blob: ff9a373fb6829cb7a0404fe81e0328491987d9e7 [file] [log] [blame]
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/convolve.h"
#include "src/utils/constants.h"
#include "src/utils/cpu.h"
#if LIBGAV1_ENABLE_SSE4_1
#include <smmintrin.h>
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_sse4.h"
#include "src/utils/common.h"
namespace libgav1 {
namespace dsp {
namespace low_bitdepth {
namespace {
// TODO(slavarnway): Move to common neon/sse4 file.
int GetNumTapsInFilter(const int filter_index) {
if (filter_index < 2) {
// Despite the names these only use 6 taps.
// kInterpolationFilterEightTap
// kInterpolationFilterEightTapSmooth
return 6;
}
if (filter_index == 2) {
// kInterpolationFilterEightTapSharp
return 8;
}
if (filter_index == 3) {
// kInterpolationFilterBilinear
return 2;
}
assert(filter_index > 3);
// For small sizes (width/height <= 4) the large filters are replaced with 4
// tap options.
// If the original filters were |kInterpolationFilterEightTap| or
// |kInterpolationFilterEightTapSharp| then it becomes
// |kInterpolationFilterSwitchable|.
// If it was |kInterpolationFilterEightTapSmooth| then it becomes an unnamed 4
// tap filter.
return 4;
}
constexpr int kIntermediateStride = kMaxSuperBlockSizeInPixels;
constexpr int kHorizontalOffset = 3;
constexpr int kFilterIndexShift = 6;
// Multiply every entry in |src[]| by the corresponding entry in |taps[]| and
// sum. The filters in |taps[]| are pre-shifted by 1. This prevents the final
// sum from outranging int16_t.
template <int filter_index>
__m128i SumOnePassTaps(const __m128i* const src, const __m128i* const taps) {
__m128i sum;
if (filter_index < 2) {
// 6 taps.
const __m128i v_madd_21 = _mm_maddubs_epi16(src[0], taps[0]); // k2k1
const __m128i v_madd_43 = _mm_maddubs_epi16(src[1], taps[1]); // k4k3
const __m128i v_madd_65 = _mm_maddubs_epi16(src[2], taps[2]); // k6k5
sum = _mm_add_epi16(v_madd_21, v_madd_43);
sum = _mm_add_epi16(sum, v_madd_65);
} else if (filter_index == 2) {
// 8 taps.
const __m128i v_madd_10 = _mm_maddubs_epi16(src[0], taps[0]); // k1k0
const __m128i v_madd_32 = _mm_maddubs_epi16(src[1], taps[1]); // k3k2
const __m128i v_madd_54 = _mm_maddubs_epi16(src[2], taps[2]); // k5k4
const __m128i v_madd_76 = _mm_maddubs_epi16(src[3], taps[3]); // k7k6
const __m128i v_sum_3210 = _mm_add_epi16(v_madd_10, v_madd_32);
const __m128i v_sum_7654 = _mm_add_epi16(v_madd_54, v_madd_76);
sum = _mm_add_epi16(v_sum_7654, v_sum_3210);
} else if (filter_index == 3) {
// 2 taps.
sum = _mm_maddubs_epi16(src[0], taps[0]); // k4k3
} else {
// 4 taps.
const __m128i v_madd_32 = _mm_maddubs_epi16(src[0], taps[0]); // k3k2
const __m128i v_madd_54 = _mm_maddubs_epi16(src[1], taps[1]); // k5k4
sum = _mm_add_epi16(v_madd_32, v_madd_54);
}
return sum;
}
template <int filter_index>
__m128i SumHorizontalTaps(const uint8_t* const src,
const __m128i* const v_tap) {
__m128i v_src[4];
const __m128i src_long = LoadUnaligned16(src);
const __m128i src_long_dup_lo = _mm_unpacklo_epi8(src_long, src_long);
const __m128i src_long_dup_hi = _mm_unpackhi_epi8(src_long, src_long);
if (filter_index < 2) {
// 6 taps.
v_src[0] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 3); // _21
v_src[1] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 7); // _43
v_src[2] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 11); // _65
} else if (filter_index == 2) {
// 8 taps.
v_src[0] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 1); // _10
v_src[1] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 5); // _32
v_src[2] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 9); // _54
v_src[3] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 13); // _76
} else if (filter_index == 3) {
// 2 taps.
v_src[0] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 7); // _43
} else if (filter_index > 3) {
// 4 taps.
v_src[0] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 5); // _32
v_src[1] = _mm_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 9); // _54
}
const __m128i sum = SumOnePassTaps<filter_index>(v_src, v_tap);
return sum;
}
template <int filter_index>
__m128i SimpleHorizontalTaps(const uint8_t* const src,
const __m128i* const v_tap) {
__m128i sum = SumHorizontalTaps<filter_index>(src, v_tap);
// Normally the Horizontal pass does the downshift in two passes:
// kInterRoundBitsHorizontal - 1 and then (kFilterBits -
// kInterRoundBitsHorizontal). Each one uses a rounding shift. Combining them
// requires adding the rounding offset from the skipped shift.
constexpr int first_shift_rounding_bit = 1 << (kInterRoundBitsHorizontal - 2);
sum = _mm_add_epi16(sum, _mm_set1_epi16(first_shift_rounding_bit));
sum = RightShiftWithRounding_S16(sum, kFilterBits - 1);
return _mm_packus_epi16(sum, sum);
}
template <int filter_index>
__m128i HorizontalTaps8To16(const uint8_t* const src,
const __m128i* const v_tap) {
const __m128i sum = SumHorizontalTaps<filter_index>(src, v_tap);
return RightShiftWithRounding_S16(sum, kInterRoundBitsHorizontal - 1);
}
template <int filter_index>
__m128i SumHorizontalTaps2x2(const uint8_t* src, const ptrdiff_t src_stride,
const __m128i* const v_tap) {
const __m128i input0 = LoadLo8(&src[2]);
const __m128i input1 = LoadLo8(&src[2 + src_stride]);
if (filter_index == 3) {
// 03 04 04 05 05 06 06 07 ....
const __m128i input0_dup =
_mm_srli_si128(_mm_unpacklo_epi8(input0, input0), 3);
// 13 14 14 15 15 16 16 17 ....
