_epi16(xstep_for_shift_y, upsample_top_shift),
shift_mask),
1);
shifts = _mm_packus_epi16(shifts, shifts);
__m128i opposite_shifts = _mm_sub_epi8(max_shift, shifts);
shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
DirectionalZone1Blend_8xH<upsampled_top, 8>(
dst_x, top_row + (x << upsample_top_shift), stride, sampler_top,
xstep_bounds_off, shifts, dest_index_x, top_x, xstep);
}
// Loop over y for left_only rows.
for (; y < height; y += 8, dst_x += stride8) {
DirectionalZone3_8xH<upsampled_left, 8>(
dst_x, stride,
left_column + ((left_offset + y) << upsample_left_shift), base_left_y,
-ystep);
}
}
for (; x < width; x += 4) {
DirectionalZone1_4xH(dst + x, stride, top_row + (x << upsample_top_shift),
height, -xstep, upsampled_top);
}
}
template <bool upsampled_left, bool upsampled_top>
inline void DirectionalZone2_4_SSE4_1(void* dest, ptrdiff_t stride,
const uint8_t* const top_row,
const uint8_t* const left_column,
const int width, const int height,
const int xstep, const int ystep) {
auto* dst = static_cast<uint8_t*>(dest);
const int upsample_left_shift = static_cast<int>(upsampled_left);
const int upsample_top_shift = static_cast<int>(upsampled_top);
const __m128i max_shift = _mm_set1_epi8(32);
const ptrdiff_t stride4 = stride << 2;
const __m128i dest_index_x = _mm_set_epi32(0, 0, 0x00030002, 0x00010000);
const __m128i sampler_top =
upsampled_top
? _mm_set_epi32(0x0F0E0D0C, 0x0B0A0908, 0x07060504, 0x03020100)
: _mm_set_epi32(0x08070706, 0x06050504, 0x04030302, 0x02010100);
// All columns from |min_top_only_x| to the right will only need |top_row| to
// compute.
assert(xstep >= 3);
const int min_top_only_x = std::min((height * xstep) >> 6, width);
const int xstep4 = xstep << 2;
const __m128i xstep4_vect = _mm_set1_epi16(xstep4);
const __m128i xstep_dup = _mm_set1_epi16(-xstep);
const __m128i increments = _mm_set_epi32(0, 0, 0x00040003, 0x00020001);
__m128i xstep_for_shift = _mm_mullo_epi16(xstep_dup, increments);
const __m128i scaled_one = _mm_set1_epi16(-64);
// Offsets the original zone bound value to simplify x < (y+1)*xstep/64 -1
__m128i xstep_bounds_base =
(xstep == 64) ? _mm_sub_epi16(scaled_one, xstep_for_shift)
: _mm_sub_epi16(_mm_set1_epi16(-1), xstep_for_shift);
const int left_base_increment = ystep >> 6;
const int ystep_remainder = ystep & 0x3F;
const int ystep4 = ystep << 2;
const int left_base_increment4 = ystep4 >> 6;
// This is guaranteed to be less than 64, but accumulation may bring it past
// 64 for higher x values.
const int ystep_remainder4 = ystep4 & 0x3F;
const __m128i increment_left4 = _mm_set1_epi16(-ystep_remainder4);
const __m128i increment_top4 = _mm_set1_epi16(4 << 6);
// If the 64 scaling is regarded as a decimal point, the first value of the
// left_y vector omits the portion which will go into the left_column offset.
// Following values need the full ystep as a relative offset.
const __m128i ystep_init = _mm_set1_epi16(-ystep_remainder);
const __m128i ystep_dup = _mm_set1_epi16(-ystep);
__m128i left_y = _mm_mullo_epi16(ystep_dup, dest_index_x);
left_y = _mm_add_epi16(ystep_init, left_y);
const __m128i shift_mask = _mm_set1_epi32(0x003F003F);
int x = 0;
// Loop over x for columns with a mixture of sources.
for (int left_offset = -left_base_increment; x < min_top_only_x; x += 4,
xstep_bounds_base = _mm_sub_epi16(xstep_bounds_base, increment_top4),
left_y = _mm_add_epi16(left_y, increment_left4),
left_offset -= left_base_increment4) {
uint8_t* dst_x = dst + x;
// Round down to the nearest multiple of 8.
const int max_top_only_y = std::min((x << 6) / xstep, height) & 0xFFFFFFF4;
DirectionalZone1_4xH(dst_x, stride, top_row + (x << upsample_top_shift),
max_top_only_y, -xstep, upsampled_top);
int y = max_top_only_y;
dst_x += stride * y;
const int xstep_y = xstep * y;
const __m128i xstep_y_vect = _mm_set1_epi16(xstep_y);
// All rows from |min_left_only_y| down for this set of columns, only need
// |left_column| to compute. Rounded up to the nearest multiple of 4.
const int min_left_only_y = std::min(((x + 4) << 6) / xstep, height);
__m128i xstep_bounds = _mm_add_epi16(xstep_bounds_base, xstep_y_vect);
__m128i xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift, xstep_y_vect);
int top_x = -xstep_y;
// Loop over y for mixed rows.
for (; y < min_left_only_y;
y += 4, dst_x += stride4,
xstep_bounds = _mm_add_epi16(xstep_bounds, xstep4_vect),
xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift_y, xstep4_vect),
top_x -= xstep4) {
DirectionalZone2FromLeftCol_4x4_SSE4_1<upsampled_left>(
dst_x, stride,
left_column + ((left_offset + y) * (1 << upsample_left_shift)),
left_y);
__m128i shifts = _mm_srli_epi16(
_mm_and_si128(_mm_slli_epi16(xstep_for_shift_y, upsample_top_shift),
shift_mask),
1);
shifts = _mm_packus_epi16(shifts, shifts);
const __m128i opposite_shifts = _mm_sub_epi8(max_shift, shifts);
shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
const __m128i xstep_bounds_off = _mm_srai_epi16(xstep_bounds, 6);
DirectionalZone1Blend_4x4<upsampled_top>(
dst_x, top_row + (x << upsample_top_shift), stride, sampler_top,
xstep_bounds_off, shifts, dest_index_x, top_x, xstep);
}
// Loop over y for left-only rows, if any.