const __m128i input1_dup =
_mm_srli_si128(_mm_unpacklo_epi8(input1, input1), 3);
const __m128i v_src_43 = _mm_unpacklo_epi64(input0_dup, input1_dup);
const __m128i v_sum_43 = _mm_maddubs_epi16(v_src_43, v_tap[0]); // k4k3
return v_sum_43;
}
// 02 03 03 04 04 05 05 06 06 07 ....
const __m128i input0_dup =
_mm_srli_si128(_mm_unpacklo_epi8(input0, input0), 1);
// 12 13 13 14 14 15 15 16 16 17 ....
const __m128i input1_dup =
_mm_srli_si128(_mm_unpacklo_epi8(input1, input1), 1);
// 04 05 05 06 06 07 07 08 ...
const __m128i input0_dup_54 = _mm_srli_si128(input0_dup, 4);
// 14 15 15 16 16 17 17 18 ...
const __m128i input1_dup_54 = _mm_srli_si128(input1_dup, 4);
const __m128i v_src_32 = _mm_unpacklo_epi64(input0_dup, input1_dup);
const __m128i v_src_54 = _mm_unpacklo_epi64(input0_dup_54, input1_dup_54);
const __m128i v_madd_32 = _mm_maddubs_epi16(v_src_32, v_tap[0]); // k3k2
const __m128i v_madd_54 = _mm_maddubs_epi16(v_src_54, v_tap[1]); // k5k4
const __m128i v_sum_5432 = _mm_add_epi16(v_madd_54, v_madd_32);
return v_sum_5432;
}
template <int filter_index>
__m128i SimpleHorizontalTaps2x2(const uint8_t* src, const ptrdiff_t src_stride,
const __m128i* const v_tap) {
__m128i sum = SumHorizontalTaps2x2<filter_index>(src, src_stride, v_tap);
// Normally the Horizontal pass does the downshift in two passes:
// kInterRoundBitsHorizontal - 1 and then (kFilterBits -
// kInterRoundBitsHorizontal). Each one uses a rounding shift. Combining them
// requires adding the rounding offset from the skipped shift.
constexpr int first_shift_rounding_bit = 1 << (kInterRoundBitsHorizontal - 2);
sum = _mm_add_epi16(sum, _mm_set1_epi16(first_shift_rounding_bit));
sum = RightShiftWithRounding_S16(sum, kFilterBits - 1);
return _mm_packus_epi16(sum, sum);
}
template <int filter_index>
__m128i HorizontalTaps8To16_2x2(const uint8_t* src, const ptrdiff_t src_stride,
const __m128i* const v_tap) {
const __m128i sum =
SumHorizontalTaps2x2<filter_index>(src, src_stride, v_tap);
return RightShiftWithRounding_S16(sum, kInterRoundBitsHorizontal - 1);
}
template <int num_taps, int step, int filter_index, bool is_2d = false,
bool is_compound = false>
void FilterHorizontal(const uint8_t* src, const ptrdiff_t src_stride,
void* const dest, const ptrdiff_t pred_stride,
const int width, const int height,
const __m128i* const v_tap) {
auto* dest8 = static_cast<uint8_t*>(dest);
auto* dest16 = static_cast<uint16_t*>(dest);
// 4 tap filters are never used when width > 4.
if (num_taps != 4 && width > 4) {
int y = 0;
do {
int x = 0;
do {
if (is_2d || is_compound) {
const __m128i v_sum =
HorizontalTaps8To16<filter_index>(&src[x], v_tap);
if (is_2d) {
StoreAligned16(&dest16[x], v_sum);
} else {
StoreUnaligned16(&dest16[x], v_sum);
}
} else {
const __m128i result =
SimpleHorizontalTaps<filter_index>(&src[x], v_tap);
StoreLo8(&dest8[x], result);
}
x += step;
} while (x < width);
src += src_stride;
dest8 += pred_stride;
dest16 += pred_stride;
} while (++y < height);
return;
}
// Horizontal passes only needs to account for |num_taps| 2 and 4 when
// |width| <= 4.
assert(width <= 4);
assert(num_taps <= 4);
if (num_taps <= 4) {
if (width == 4) {
int y = 0;
do {
if (is_2d || is_compound) {
const __m128i v_sum = HorizontalTaps8To16<filter_index>(src, v_tap);
StoreLo8(dest16, v_sum);
} else {
const __m128i result = SimpleHorizontalTaps<filter_index>(src, v_tap);
Store4(&dest8[0], result);
}
src += src_stride;
dest8 += pred_stride;
dest16 += pred_stride;
} while (++y < height);
return;
}
if (!is_compound) {
int y = 0;
do {
if (is_2d) {
const __m128i sum =
HorizontalTaps8To16_2x2<filter_index>(src, src_stride, v_tap);
Store4(&dest16[0], sum);
dest16 += pred_stride;
Store4(&dest16[0], _mm_srli_si128(sum, 8));
dest16 += pred_stride;
} else {
const __m128i sum =
SimpleHorizontalTaps2x2<filter_index>(src, src_stride, v_tap);
Store2(dest8, sum);
dest8 += pred_stride;
Store2(dest8, _mm_srli_si128(sum, 4));
dest8 += pred_stride;
}
src += src_stride << 1;
y += 2;
} while (y < height - 1);
// The 2d filters have an odd |height| because the horizontal pass
// generates context for the vertical pass.
if (is_2d) {
assert(height % 2 == 1);
__m128i sum;
const __m128i input = LoadLo8(&src[2]);
if (filter_index == 3) {
// 03 04 04 05 05 06 06 07 ....
const __m128i v_src_43 =
_mm_srli_si128(_mm_unpacklo_epi8(input, input), 3);
sum = _mm_maddubs_epi16(v_src_43, v_tap[0]); // k4k3
} else {
// 02 03 03 04 04 05 05 06 06 07 ....
const __m128i v_src_32 =
_mm_srli_si128(_mm_unpacklo_epi8(input, input), 1);
// 04 05 05 06 06 07 07 08 ...
const __m128i v_src_54 = _mm_srli_si128(v_src_32, 4);
const __m128i v_madd_32 =
_mm_maddubs_epi16(v_src_32, v_tap[0]); // k3k2
const __m128i v_madd_54 =
_mm_maddubs_epi16(v_src_54, v_tap[1]); // k5k4
sum = _mm_add_epi16(v_madd_54, v_madd_32);
}
sum = RightShiftWithRounding_S16(sum, kInterRoundBitsHorizontal - 1);
Store4(dest16, sum);
}
}
}
}
template <int num_taps, bool is_2d_vertical = false>
LIBGAV1_ALWAYS_INLINE void SetupTaps(const __m128i* const filter,
__m128i* v_tap) {
if (num_taps == 8) {
v_tap[0] = _mm_shufflelo_epi16(*filter, 0x0); // k1k0
v_tap[1] = _mm_shufflelo_epi16(*filter, 0x55); // k3k2
v_tap[2] = _mm_shufflelo_epi16(*filter, 0xaa); // k5k4
v_tap[3] = _mm_shufflelo_epi16(*filter, 0xff); // k7k6
if (is_2d_vertical) {
v_tap[0] = _mm_cvtepi8_epi16(v_tap[0]);
v_tap[1] = _mm_cvtepi8_epi16(v_tap[1]);
v_tap[2] = _mm_cvtepi8_epi16(v_tap[2]);
v_tap[3] = _mm_cvtepi8_epi16(v_tap[3]);
} else {
v_tap[0] = _mm_unpacklo_epi64(v_tap[0], v_tap[0]);
v_tap[1] = _mm_unpacklo_epi64(v_tap[1], v_tap[1]);
v_tap[2] = _mm_unpacklo_epi64(v_tap[2], v_tap[2]);
v_tap[3] = _mm_unpacklo_epi64(v_tap[3], v_tap[3]);
}
} else if (num_taps == 6) {
const __m128i adjusted_filter = _mm_srli_si128(*filter, 1);
v_tap[0] = _mm_shufflelo_epi16(adjusted_filter, 0x0); // k2k1
v_tap[1] = _mm_shufflelo_epi16(adjusted_filter, 0x55); // k4k3
v_tap[2] = _mm_shufflelo_epi16(adjusted_filter, 0xaa); // k6k5
if (is_2d_vertical) {
v_tap[0] = _mm_cvtepi8_epi16(v_tap[0]);
v_tap[1] = _mm_cvtepi8_epi16(v_tap[1]);
v_tap[2] = _mm_cvtepi8_epi16(v_tap[2]);
} else {
v_tap[0] = _mm_unpacklo_epi64(v_tap[0], v_tap[0]);
v_tap[1] = _mm_unpacklo_epi64(v_tap[1], v_tap[1]);
v_tap[2] = _mm_unpacklo_epi64(v_tap[2], v_tap[2]);
}
} else if (num_taps == 4) {
v_tap[0] = _mm_shufflelo_epi16(*filter, 0x55); // k3k2
v_tap[1] = _mm_shufflelo_epi16(*filter, 0xaa); // k5k4
if (is_2d_vertical) {
v_tap[0] = _mm_cvtepi8_epi16(v_tap[0]);
v_tap[1] = _mm_cvtepi8_epi16(v_tap[1]);
} else {
v_tap[0] = _mm_unpacklo_epi64(v_tap[0], v_tap[0]);
v_tap[1] = _mm_unpacklo_epi64(v_tap[1], v_tap[1]);
}
} else { // num_taps == 2
const __m128i adjusted_filter = _mm_srli_si128(*filter, 1);
v_tap[0] = _mm_shufflelo_epi16(adjusted_filter, 0x55); // k4k3
if (is_2d_vertical) {
v_tap[0] = _mm_cvtepi8_epi16(v_tap[0]);
} else {
v_tap[0] = _mm_unpacklo_epi64(v_tap[0], v_tap[0]);
}
}
}
template <int num_taps, bool is_compound>
__m128i SimpleSum2DVerticalTaps(const __m128i* const src,
const __m128i* const taps) {
__m128i sum_lo = _mm_madd_epi16(_mm_unpacklo_epi16(src[0], src[1]), taps[0]);
__m128i sum_hi = _mm_madd_epi16(_mm_unpackhi_epi16(src[0], src[1]), taps[0]);
if (num_taps >= 4) {
__m128i madd_lo =
_mm_madd_epi16(_mm_unpacklo_epi16(src[2], src[3]), taps[1]);
__m128i madd_hi =
_mm_madd_epi16(_mm_unpackhi_epi16(src[2], src[3]), taps[1]);
sum_lo = _mm_add_epi32(sum_lo, madd_lo);
sum_hi = _mm_add_epi32(sum_hi, madd_hi);
if (num_taps >= 6) {
madd_lo = _mm_madd_epi16(_mm_unpacklo_epi16(src[4], src[5]), taps[2]);
madd_hi = _mm_madd_epi16(_mm_unpackhi_epi16(src[4], src[5]), taps[2]);
sum_lo = _mm_add_epi32(sum_lo, madd_lo);
sum_hi = _mm_add_epi32(sum_hi, madd_hi);
if (num_taps == 8) {
madd_lo = _mm_madd_epi16(_mm_unpacklo_epi16(src[6], src[7]), taps[3]);
madd_hi = _mm_madd_epi16(_mm_unpackhi_epi16(src[6], src[7]), taps[3]);
sum_lo = _mm_add_epi32(sum_lo, madd_lo);
sum_hi = _mm_add_epi32(sum_hi, madd_hi);
}
}
}
if (is_compound) {
return _mm_packs_epi32(
RightShiftWithRounding_S32(sum_lo, kInterRoundBitsCompoundVertical - 1),
RightShiftWithRounding_S32(sum_hi,
kInterRoundBitsCompoundVertical - 1));
}
return _mm_packs_epi32(
RightShiftWithRounding_S32(sum_lo, kInterRoundBitsVertical - 1),
RightShiftWithRounding_S32(sum_hi, kInterRoundBitsVertical - 1));
}
template <int num_taps, bool is_compound = false>
void Filter2DVertical(const uint16_t* src, void* const dst,
const ptrdiff_t dst_stride, const int width,
const int height, const __m128i* const taps) {
assert(width >= 8);
constexpr int next_row = num_taps - 1;
// The Horizontal pass uses |width| as |stride| for the intermediate buffer.