for (; y < height; y += 4, dst_x += stride4) {
DirectionalZone2FromLeftCol_4x4_SSE4_1<upsampled_left>(
dst_x, stride,
left_column + ((left_offset + y) << upsample_left_shift), left_y);
}
}
// Loop over top-only columns, if any.
for (; x < width; x += 4) {
DirectionalZone1_4xH(dst + x, stride, top_row + (x << upsample_top_shift),
height, -xstep, upsampled_top);
}
}
void DirectionalIntraPredictorZone2_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column,
const int width, const int height,
const int xstep, const int ystep,
const bool upsampled_top,
const bool upsampled_left) {
// Increasing the negative buffer for this function allows more rows to be
// processed at a time without branching in an inner loop to check the base.
uint8_t top_buffer[288];
uint8_t left_buffer[288];
memcpy(top_buffer + 128, static_cast<const uint8_t*>(top_row) - 16, 160);
memcpy(left_buffer + 128, static_cast<const uint8_t*>(left_column) - 16, 160);
const uint8_t* top_ptr = top_buffer + 144;
const uint8_t* left_ptr = left_buffer + 144;
if (width == 4 || height == 4) {
if (upsampled_left) {
if (upsampled_top) {
DirectionalZone2_4_SSE4_1<true, true>(dest, stride, top_ptr, left_ptr,
width, height, xstep, ystep);
} else {
DirectionalZone2_4_SSE4_1<true, false>(dest, stride, top_ptr, left_ptr,
width, height, xstep, ystep);
}
} else {
if (upsampled_top) {
DirectionalZone2_4_SSE4_1<false, true>(dest, stride, top_ptr, left_ptr,
width, height, xstep, ystep);
} else {
DirectionalZone2_4_SSE4_1<false, false>(dest, stride, top_ptr, left_ptr,
width, height, xstep, ystep);
}
}
return;
}
if (upsampled_left) {
if (upsampled_top) {
DirectionalZone2_SSE4_1<true, true>(dest, stride, top_ptr, left_ptr,
width, height, xstep, ystep);
} else {
DirectionalZone2_SSE4_1<true, false>(dest, stride, top_ptr, left_ptr,
width, height, xstep, ystep);
}
} else {
if (upsampled_top) {
DirectionalZone2_SSE4_1<false, true>(dest, stride, top_ptr, left_ptr,
width, height, xstep, ystep);
} else {
DirectionalZone2_SSE4_1<false, false>(dest, stride, top_ptr, left_ptr,
width, height, xstep, ystep);
}
}
}
//------------------------------------------------------------------------------
// FilterIntraPredictor_SSE4_1
// Apply all filter taps to the given 7 packed 16-bit values, keeping the 8th
// at zero to preserve the sum.
inline void Filter4x2_SSE4_1(uint8_t* dst, const ptrdiff_t stride,
const __m128i& pixels, const __m128i& taps_0_1,
const __m128i& taps_2_3, const __m128i& taps_4_5,
const __m128i& taps_6_7) {
const __m128i mul_0_01 = _mm_maddubs_epi16(pixels, taps_0_1);
const __m128i mul_0_23 = _mm_maddubs_epi16(pixels, taps_2_3);
// |output_half| contains 8 partial sums.
__m128i output_half = _mm_hadd_epi16(mul_0_01, mul_0_23);
__m128i output = _mm_hadd_epi16(output_half, output_half);
const __m128i output_row0 =
_mm_packus_epi16(RightShiftWithRounding_S16(output, 4),
/* arbitrary pack arg */ output);
Store4(dst, output_row0);
const __m128i mul_1_01 = _mm_maddubs_epi16(pixels, taps_4_5);
const __m128i mul_1_23 = _mm_maddubs_epi16(pixels, taps_6_7);
output_half = _mm_hadd_epi16(mul_1_01, mul_1_23);
output = _mm_hadd_epi16(output_half, output_half);
const __m128i output_row1 =
_mm_packus_epi16(RightShiftWithRounding_S16(output, 4),
/* arbitrary pack arg */ output);
Store4(dst + stride, output_row1);
}
// 4xH transform sizes are given special treatment because LoadLo8 goes out
// of bounds and every block involves the left column. This implementation
// loads TL from the top row for the first block, so it is not
inline void Filter4xH(uint8_t* dest, ptrdiff_t stride,
const uint8_t* const top_ptr,
const uint8_t* const left_ptr, FilterIntraPredictor pred,
const int height) {
const __m128i taps_0_1 = LoadUnaligned16(kFilterIntraTaps[pred][0]);
const __m128i taps_2_3 = LoadUnaligned16(kFilterIntraTaps[pred][2]);
const __m128i taps_4_5 = LoadUnaligned16(kFilterIntraTaps[pred][4]);
const __m128i taps_6_7 = LoadUnaligned16(kFilterIntraTaps[pred][6]);
__m128i top = Load4(top_ptr - 1);
__m128i pixels = _mm_insert_epi8(top, top_ptr[3], 4);
__m128i left = (height == 4 ? Load4(left_ptr) : LoadLo8(left_ptr));
left = _mm_slli_si128(left, 5);
// Relative pixels: top[-1], top[0], top[1], top[2], top[3], left[0], left[1],
// left[2], left[3], left[4], left[5], left[6], left[7]
pixels = _mm_or_si128(left, pixels);
// Duplicate first 8 bytes.
pixels = _mm_shuffle_epi32(pixels, kDuplicateFirstHalf);
Filter4x2_SSE4_1(dest, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
dest += stride; // Move to y = 1.
pixels = Load4(dest);
// Relative pixels: top[0], top[1], top[2], top[3], empty, left[-2], left[-1],
// left[0], left[1], ...
pixels = _mm_or_si128(left, pixels);
// This mask rearranges bytes in the order: 6, 0, 1, 2, 3, 7, 8, 15. The last
// byte is an unused value, which shall be multiplied by 0 when we apply the
// filter.
constexpr int64_t kInsertTopLeftFirstMask = 0x0F08070302010006;
// Insert left[-1] in front as TL and put left[0] and left[1] at the end.
const __m128i pixel_order1 = _mm_set1_epi64x(kInsertTopLeftFirstMask);
pixels = _mm_shuffle_epi8(pixels, pixel_order1);
dest += stride; // Move to y = 2.
Filter4x2_SSE4_1(dest, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
dest += stride; // Move to y = 3.
// Compute the middle 8 rows before using common code for the final 4 rows.
// Because the common code below this block assumes that
if (height == 16) {
// This shift allows us to use pixel_order2 twice after shifting by 2 later.
left = _mm_slli_si128(left, 1);
pixels = Load4(dest);
// Relative pixels: top[0], top[1], top[2], top[3], empty, empty, left[-4],
// left[-3], left[-2], left[-1], left[0], left[1], left[2], left[3]
pixels = _mm_or_si128(left, pixels);
// This mask rearranges bytes in the order: 9, 0, 1, 2, 3, 7, 8, 15. The
// last byte is an unused value, as above. The top-left was shifted to
// position nine to keep two empty spaces after the top pixels.
constexpr int64_t kInsertTopLeftSecondMask = 0x0F0B0A0302010009;
// Insert (relative) left[-1] in front as TL and put left[0] and left[1] at
// the end.
const __m128i pixel_order2 = _mm_set1_epi64x(kInsertTopLeftSecondMask);
pixels = _mm_shuffle_epi8(pixels, pixel_order2);
dest += stride; // Move to y = 4.
// First 4x2 in the if body.
Filter4x2_SSE4_1(dest, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
// Clear all but final pixel in the first 8 of left column.
__m128i keep_top_left = _mm_srli_si128(left, 13);
dest += stride; // Move to y = 5.
pixels = Load4(dest);
left = _mm_srli_si128(left, 2);
// Relative pixels: top[0], top[1], top[2], top[3], left[-6],
// left[-5], left[-4], left[-3], left[-2], left[-1], left[0], left[1]
pixels = _mm_or_si128(left, pixels);
left = LoadLo8(left_ptr + 8);
pixels = _mm_shuffle_epi8(pixels, pixel_order2);
dest += stride; // Move to y = 6.
// Second 4x2 in the if body.
Filter4x2_SSE4_1(dest, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
// Position TL value so we can use pixel_order1.
keep_top_left = _mm_slli_si128(keep_top_left, 6);
dest += stride; // Move to y = 7.
pixels = Load4(dest);
left = _mm_slli_si128(left, 7);
left = _mm_or_si128(left, keep_top_left);
// Relative pixels: top[0], top[1], top[2], top[3], empty, empty,
// left[-1], left[0], left[1], left[2], left[3], ...
pixels = _mm_or_si128(left, pixels);
pixels = _mm_shuffle_epi8(pixels, pixel_order1);
dest += stride; // Move to y = 8.
// Third 4x2 in the if body.
Filter4x2_SSE4_1(dest, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
dest += stride; // Move to y = 9.
// Prepare final inputs.
pixels = Load4(dest);
left = _mm_srli_si128(left, 2);
// Relative pixels: top[0], top[1], top[2], top[3], left[-3], left[-2]
// left[-1], left[0], left[1], left[2], left[3], ...
pixels = _mm_or_si128(left, pixels);
pixels = _mm_shuffle_epi8(pixels, pixel_order1);
dest += stride; // Move to y = 10.
// Fourth 4x2 in the if body.
Filter4x2_SSE4_1(dest, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
dest += stride; // Move to y = 11.
}
// In both the 8 and 16 case, we assume that the left vector has the next TL
// at position 8.
if (height > 4) {
// Erase prior left pixels by shifting TL to position 0.
left = _mm_srli_si128(left, 8);
left = _mm_slli_si128(left, 6);
pixels = Load4(dest);
// Relative pixels: top[0], top[1], top[2], top[3], empty, empty,
// left[-1], left[0], left[1], left[2], left[3], ...
pixels = _mm_or_si128(left, pixels);
pixels = _mm_shuffle_epi8(pixels, pixel_order1);
dest += stride; // Move to y = 12 or 4.
// First of final two 4x2 blocks.
Filter4x2_SSE4_1(dest, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
dest += stride; // Move to y = 13 or 5.
pixels = Load4(dest);
left = _mm_srli_si128(left, 2);
// Relative pixels: top[0], top[1], top[2], top[3], left[-3], left[-2]
// left[-1], left[0], left[1], left[2], left[3], ...
pixels = _mm_or_si128(left, pixels);
pixels = _mm_shuffle_epi8(pixels, pixel_order1);
dest += stride; // Move to y = 14 or 6.
// Last of final two 4x2 blocks.