const ptrdiff_t src_stride = width;
auto* dst8 = static_cast<uint8_t*>(dst);
auto* dst16 = static_cast<uint16_t*>(dst);
int x = 0;
do {
__m128i srcs[8];
const uint16_t* src_x = src + x;
srcs[0] = LoadAligned16(src_x);
src_x += src_stride;
if (num_taps >= 4) {
srcs[1] = LoadAligned16(src_x);
src_x += src_stride;
srcs[2] = LoadAligned16(src_x);
src_x += src_stride;
if (num_taps >= 6) {
srcs[3] = LoadAligned16(src_x);
src_x += src_stride;
srcs[4] = LoadAligned16(src_x);
src_x += src_stride;
if (num_taps == 8) {
srcs[5] = LoadAligned16(src_x);
src_x += src_stride;
srcs[6] = LoadAligned16(src_x);
src_x += src_stride;
}
}
}
int y = 0;
do {
srcs[next_row] = LoadAligned16(src_x);
src_x += src_stride;
const __m128i sum =
SimpleSum2DVerticalTaps<num_taps, is_compound>(srcs, taps);
if (is_compound) {
StoreUnaligned16(dst16 + x + y * dst_stride, sum);
} else {
StoreLo8(dst8 + x + y * dst_stride, _mm_packus_epi16(sum, sum));
}
srcs[0] = srcs[1];
if (num_taps >= 4) {
srcs[1] = srcs[2];
srcs[2] = srcs[3];
if (num_taps >= 6) {
srcs[3] = srcs[4];
srcs[4] = srcs[5];
if (num_taps == 8) {
srcs[5] = srcs[6];
srcs[6] = srcs[7];
}
}
}
} while (++y < height);
x += 8;
} while (x < width);
}
// Take advantage of |src_stride| == |width| to process two rows at a time.
template <int num_taps, bool is_compound = false>
void Filter2DVertical4xH(const uint16_t* src, void* const dst,
const ptrdiff_t dst_stride, const int height,
const __m128i* const taps) {
auto* dst8 = static_cast<uint8_t*>(dst);
auto* dst16 = static_cast<uint16_t*>(dst);
__m128i srcs[9];
srcs[0] = LoadAligned16(src);
src += 8;
if (num_taps >= 4) {
srcs[2] = LoadAligned16(src);
src += 8;
srcs[1] = _mm_unpacklo_epi64(_mm_srli_si128(srcs[0], 8), srcs[2]);
if (num_taps >= 6) {
srcs[4] = LoadAligned16(src);
src += 8;
srcs[3] = _mm_unpacklo_epi64(_mm_srli_si128(srcs[2], 8), srcs[4]);
if (num_taps == 8) {
srcs[6] = LoadAligned16(src);
src += 8;
srcs[5] = _mm_unpacklo_epi64(_mm_srli_si128(srcs[4], 8), srcs[6]);
}
}
}
int y = 0;
do {
srcs[num_taps] = LoadAligned16(src);
src += 8;
srcs[num_taps - 1] = _mm_unpacklo_epi64(
_mm_srli_si128(srcs[num_taps - 2], 8), srcs[num_taps]);
const __m128i sum =
SimpleSum2DVerticalTaps<num_taps, is_compound>(srcs, taps);
if (is_compound) {
StoreUnaligned16(dst16, sum);
dst16 += 4 << 1;
} else {
const __m128i results = _mm_packus_epi16(sum, sum);
Store4(dst8, results);
dst8 += dst_stride;
Store4(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
}
srcs[0] = srcs[2];
if (num_taps >= 4) {
srcs[1] = srcs[3];
srcs[2] = srcs[4];
if (num_taps >= 6) {
srcs[3] = srcs[5];
srcs[4] = srcs[6];
if (num_taps == 8) {
srcs[5] = srcs[7];
srcs[6] = srcs[8];
}
}
}
y += 2;
} while (y < height);
}
// Take advantage of |src_stride| == |width| to process four rows at a time.
template <int num_taps>
void Filter2DVertical2xH(const uint16_t* src, void* const dst,
const ptrdiff_t dst_stride, const int height,
const __m128i* const taps) {
constexpr int next_row = (num_taps < 6) ? 4 : 8;
auto* dst8 = static_cast<uint8_t*>(dst);
__m128i srcs[9];
srcs[0] = LoadAligned16(src);
src += 8;
if (num_taps >= 6) {
srcs[4] = LoadAligned16(src);
src += 8;
srcs[1] = _mm_alignr_epi8(srcs[4], srcs[0], 4);
if (num_taps == 8) {
srcs[2] = _mm_alignr_epi8(srcs[4], srcs[0], 8);
srcs[3] = _mm_alignr_epi8(srcs[4], srcs[0], 12);
}
}
int y = 0;
do {
srcs[next_row] = LoadAligned16(src);
src += 8;
if (num_taps == 2) {
srcs[1] = _mm_alignr_epi8(srcs[4], srcs[0], 4);
} else if (num_taps == 4) {
srcs[1] = _mm_alignr_epi8(srcs[4], srcs[0], 4);
srcs[2] = _mm_alignr_epi8(srcs[4], srcs[0], 8);
srcs[3] = _mm_alignr_epi8(srcs[4], srcs[0], 12);
} else if (num_taps == 6) {
srcs[2] = _mm_alignr_epi8(srcs[4], srcs[0], 8);
srcs[3] = _mm_alignr_epi8(srcs[4], srcs[0], 12);
srcs[5] = _mm_alignr_epi8(srcs[8], srcs[4], 4);
} else if (num_taps == 8) {
srcs[5] = _mm_alignr_epi8(srcs[8], srcs[4], 4);
srcs[6] = _mm_alignr_epi8(srcs[8], srcs[4], 8);
srcs[7] = _mm_alignr_epi8(srcs[8], srcs[4], 12);
}
const __m128i sum =
SimpleSum2DVerticalTaps<num_taps, /*is_compound=*/false>(srcs, taps);
const __m128i results = _mm_packus_epi16(sum, sum);
Store2(dst8, results);
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 2));
// When |height| <= 4 the taps are restricted to 2 and 4 tap variants.
// Therefore we don't need to check this condition when |height| > 4.
if (num_taps <= 4 && height == 2) return;
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 6));
dst8 += dst_stride;
srcs[0] = srcs[4];
if (num_taps == 6) {
srcs[1] = srcs[5];
srcs[4] = srcs[8];
} else if (num_taps == 8) {
srcs[1] = srcs[5];
srcs[2] = srcs[6];
srcs[3] = srcs[7];
srcs[4] = srcs[8];
}
y += 4;
} while (y < height);
}
template <bool is_2d = false, bool is_compound = false>
LIBGAV1_ALWAYS_INLINE void DoHorizontalPass(
const uint8_t* const src, const ptrdiff_t src_stride, void* const dst,
const ptrdiff_t dst_stride, const int width, const int height,
const int subpixel, const int filter_index) {
const int filter_id = (subpixel >> 6) & kSubPixelMask;
assert(filter_id != 0);
__m128i v_tap[4];
const __m128i v_horizontal_filter =
LoadLo8(kHalfSubPixelFilters[filter_index][filter_id]);
if (filter_index == 2) { // 8 tap.
SetupTaps<8>(&v_horizontal_filter, v_tap);
FilterHorizontal<8, 8, 2, is_2d, is_compound>(
src, src_stride, dst, dst_stride, width, height, v_tap);
} else if (filter_index == 1) { // 6 tap.
SetupTaps<6>(&v_horizontal_filter, v_tap);
FilterHorizontal<6, 8, 1, is_2d, is_compound>(
src, src_stride, dst, dst_stride, width, height, v_tap);
} else if (filter_index == 0) { // 6 tap.
SetupTaps<6>(&v_horizontal_filter, v_tap);
FilterHorizontal<6, 8, 0, is_2d, is_compound>(
src, src_stride, dst, dst_stride, width, height, v_tap);
} else if (filter_index == 4) { // 4 tap.
SetupTaps<4>(&v_horizontal_filter, v_tap);
FilterHorizontal<4, 8, 4, is_2d, is_compound>(
src, src_stride, dst, dst_stride, width, height, v_tap);
} else if (filter_index == 5) { // 4 tap.
SetupTaps<4>(&v_horizontal_filter, v_tap);
FilterHorizontal<4, 8, 5, is_2d, is_compound>(
src, src_stride, dst, dst_stride, width, height, v_tap);
} else { // 2 tap.
SetupTaps<2>(&v_horizontal_filter, v_tap);
FilterHorizontal<2, 8, 3, is_2d, is_compound>(
src, src_stride, dst, dst_stride, width, height, v_tap);
}
}
void Convolve2D_SSE4_1(const void* const reference,
const ptrdiff_t reference_stride,
const int horizontal_filter_index,
const int vertical_filter_index, const int subpixel_x,
const int subpixel_y, const int width, const int height,
void* prediction, const ptrdiff_t pred_stride) {
const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width);
const int vert_filter_index = GetFilterIndex(vertical_filter_index, height);
const int vertical_taps = GetNumTapsInFilter(vert_filter_index);
// The output of the horizontal filter is guaranteed to fit in 16 bits.
alignas(16) uint16_t
intermediate_result[kMaxSuperBlockSizeInPixels *
(kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1)];
const int intermediate_height = height + vertical_taps - 1;
const ptrdiff_t src_stride = reference_stride;
const auto* src = static_cast<const uint8_t*>(reference) -
(vertical_taps / 2 - 1) * src_stride - kHorizontalOffset;
DoHorizontalPass</*is_2d=*/true>(src, src_stride, intermediate_result, width,
width, intermediate_height, subpixel_x,
horiz_filter_index);
// Vertical filter.
auto* dest = static_cast<uint8_t*>(prediction);
const ptrdiff_t dest_stride = pred_stride;
const int filter_id = ((subpixel_y & 1023) >> 6) & kSubPixelMask;
assert(filter_id != 0);
__m128i taps[4];
const __m128i v_filter =
LoadLo8(kHalfSubPixelFilters[vert_filter_index][filter_id]);
if (vertical_taps == 8) {
SetupTaps<8, /*is_2d_vertical=*/true>(&v_filter, taps);
if (width == 2) {
Filter2DVertical2xH<8>(intermediate_result, dest, dest_stride, height,
taps);
} else if (width == 4) {
Filter2DVertical4xH<8>(intermediate_result, dest, dest_stride, height,
taps);
} else {
Filter2DVertical<8>(intermediate_result, dest, dest_stride, width, height,
taps);
}
} else if (vertical_taps == 6) {
SetupTaps<6, /*is_2d_vertical=*/true>(&v_filter, taps);
if (width == 2) {
Filter2DVertical2xH<6>(intermediate_result, dest, dest_stride, height,
taps);
} else if (width == 4) {
Filter2DVertical4xH<6>(intermediate_result, dest, dest_stride, height,
taps);
} else {
Filter2DVertical<6>(intermediate_result, dest, dest_stride, width, height,
taps);
}
} else if (vertical_taps == 4) {
SetupTaps<4, /*is_2d_vertical=*/true>(&v_filter, taps);
if (width == 2) {
Filter2DVertical2xH<4>(intermediate_result, dest, dest_stride, height,
taps);
} else if (width == 4) {
Filter2DVertical4xH<4>(intermediate_result, dest, dest_stride, height,
taps);
} else {
Filter2DVertical<4>(intermediate_result, dest, dest_stride, width, height,
taps);
}
} else { // |vertical_taps| == 2
SetupTaps<2, /*is_2d_vertical=*/true>(&v_filter, taps);
if (width == 2) {
Filter2DVertical2xH<2>(intermediate_result, dest, dest_stride, height,
taps);
} else if (width == 4) {
Filter2DVertical4xH<2>(intermediate_result, dest, dest_stride, height,
taps);
} else {
Filter2DVertical<2>(intermediate_result, dest, dest_stride, width, height,
taps);
}
}
}
// The 1D compound shift is always |kInterRoundBitsHorizontal|, even for 1D
// Vertical calculations.