Filter4x2_SSE4_1(dest, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
}
}
void FilterIntraPredictor_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const top_row,
const void* const left_column,
FilterIntraPredictor pred, const int width,
const int height) {
const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
auto* dst = static_cast<uint8_t*>(dest);
if (width == 4) {
Filter4xH(dst, stride, top_ptr, left_ptr, pred, height);
return;
}
// There is one set of 7 taps for each of the 4x2 output pixels.
const __m128i taps_0_1 = LoadUnaligned16(kFilterIntraTaps[pred][0]);
const __m128i taps_2_3 = LoadUnaligned16(kFilterIntraTaps[pred][2]);
const __m128i taps_4_5 = LoadUnaligned16(kFilterIntraTaps[pred][4]);
const __m128i taps_6_7 = LoadUnaligned16(kFilterIntraTaps[pred][6]);
// This mask rearranges bytes in the order: 0, 1, 2, 3, 4, 8, 9, 15. The 15 at
// the end is an unused value, which shall be multiplied by 0 when we apply
// the filter.
constexpr int64_t kCondenseLeftMask = 0x0F09080403020100;
// Takes the "left section" and puts it right after p0-p4.
const __m128i pixel_order1 = _mm_set1_epi64x(kCondenseLeftMask);
// This mask rearranges bytes in the order: 8, 0, 1, 2, 3, 9, 10, 15. The last
// byte is unused as above.
constexpr int64_t kInsertTopLeftMask = 0x0F0A090302010008;
// Shuffles the "top left" from the left section, to the front. Used when
// grabbing data from left_column and not top_row.
const __m128i pixel_order2 = _mm_set1_epi64x(kInsertTopLeftMask);
// This first pass takes care of the cases where the top left pixel comes from
// top_row.
__m128i pixels = LoadLo8(top_ptr - 1);
__m128i left = _mm_slli_si128(Load4(left_column), 8);
pixels = _mm_or_si128(pixels, left);
// Two sets of the same pixels to multiply with two sets of taps.
pixels = _mm_shuffle_epi8(pixels, pixel_order1);
Filter4x2_SSE4_1(dst, stride, pixels, taps_0_1, taps_2_3, taps_4_5, taps_6_7);
left = _mm_srli_si128(left, 1);
// Load
pixels = Load4(dst + stride);
// Because of the above shift, this OR 'invades' the final of the first 8
// bytes of |pixels|. This is acceptable because the 8th filter tap is always
// a padded 0.
pixels = _mm_or_si128(pixels, left);
pixels = _mm_shuffle_epi8(pixels, pixel_order2);
const ptrdiff_t stride2 = stride << 1;
const ptrdiff_t stride4 = stride << 2;
Filter4x2_SSE4_1(dst + stride2, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
dst += 4;
for (int x = 3; x < width - 4; x += 4) {
pixels = Load4(top_ptr + x);
pixels = _mm_insert_epi8(pixels, top_ptr[x + 4], 4);
pixels = _mm_insert_epi8(pixels, dst[-1], 5);
pixels = _mm_insert_epi8(pixels, dst[stride - 1], 6);
// Duplicate bottom half into upper half.
pixels = _mm_shuffle_epi32(pixels, kDuplicateFirstHalf);
Filter4x2_SSE4_1(dst, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
pixels = Load4(dst + stride - 1);
pixels = _mm_insert_epi8(pixels, dst[stride + 3], 4);
pixels = _mm_insert_epi8(pixels, dst[stride2 - 1], 5);
pixels = _mm_insert_epi8(pixels, dst[stride + stride2 - 1], 6);
// Duplicate bottom half into upper half.
pixels = _mm_shuffle_epi32(pixels, kDuplicateFirstHalf);
Filter4x2_SSE4_1(dst + stride2, stride, pixels, taps_0_1, taps_2_3,
taps_4_5, taps_6_7);
dst += 4;
}
// Now we handle heights that reference previous blocks rather than top_row.
for (int y = 4; y < height; y += 4) {
// Leftmost 4x4 block for this height.
dst -= width;
dst += stride4;
// Top Left is not available by offset in these leftmost blocks.
pixels = Load4(dst - stride);
left = _mm_slli_si128(Load4(left_ptr + y - 1), 8);
left = _mm_insert_epi8(left, left_ptr[y + 3], 12);
pixels = _mm_or_si128(pixels, left);
pixels = _mm_shuffle_epi8(pixels, pixel_order2);
Filter4x2_SSE4_1(dst, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
// The bytes shifted into positions 6 and 7 will be ignored by the shuffle.
left = _mm_srli_si128(left, 2);
pixels = Load4(dst + stride);
pixels = _mm_or_si128(pixels, left);
pixels = _mm_shuffle_epi8(pixels, pixel_order2);
Filter4x2_SSE4_1(dst + stride2, stride, pixels, taps_0_1, taps_2_3,
taps_4_5, taps_6_7);
dst += 4;
// Remaining 4x4 blocks for this height.
for (int x = 4; x < width; x += 4) {
pixels = Load4(dst - stride - 1);
pixels = _mm_insert_epi8(pixels, dst[-stride + 3], 4);
pixels = _mm_insert_epi8(pixels, dst[-1], 5);
pixels = _mm_insert_epi8(pixels, dst[stride - 1], 6);
// Duplicate bottom half into upper half.
pixels = _mm_shuffle_epi32(pixels, kDuplicateFirstHalf);
Filter4x2_SSE4_1(dst, stride, pixels, taps_0_1, taps_2_3, taps_4_5,
taps_6_7);
pixels = Load4(dst + stride - 1);
pixels = _mm_insert_epi8(pixels, dst[stride + 3], 4);
pixels = _mm_insert_epi8(pixels, dst[stride2 - 1], 5);
pixels = _mm_insert_epi8(pixels, dst[stride2 + stride - 1], 6);
// Duplicate bottom half into upper half.
pixels = _mm_shuffle_epi32(pixels, kDuplicateFirstHalf);
Filter4x2_SSE4_1(dst + stride2, stride, pixels, taps_0_1, taps_2_3,
taps_4_5, taps_6_7);
dst += 4;
}
}
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
static_cast<void>(dsp);
// These guards check if this version of the function was not superseded by
// a higher optimization level, such as AVX. The corresponding #define also
// prevents the C version from being added to the table.
#if DSP_ENABLED_8BPP_SSE4_1(FilterIntraPredictor)
dsp->filter_intra_predictor = FilterIntraPredictor_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(DirectionalIntraPredictorZone1)
dsp->directional_intra_predictor_zone1 =
DirectionalIntraPredictorZone1_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(DirectionalIntraPredictorZone2)
dsp->directional_intra_predictor_zone2 =
DirectionalIntraPredictorZone2_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(DirectionalIntraPredictorZone3)
dsp->directional_intra_predictor_zone3 =
DirectionalIntraPredictorZone3_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize4x4][kIntraPredictorDcTop] =
DcDefs::_4x4::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize4x8][kIntraPredictorDcTop] =
DcDefs::_4x8::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize4x16][kIntraPredictorDcTop] =
DcDefs::_4x16::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize8x4][kIntraPredictorDcTop] =
DcDefs::_8x4::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize8x8][kIntraPredictorDcTop] =
DcDefs::_8x8::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize8x16][kIntraPredictorDcTop] =
DcDefs::_8x16::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize8x32][kIntraPredictorDcTop] =
DcDefs::_8x32::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize16x4][kIntraPredictorDcTop] =
DcDefs::_16x4::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize16x8][kIntraPredictorDcTop] =
DcDefs::_16x8::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize16x16][kIntraPredictorDcTop] =
DcDefs::_16x16::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize16x32][kIntraPredictorDcTop] =
DcDefs::_16x32::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x64_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize16x64][kIntraPredictorDcTop] =
DcDefs::_16x64::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize32x8][kIntraPredictorDcTop] =
DcDefs::_32x8::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize32x16][kIntraPredictorDcTop] =
DcDefs::_32x16::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize32x32][kIntraPredictorDcTop] =
DcDefs::_32x32::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x64_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize32x64][kIntraPredictorDcTop] =
DcDefs::_32x64::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x16_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize64x16][kIntraPredictorDcTop] =
DcDefs::_64x16::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x32_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize64x32][kIntraPredictorDcTop] =
DcDefs::_64x32::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x64_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize64x64][kIntraPredictorDcTop] =
DcDefs::_64x64::DcTop;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize4x4][kIntraPredictorDcLeft] =
DcDefs::_4x4::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize4x8][kIntraPredictorDcLeft] =
DcDefs::_4x8::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize4x16][kIntraPredictorDcLeft] =
DcDefs::_4x16::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize8x4][kIntraPredictorDcLeft] =
DcDefs::_8x4::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize8x8][kIntraPredictorDcLeft] =
DcDefs::_8x8::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize8x16][kIntraPredictorDcLeft] =
DcDefs::_8x16::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize8x32][kIntraPredictorDcLeft] =
DcDefs::_8x32::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize16x4][kIntraPredictorDcLeft] =
DcDefs::_16x4::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize16x8][kIntraPredictorDcLeft] =
DcDefs::_16x8::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize16x16][kIntraPredictorDcLeft] =
DcDefs::_16x16::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize16x32][kIntraPredictorDcLeft] =
DcDefs::_16x32::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x64_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize16x64][kIntraPredictorDcLeft] =
DcDefs::_16x64::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize32x8][kIntraPredictorDcLeft] =
DcDefs::_32x8::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize32x16][kIntraPredictorDcLeft] =
DcDefs::_32x16::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize32x32][kIntraPredictorDcLeft] =
DcDefs::_32x32::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x64_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize32x64][kIntraPredictorDcLeft] =
DcDefs::_32x64::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x16_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize64x16][kIntraPredictorDcLeft] =
DcDefs::_64x16::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x32_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize64x32][kIntraPredictorDcLeft] =
DcDefs::_64x32::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x64_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize64x64][kIntraPredictorDcLeft] =
DcDefs::_64x64::DcLeft;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_IntraPredictorDc)
dsp->intra_predictors[kTransformSize4x4][kIntraPredictorDc] =
DcDefs::_4x4::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_IntraPredictorDc)
dsp->intra_predictors[kTransformSize4x8][kIntraPredictorDc] =
DcDefs::_4x8::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_IntraPredictorDc)
dsp->intra_predictors[kTransformSize4x16][kIntraPredictorDc] =
DcDefs::_4x16::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_IntraPredictorDc)
dsp->intra_predictors[kTransformSize8x4][kIntraPredictorDc] =
DcDefs::_8x4::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_IntraPredictorDc)
dsp->intra_predictors[kTransformSize8x8][kIntraPredictorDc] =
DcDefs::_8x8::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_IntraPredictorDc)
dsp->intra_predictors[kTransformSize8x16][kIntraPredictorDc] =
DcDefs::_8x16::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_IntraPredictorDc)
dsp->intra_predictors[kTransformSize8x32][kIntraPredictorDc] =
DcDefs::_8x32::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_IntraPredictorDc)
dsp->intra_predictors[kTransformSize16x4][kIntraPredictorDc] =
DcDefs::_16x4::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_IntraPredictorDc)
dsp->intra_predictors[kTransformSize16x8][kIntraPredictorDc] =
DcDefs::_16x8::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_IntraPredictorDc)
dsp->intra_predictors[kTransformSize16x16][kIntraPredictorDc] =
DcDefs::_16x16::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_IntraPredictorDc)