__m128i Compound1DShift(const __m128i sum) {
return RightShiftWithRounding_S16(sum, kInterRoundBitsHorizontal - 1);
}
template <int filter_index>
__m128i SumVerticalTaps(const __m128i* const srcs, const __m128i* const v_tap) {
__m128i v_src[4];
if (filter_index < 2) {
// 6 taps.
v_src[0] = _mm_unpacklo_epi8(srcs[0], srcs[1]);
v_src[1] = _mm_unpacklo_epi8(srcs[2], srcs[3]);
v_src[2] = _mm_unpacklo_epi8(srcs[4], srcs[5]);
} else if (filter_index == 2) {
// 8 taps.
v_src[0] = _mm_unpacklo_epi8(srcs[0], srcs[1]);
v_src[1] = _mm_unpacklo_epi8(srcs[2], srcs[3]);
v_src[2] = _mm_unpacklo_epi8(srcs[4], srcs[5]);
v_src[3] = _mm_unpacklo_epi8(srcs[6], srcs[7]);
} else if (filter_index == 3) {
// 2 taps.
v_src[0] = _mm_unpacklo_epi8(srcs[0], srcs[1]);
} else if (filter_index > 3) {
// 4 taps.
v_src[0] = _mm_unpacklo_epi8(srcs[0], srcs[1]);
v_src[1] = _mm_unpacklo_epi8(srcs[2], srcs[3]);
}
const __m128i sum = SumOnePassTaps<filter_index>(v_src, v_tap);
return sum;
}
template <int filter_index, bool is_compound = false>
void FilterVertical(const uint8_t* src, const ptrdiff_t src_stride,
void* const dst, const ptrdiff_t dst_stride,
const int width, const int height,
const __m128i* const v_tap) {
const int num_taps = GetNumTapsInFilter(filter_index);
const int next_row = num_taps - 1;
auto* dst8 = static_cast<uint8_t*>(dst);
auto* dst16 = static_cast<uint16_t*>(dst);
assert(width >= 8);
int x = 0;
do {
const uint8_t* src_x = src + x;
__m128i srcs[8];
srcs[0] = LoadLo8(src_x);
src_x += src_stride;
if (num_taps >= 4) {
srcs[1] = LoadLo8(src_x);
src_x += src_stride;
srcs[2] = LoadLo8(src_x);
src_x += src_stride;
if (num_taps >= 6) {
srcs[3] = LoadLo8(src_x);
src_x += src_stride;
srcs[4] = LoadLo8(src_x);
src_x += src_stride;
if (num_taps == 8) {
srcs[5] = LoadLo8(src_x);
src_x += src_stride;
srcs[6] = LoadLo8(src_x);
src_x += src_stride;
}
}
}
int y = 0;
do {
srcs[next_row] = LoadLo8(src_x);
src_x += src_stride;
const __m128i sums = SumVerticalTaps<filter_index>(srcs, v_tap);
if (is_compound) {
const __m128i results = Compound1DShift(sums);
StoreUnaligned16(dst16 + x + y * dst_stride, results);
} else {
const __m128i results =
RightShiftWithRounding_S16(sums, kFilterBits - 1);
StoreLo8(dst8 + x + y * dst_stride, _mm_packus_epi16(results, results));
}
srcs[0] = srcs[1];
if (num_taps >= 4) {
srcs[1] = srcs[2];
srcs[2] = srcs[3];
if (num_taps >= 6) {
srcs[3] = srcs[4];
srcs[4] = srcs[5];
if (num_taps == 8) {
srcs[5] = srcs[6];
srcs[6] = srcs[7];
}
}
}
} while (++y < height);
x += 8;
} while (x < width);
}
template <int filter_index, bool is_compound = false>
void FilterVertical4xH(const uint8_t* src, const ptrdiff_t src_stride,
void* const dst, const ptrdiff_t dst_stride,
const int height, const __m128i* const v_tap) {
const int num_taps = GetNumTapsInFilter(filter_index);
auto* dst8 = static_cast<uint8_t*>(dst);
auto* dst16 = static_cast<uint16_t*>(dst);
__m128i srcs[9];
if (num_taps == 2) {
srcs[2] = _mm_setzero_si128();
// 00 01 02 03
srcs[0] = Load4(src);
src += src_stride;
int y = 0;
do {
// 10 11 12 13
const __m128i a = Load4(src);
// 00 01 02 03 10 11 12 13
srcs[0] = _mm_unpacklo_epi32(srcs[0], a);
src += src_stride;
// 20 21 22 23
srcs[2] = Load4(src);
src += src_stride;
// 10 11 12 13 20 21 22 23
srcs[1] = _mm_unpacklo_epi32(a, srcs[2]);
const __m128i sums = SumVerticalTaps<filter_index>(srcs, v_tap);
if (is_compound) {
const __m128i results = Compound1DShift(sums);
StoreUnaligned16(dst16, results);
dst16 += 4 << 1;
} else {
const __m128i results_16 =
RightShiftWithRounding_S16(sums, kFilterBits - 1);
const __m128i results = _mm_packus_epi16(results_16, results_16);
Store4(dst8, results);
dst8 += dst_stride;
Store4(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
}
srcs[0] = srcs[2];
y += 2;
} while (y < height);
} else if (num_taps == 4) {
srcs[4] = _mm_setzero_si128();
// 00 01 02 03
srcs[0] = Load4(src);
src += src_stride;
// 10 11 12 13
const __m128i a = Load4(src);
// 00 01 02 03 10 11 12 13
srcs[0] = _mm_unpacklo_epi32(srcs[0], a);
src += src_stride;
// 20 21 22 23
srcs[2] = Load4(src);
src += src_stride;
// 10 11 12 13 20 21 22 23
srcs[1] = _mm_unpacklo_epi32(a, srcs[2]);
int y = 0;
do {
// 30 31 32 33
const __m128i b = Load4(src);
// 20 21 22 23 30 31 32 33
srcs[2] = _mm_unpacklo_epi32(srcs[2], b);
src += src_stride;
// 40 41 42 43
srcs[4] = Load4(src);
src += src_stride;
// 30 31 32 33 40 41 42 43
srcs[3] = _mm_unpacklo_epi32(b, srcs[4]);
const __m128i sums = SumVerticalTaps<filter_index>(srcs, v_tap);
if (is_compound) {
const __m128i results = Compound1DShift(sums);