dsp->intra_predictors[kTransformSize16x32][kIntraPredictorDc] =
DcDefs::_16x32::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x64_IntraPredictorDc)
dsp->intra_predictors[kTransformSize16x64][kIntraPredictorDc] =
DcDefs::_16x64::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_IntraPredictorDc)
dsp->intra_predictors[kTransformSize32x8][kIntraPredictorDc] =
DcDefs::_32x8::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_IntraPredictorDc)
dsp->intra_predictors[kTransformSize32x16][kIntraPredictorDc] =
DcDefs::_32x16::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_IntraPredictorDc)
dsp->intra_predictors[kTransformSize32x32][kIntraPredictorDc] =
DcDefs::_32x32::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x64_IntraPredictorDc)
dsp->intra_predictors[kTransformSize32x64][kIntraPredictorDc] =
DcDefs::_32x64::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x16_IntraPredictorDc)
dsp->intra_predictors[kTransformSize64x16][kIntraPredictorDc] =
DcDefs::_64x16::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x32_IntraPredictorDc)
dsp->intra_predictors[kTransformSize64x32][kIntraPredictorDc] =
DcDefs::_64x32::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x64_IntraPredictorDc)
dsp->intra_predictors[kTransformSize64x64][kIntraPredictorDc] =
DcDefs::_64x64::Dc;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize4x4][kIntraPredictorPaeth] =
Paeth4x4_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize4x8][kIntraPredictorPaeth] =
Paeth4x8_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize4x16][kIntraPredictorPaeth] =
Paeth4x16_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize8x4][kIntraPredictorPaeth] =
Paeth8x4_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize8x8][kIntraPredictorPaeth] =
Paeth8x8_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize8x16][kIntraPredictorPaeth] =
Paeth8x16_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize8x32][kIntraPredictorPaeth] =
Paeth8x32_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize16x4][kIntraPredictorPaeth] =
Paeth16x4_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize16x8][kIntraPredictorPaeth] =
Paeth16x8_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize16x16][kIntraPredictorPaeth] =
Paeth16x16_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize16x32][kIntraPredictorPaeth] =
Paeth16x32_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x64_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize16x64][kIntraPredictorPaeth] =
Paeth16x64_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize32x8][kIntraPredictorPaeth] =
Paeth32x8_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize32x16][kIntraPredictorPaeth] =
Paeth32x16_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize32x32][kIntraPredictorPaeth] =
Paeth32x32_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x64_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize32x64][kIntraPredictorPaeth] =
Paeth32x64_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x16_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize64x16][kIntraPredictorPaeth] =
Paeth64x16_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x32_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize64x32][kIntraPredictorPaeth] =
Paeth64x32_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x64_IntraPredictorPaeth)
dsp->intra_predictors[kTransformSize64x64][kIntraPredictorPaeth] =
Paeth64x64_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize4x4][kIntraPredictorHorizontal] =
DirDefs::_4x4::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize4x8][kIntraPredictorHorizontal] =
DirDefs::_4x8::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize4x16][kIntraPredictorHorizontal] =
DirDefs::_4x16::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize8x4][kIntraPredictorHorizontal] =
DirDefs::_8x4::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize8x8][kIntraPredictorHorizontal] =
DirDefs::_8x8::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize8x16][kIntraPredictorHorizontal] =
DirDefs::_8x16::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize8x32][kIntraPredictorHorizontal] =
DirDefs::_8x32::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x4][kIntraPredictorHorizontal] =
DirDefs::_16x4::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x8][kIntraPredictorHorizontal] =
DirDefs::_16x8::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x16][kIntraPredictorHorizontal] =
DirDefs::_16x16::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x32][kIntraPredictorHorizontal] =
DirDefs::_16x32::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x64_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x64][kIntraPredictorHorizontal] =
DirDefs::_16x64::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize32x8][kIntraPredictorHorizontal] =
DirDefs::_32x8::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize32x16][kIntraPredictorHorizontal] =
DirDefs::_32x16::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize32x32][kIntraPredictorHorizontal] =
DirDefs::_32x32::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x64_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize32x64][kIntraPredictorHorizontal] =
DirDefs::_32x64::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize64x16][kIntraPredictorHorizontal] =
DirDefs::_64x16::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x32_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize64x32][kIntraPredictorHorizontal] =
DirDefs::_64x32::Horizontal;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize64x64_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize64x64][kIntraPredictorHorizontal] =
DirDefs::_64x64::Horizontal;
#endif
} // NOLINT(readability/fn_size)
// TODO(petersonab): Split Init8bpp function into family-specific files.
} // namespace
} // namespace low_bitdepth
//------------------------------------------------------------------------------
#if LIBGAV1_MAX_BITDEPTH >= 10
namespace high_bitdepth {
namespace {
template <int height>
inline void DcStore4xH_SSE4_1(void* const dest, ptrdiff_t stride,
const __m128i dc) {
const __m128i dc_dup = _mm_shufflelo_epi16(dc, 0);
int y = height - 1;
auto* dst = static_cast<uint8_t*>(dest);
do {
StoreLo8(dst, dc_dup);
dst += stride;
} while (--y != 0);
StoreLo8(dst, dc_dup);
}
// WriteDuplicateN assumes dup has 4 32-bit "units," each of which comprises 2
// identical shorts that need N total copies written into dest. The unpacking
// works the same as in the 8bpp case, except that each 32-bit unit needs twice
// as many copies.