StoreUnaligned16(dst16, results);
dst16 += 4 << 1;
} else {
const __m128i results_16 =
RightShiftWithRounding_S16(sums, kFilterBits - 1);
const __m128i results = _mm_packus_epi16(results_16, results_16);
Store4(dst8, results);
dst8 += dst_stride;
Store4(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
}
srcs[0] = srcs[2];
srcs[1] = srcs[3];
srcs[2] = srcs[4];
y += 2;
} while (y < height);
} else if (num_taps == 6) {
srcs[6] = _mm_setzero_si128();
// 00 01 02 03
srcs[0] = Load4(src);
src += src_stride;
// 10 11 12 13
const __m128i a = Load4(src);
// 00 01 02 03 10 11 12 13
srcs[0] = _mm_unpacklo_epi32(srcs[0], a);
src += src_stride;
// 20 21 22 23
srcs[2] = Load4(src);
src += src_stride;
// 10 11 12 13 20 21 22 23
srcs[1] = _mm_unpacklo_epi32(a, srcs[2]);
// 30 31 32 33
const __m128i b = Load4(src);
// 20 21 22 23 30 31 32 33
srcs[2] = _mm_unpacklo_epi32(srcs[2], b);
src += src_stride;
// 40 41 42 43
srcs[4] = Load4(src);
src += src_stride;
// 30 31 32 33 40 41 42 43
srcs[3] = _mm_unpacklo_epi32(b, srcs[4]);
int y = 0;
do {
// 50 51 52 53
const __m128i c = Load4(src);
// 40 41 42 43 50 51 52 53
srcs[4] = _mm_unpacklo_epi32(srcs[4], c);
src += src_stride;
// 60 61 62 63
srcs[6] = Load4(src);
src += src_stride;
// 50 51 52 53 60 61 62 63
srcs[5] = _mm_unpacklo_epi32(c, srcs[6]);
const __m128i sums = SumVerticalTaps<filter_index>(srcs, v_tap);
if (is_compound) {
const __m128i results = Compound1DShift(sums);
StoreUnaligned16(dst16, results);
dst16 += 4 << 1;
} else {
const __m128i results_16 =
RightShiftWithRounding_S16(sums, kFilterBits - 1);
const __m128i results = _mm_packus_epi16(results_16, results_16);
Store4(dst8, results);
dst8 += dst_stride;
Store4(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
}
srcs[0] = srcs[2];
srcs[1] = srcs[3];
srcs[2] = srcs[4];
srcs[3] = srcs[5];
srcs[4] = srcs[6];
y += 2;
} while (y < height);
} else if (num_taps == 8) {
srcs[8] = _mm_setzero_si128();
// 00 01 02 03
srcs[0] = Load4(src);
src += src_stride;
// 10 11 12 13
const __m128i a = Load4(src);
// 00 01 02 03 10 11 12 13
srcs[0] = _mm_unpacklo_epi32(srcs[0], a);
src += src_stride;
// 20 21 22 23
srcs[2] = Load4(src);
src += src_stride;
// 10 11 12 13 20 21 22 23
srcs[1] = _mm_unpacklo_epi32(a, srcs[2]);
// 30 31 32 33
const __m128i b = Load4(src);
// 20 21 22 23 30 31 32 33
srcs[2] = _mm_unpacklo_epi32(srcs[2], b);
src += src_stride;
// 40 41 42 43
srcs[4] = Load4(src);
src += src_stride;
// 30 31 32 33 40 41 42 43
srcs[3] = _mm_unpacklo_epi32(b, srcs[4]);
// 50 51 52 53
const __m128i c = Load4(src);
// 40 41 42 43 50 51 52 53
srcs[4] = _mm_unpacklo_epi32(srcs[4], c);
src += src_stride;
// 60 61 62 63
srcs[6] = Load4(src);
src += src_stride;
// 50 51 52 53 60 61 62 63
srcs[5] = _mm_unpacklo_epi32(c, srcs[6]);
int y = 0;
do {
// 70 71 72 73
const __m128i d = Load4(src);
// 60 61 62 63 70 71 72 73
srcs[6] = _mm_unpacklo_epi32(srcs[6], d);
src += src_stride;
// 80 81 82 83
srcs[8] = Load4(src);
src += src_stride;
// 70 71 72 73 80 81 82 83
srcs[7] = _mm_unpacklo_epi32(d, srcs[8]);
const __m128i sums = SumVerticalTaps<filter_index>(srcs, v_tap);
if (is_compound) {
const __m128i results = Compound1DShift(sums);
StoreUnaligned16(dst16, results);
dst16 += 4 << 1;
} else {
const __m128i results_16 =
RightShiftWithRounding_S16(sums, kFilterBits - 1);
const __m128i results = _mm_packus_epi16(results_16, results_16);
Store4(dst8, results);
dst8 += dst_stride;
Store4(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
}
srcs[0] = srcs[2];
srcs[1] = srcs[3];
srcs[2] = srcs[4];
srcs[3] = srcs[5];
srcs[4] = srcs[6];
srcs[5] = srcs[7];
srcs[6] = srcs[8];
y += 2;
} while (y < height);
}
}
template <int filter_index, bool negative_outside_taps = false>
void FilterVertical2xH(const uint8_t* src, const ptrdiff_t src_stride,
void* const dst, const ptrdiff_t dst_stride,
const int height, const __m128i* const v_tap) {
const int num_taps = GetNumTapsInFilter(filter_index);
auto* dst8 = static_cast<uint8_t*>(dst);
__m128i srcs[9];
if (num_taps == 2) {
srcs[2] = _mm_setzero_si128();
// 00 01
srcs[0] = Load2(src);
src += src_stride;
int y = 0;
do {
// 00 01 10 11
srcs[0] = Load2<1>(src, srcs[0]);
src += src_stride;
// 00 01 10 11 20 21
srcs[0] = Load2<2>(src, srcs[0]);
src += src_stride;
// 00 01 10 11 20 21 30 31
srcs[0] = Load2<3>(src, srcs[0]);
src += src_stride;
// 40 41
srcs[2] = Load2<0>(src, srcs[2]);
src += src_stride;
// 00 01 10 11 20 21 30 31 40 41
const __m128i srcs_0_2 = _mm_unpacklo_epi64(srcs[0], srcs[2]);
// 10 11 20 21 30 31 40 41
srcs[1] = _mm_srli_si128(srcs_0_2, 2);
// This uses srcs[0]..srcs[1].