inline void WriteDuplicate4x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
const __m128i dup64_lo = _mm_unpacklo_epi32(dup32, dup32);
auto* dst = static_cast<uint8_t*>(dest);
_mm_storel_epi64(reinterpret_cast<__m128i*>(dst), dup64_lo);
dst += stride;
_mm_storeh_pi(reinterpret_cast<__m64*>(dst), _mm_castsi128_ps(dup64_lo));
dst += stride;
const __m128i dup64_hi = _mm_unpackhi_epi32(dup32, dup32);
_mm_storel_epi64(reinterpret_cast<__m128i*>(dst), dup64_hi);
dst += stride;
_mm_storeh_pi(reinterpret_cast<__m64*>(dst), _mm_castsi128_ps(dup64_hi));
}
inline void WriteDuplicate8x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
const __m128i dup64_lo = _mm_unpacklo_epi32(dup32, dup32);
const __m128i dup64_hi = _mm_unpackhi_epi32(dup32, dup32);
auto* dst = static_cast<uint8_t*>(dest);
const __m128i dup128_0 = _mm_unpacklo_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_0);
dst += stride;
const __m128i dup128_1 = _mm_unpackhi_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_1);
dst += stride;
const __m128i dup128_2 = _mm_unpacklo_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_2);
dst += stride;
const __m128i dup128_3 = _mm_unpackhi_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_3);
}
inline void WriteDuplicate16x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
const __m128i dup64_lo = _mm_unpacklo_epi32(dup32, dup32);
const __m128i dup64_hi = _mm_unpackhi_epi32(dup32, dup32);
auto* dst = static_cast<uint8_t*>(dest);
const __m128i dup128_0 = _mm_unpacklo_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_0);
dst += stride;
const __m128i dup128_1 = _mm_unpackhi_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_1);
dst += stride;
const __m128i dup128_2 = _mm_unpacklo_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_2);
dst += stride;
const __m128i dup128_3 = _mm_unpackhi_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_3);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_3);
}
inline void WriteDuplicate32x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
const __m128i dup64_lo = _mm_unpacklo_epi32(dup32, dup32);
const __m128i dup64_hi = _mm_unpackhi_epi32(dup32, dup32);
auto* dst = static_cast<uint8_t*>(dest);
const __m128i dup128_0 = _mm_unpacklo_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 32), dup128_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 48), dup128_0);
dst += stride;
const __m128i dup128_1 = _mm_unpackhi_epi64(dup64_lo, dup64_lo);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 32), dup128_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 48), dup128_1);
dst += stride;
const __m128i dup128_2 = _mm_unpacklo_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 32), dup128_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 48), dup128_2);
dst += stride;
const __m128i dup128_3 = _mm_unpackhi_epi64(dup64_hi, dup64_hi);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), dup128_3);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16), dup128_3);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 32), dup128_3);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 48), dup128_3);
}
inline void WriteDuplicate64x4(void* const dest, ptrdiff_t stride,
const __m128i dup32) {
const __m128i dup64_lo = _mm_unpacklo_epi32(dup32, dup32);
const __m128i dup64_hi = _mm_unpackhi_epi32(dup32, dup32);
auto* dst = static_cast<uint8_t*>(dest);
const __m128i dup128_0 = _mm_unpacklo_epi64(dup64_lo, dup64_lo);
for (int x = 0; x < 128; x += 16) {
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + x), dup128_0);
}
dst += stride;
const __m128i dup128_1 = _mm_unpackhi_epi64(dup64_lo, dup64_lo);
for (int x = 0; x < 128; x += 16) {
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + x), dup128_1);
}
dst += stride;
const __m128i dup128_2 = _mm_unpacklo_epi64(dup64_hi, dup64_hi);
for (int x = 0; x < 128; x += 16) {
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + x), dup128_2);
}
dst += stride;
const __m128i dup128_3 = _mm_unpackhi_epi64(dup64_hi, dup64_hi);
for (int x = 0; x < 128; x += 16) {
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + x), dup128_3);
}
}
// ColStoreN<height> copies each of the |height| values in |column| across its
// corresponding row in dest.
template <WriteDuplicateFunc writefn>
inline void ColStore4_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const __m128i col_data = LoadLo8(column);
const __m128i col_dup32 = _mm_unpacklo_epi16(col_data, col_data);
writefn(dest, stride, col_dup32);
}
template <WriteDuplicateFunc writefn>
inline void ColStore8_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const __m128i col_data = LoadUnaligned16(column);
const __m128i col_dup32_lo = _mm_unpacklo_epi16(col_data, col_data);
const __m128i col_dup32_hi = _mm_unpackhi_epi16(col_data, col_data);
auto* dst = static_cast<uint8_t*>(dest);
writefn(dst, stride, col_dup32_lo);
const ptrdiff_t stride4 = stride << 2;
dst += stride4;
writefn(dst, stride, col_dup32_hi);
}
template <WriteDuplicateFunc writefn>
inline void ColStore16_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const ptrdiff_t stride4 = stride << 2;
auto* dst = static_cast<uint8_t*>(dest);
for (int y = 0; y < 32; y += 16) {
const __m128i col_data =
LoadUnaligned16(static_cast<const uint8_t*>(column) + y);
const __m128i col_dup32_lo = _mm_unpacklo_epi16(col_data, col_data);
const __m128i col_dup32_hi = _mm_unpackhi_epi16(col_data, col_data);
writefn(dst, stride, col_dup32_lo);
dst += stride4;
writefn(dst, stride, col_dup32_hi);
dst += stride4;
}
}
template <WriteDuplicateFunc writefn>
inline void ColStore32_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const ptrdiff_t stride4 = stride << 2;
auto* dst = static_cast<uint8_t*>(dest);
for (int y = 0; y < 64; y += 16) {
const __m128i col_data =
LoadUnaligned16(static_cast<const uint8_t*>(column) + y);
const __m128i col_dup32_lo = _mm_unpacklo_epi16(col_data, col_data);
const __m128i col_dup32_hi = _mm_unpackhi_epi16(col_data, col_data);
writefn(dst, stride, col_dup32_lo);
dst += stride4;
writefn(dst, stride, col_dup32_hi);
dst += stride4;
}
}
template <WriteDuplicateFunc writefn>
inline void ColStore64_SSE4_1(void* const dest, ptrdiff_t stride,
const void* const column) {
const ptrdiff_t stride4 = stride << 2;
auto* dst = static_cast<uint8_t*>(dest);
for (int y = 0; y < 128; y += 16) {
const __m128i col_data =
LoadUnaligned16(static_cast<const uint8_t*>(column) + y);
const __m128i col_dup32_lo = _mm_unpacklo_epi16(col_data, col_data);
const __m128i col_dup32_hi = _mm_unpackhi_epi16(col_data, col_data);
writefn(dst, stride, col_dup32_lo);
dst += stride4;
writefn(dst, stride, col_dup32_hi);
dst += stride4;
}
}
// |ref| points to 8 bytes containing 4 packed int16 values.
inline __m128i DcSum4_SSE4_1(const void* ref) {
const __m128i vals = _mm_loadl_epi64(static_cast<const __m128i*>(ref));
const __m128i ones = _mm_set1_epi16(1);
// half_sum[31:0] = a1+a2
// half_sum[63:32] = a3+a4
const __m128i half_sum = _mm_madd_epi16(vals, ones);
// Place half_sum[63:32] in shift_sum[31:0].
const __m128i shift_sum = _mm_srli_si128(half_sum, 4);
return _mm_add_epi32(half_sum, shift_sum);
}
struct DcDefs {
DcDefs() = delete;
using _4x4 = DcPredFuncs_SSE4_1<2, 2, DcSum4_SSE4_1, DcSum4_SSE4_1,
DcStore4xH_SSE4_1<4>, 0, 0>;
};
struct DirDefs {
DirDefs() = delete;
using _4x4 = DirectionalPredFuncs_SSE4_1<ColStore4_SSE4_1<WriteDuplicate4x4>>;
using _4x8 = DirectionalPredFuncs_SSE4_1<ColStore8_SSE4_1<WriteDuplicate4x4>>;
using _4x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate4x4>>;
using _8x4 = DirectionalPredFuncs_SSE4_1<ColStore4_SSE4_1<WriteDuplicate8x4>>;
using _8x8 = DirectionalPredFuncs_SSE4_1<ColStore8_SSE4_1<WriteDuplicate8x4>>;
using _8x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate8x4>>;
using _8x32 =
DirectionalPredFuncs_SSE4_1<ColStore32_SSE4_1<WriteDuplicate8x4>>;
using _16x4 =
DirectionalPredFuncs_SSE4_1<ColStore4_SSE4_1<WriteDuplicate16x4>>;
using _16x8 =
DirectionalPredFuncs_SSE4_1<ColStore8_SSE4_1<WriteDuplicate16x4>>;
using _16x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate16x4>>;
using _16x32 =
DirectionalPredFuncs_SSE4_1<ColStore32_SSE4_1<WriteDuplicate16x4>>;
using _16x64 =
DirectionalPredFuncs_SSE4_1<ColStore64_SSE4_1<WriteDuplicate16x4>>;
using _32x8 =
DirectionalPredFuncs_SSE4_1<ColStore8_SSE4_1<WriteDuplicate32x4>>;
using _32x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate32x4>>;
using _32x32 =
DirectionalPredFuncs_SSE4_1<ColStore32_SSE4_1<WriteDuplicate32x4>>;
using _32x64 =
DirectionalPredFuncs_SSE4_1<ColStore64_SSE4_1<WriteDuplicate32x4>>;
using _64x16 =
DirectionalPredFuncs_SSE4_1<ColStore16_SSE4_1<WriteDuplicate64x4>>;
using _64x32 =
DirectionalPredFuncs_SSE4_1<ColStore32_SSE4_1<WriteDuplicate64x4>>;
using _64x64 =
DirectionalPredFuncs_SSE4_1<ColStore64_SSE4_1<WriteDuplicate64x4>>;
};
void Init10bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(10);
assert(dsp != nullptr);
static_cast<void>(dsp);
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize4x4_IntraPredictorDcTop)
dsp->intra_predictors[kTransformSize4x4][kIntraPredictorDcTop] =
DcDefs::_4x4::DcTop;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize4x4_IntraPredictorDcLeft)
dsp->intra_predictors[kTransformSize4x4][kIntraPredictorDcLeft] =
DcDefs::_4x4::DcLeft;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize4x4_IntraPredictorDc)
dsp->intra_predictors[kTransformSize4x4][kIntraPredictorDc] =
DcDefs::_4x4::Dc;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize4x4_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize4x4][kIntraPredictorHorizontal] =
DirDefs::_4x4::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize4x8_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize4x8][kIntraPredictorHorizontal] =
DirDefs::_4x8::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize4x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize4x16][kIntraPredictorHorizontal] =
DirDefs::_4x16::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize8x4_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize8x4][kIntraPredictorHorizontal] =
DirDefs::_8x4::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize8x8_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize8x8][kIntraPredictorHorizontal] =
DirDefs::_8x8::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize8x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize8x16][kIntraPredictorHorizontal] =
DirDefs::_8x16::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize8x32_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize8x32][kIntraPredictorHorizontal] =
DirDefs::_8x32::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize16x4_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x4][kIntraPredictorHorizontal] =
DirDefs::_16x4::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize16x8_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x8][kIntraPredictorHorizontal] =
DirDefs::_16x8::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize16x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x16][kIntraPredictorHorizontal] =
DirDefs::_16x16::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize16x32_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x32][kIntraPredictorHorizontal] =
DirDefs::_16x32::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize16x64_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize16x64][kIntraPredictorHorizontal] =
DirDefs::_16x64::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize32x8_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize32x8][kIntraPredictorHorizontal] =
DirDefs::_32x8::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize32x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize32x16][kIntraPredictorHorizontal] =
DirDefs::_32x16::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize32x32_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize32x32][kIntraPredictorHorizontal] =
DirDefs::_32x32::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize32x64_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize32x64][kIntraPredictorHorizontal] =
DirDefs::_32x64::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize64x16_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize64x16][kIntraPredictorHorizontal] =
DirDefs::_64x16::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize64x32_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize64x32][kIntraPredictorHorizontal] =
DirDefs::_64x32::Horizontal;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(TransformSize64x64_IntraPredictorHorizontal)
dsp->intra_predictors[kTransformSize64x64][kIntraPredictorHorizontal] =
DirDefs::_64x64::Horizontal;
#endif
}
} // namespace
} // namespace high_bitdepth
#endif // LIBGAV1_MAX_BITDEPTH >= 10
void IntraPredInit_SSE4_1() {
low_bitdepth::Init8bpp();
#if LIBGAV1_MAX_BITDEPTH >= 10
high_bitdepth::Init10bpp();
#endif
}
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_ENABLE_SSE4_1
namespace libgav1 {
namespace dsp {
void IntraPredInit_SSE4_1() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_ENABLE_SSE4_1