const __m128i sums = SumVerticalTaps<filter_index>(srcs, v_tap);
const __m128i results_16 =
RightShiftWithRounding_S16(sums, kFilterBits - 1);
const __m128i results = _mm_packus_epi16(results_16, results_16);
Store2(dst8, results);
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 2));
if (height == 2) return;
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 6));
dst8 += dst_stride;
srcs[0] = srcs[2];
y += 4;
} while (y < height);
} else if (num_taps == 4) {
srcs[4] = _mm_setzero_si128();
// 00 01
srcs[0] = Load2(src);
src += src_stride;
// 00 01 10 11
srcs[0] = Load2<1>(src, srcs[0]);
src += src_stride;
// 00 01 10 11 20 21
srcs[0] = Load2<2>(src, srcs[0]);
src += src_stride;
int y = 0;
do {
// 00 01 10 11 20 21 30 31
srcs[0] = Load2<3>(src, srcs[0]);
src += src_stride;
// 40 41
srcs[4] = Load2<0>(src, srcs[4]);
src += src_stride;
// 40 41 50 51
srcs[4] = Load2<1>(src, srcs[4]);
src += src_stride;
// 40 41 50 51 60 61
srcs[4] = Load2<2>(src, srcs[4]);
src += src_stride;
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61
const __m128i srcs_0_4 = _mm_unpacklo_epi64(srcs[0], srcs[4]);
// 10 11 20 21 30 31 40 41
srcs[1] = _mm_srli_si128(srcs_0_4, 2);
// 20 21 30 31 40 41 50 51
srcs[2] = _mm_srli_si128(srcs_0_4, 4);
// 30 31 40 41 50 51 60 61
srcs[3] = _mm_srli_si128(srcs_0_4, 6);
// This uses srcs[0]..srcs[3].
const __m128i sums = SumVerticalTaps<filter_index>(srcs, v_tap);
const __m128i results_16 =
RightShiftWithRounding_S16(sums, kFilterBits - 1);
const __m128i results = _mm_packus_epi16(results_16, results_16);
Store2(dst8, results);
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 2));
if (height == 2) return;
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 6));
dst8 += dst_stride;
srcs[0] = srcs[4];
y += 4;
} while (y < height);
} else if (num_taps == 6) {
// During the vertical pass the number of taps is restricted when
// |height| <= 4.
assert(height > 4);
srcs[8] = _mm_setzero_si128();
// 00 01
srcs[0] = Load2(src);
src += src_stride;
// 00 01 10 11
srcs[0] = Load2<1>(src, srcs[0]);
src += src_stride;
// 00 01 10 11 20 21
srcs[0] = Load2<2>(src, srcs[0]);
src += src_stride;
// 00 01 10 11 20 21 30 31
srcs[0] = Load2<3>(src, srcs[0]);
src += src_stride;
// 40 41
srcs[4] = Load2(src);
src += src_stride;
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61
const __m128i srcs_0_4x = _mm_unpacklo_epi64(srcs[0], srcs[4]);
// 10 11 20 21 30 31 40 41
srcs[1] = _mm_srli_si128(srcs_0_4x, 2);
int y = 0;
do {
// 40 41 50 51
srcs[4] = Load2<1>(src, srcs[4]);
src += src_stride;
// 40 41 50 51 60 61
srcs[4] = Load2<2>(src, srcs[4]);
src += src_stride;
// 40 41 50 51 60 61 70 71
srcs[4] = Load2<3>(src, srcs[4]);
src += src_stride;
// 80 81
srcs[8] = Load2<0>(src, srcs[8]);
src += src_stride;
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61
const __m128i srcs_0_4 = _mm_unpacklo_epi64(srcs[0], srcs[4]);
// 20 21 30 31 40 41 50 51
srcs[2] = _mm_srli_si128(srcs_0_4, 4);
// 30 31 40 41 50 51 60 61
srcs[3] = _mm_srli_si128(srcs_0_4, 6);
const __m128i srcs_4_8 = _mm_unpacklo_epi64(srcs[4], srcs[8]);
// 50 51 60 61 70 71 80 81
srcs[5] = _mm_srli_si128(srcs_4_8, 2);
// This uses srcs[0]..srcs[5].
const __m128i sums = SumVerticalTaps<filter_index>(srcs, v_tap);
const __m128i results_16 =
RightShiftWithRounding_S16(sums, kFilterBits - 1);
const __m128i results = _mm_packus_epi16(results_16, results_16);
Store2(dst8, results);
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 2));
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 6));
dst8 += dst_stride;
srcs[0] = srcs[4];
srcs[1] = srcs[5];
srcs[4] = srcs[8];
y += 4;
} while (y < height);
} else if (num_taps == 8) {
// During the vertical pass the number of taps is restricted when
// |height| <= 4.
assert(height > 4);
srcs[8] = _mm_setzero_si128();
// 00 01
srcs[0] = Load2(src);
src += src_stride;
// 00 01 10 11
srcs[0] = Load2<1>(src, srcs[0]);
src += src_stride;
// 00 01 10 11 20 21
srcs[0] = Load2<2>(src, srcs[0]);
src += src_stride;
// 00 01 10 11 20 21 30 31
srcs[0] = Load2<3>(src, srcs[0]);
src += src_stride;
// 40 41
srcs[4] = Load2(src);
src += src_stride;
// 40 41 50 51
srcs[4] = Load2<1>(src, srcs[4]);
src += src_stride;
// 40 41 50 51 60 61
srcs[4] = Load2<2>(src, srcs[4]);
src += src_stride;
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61
const __m128i srcs_0_4 = _mm_unpacklo_epi64(srcs[0], srcs[4]);
// 10 11 20 21 30 31 40 41
srcs[1] = _mm_srli_si128(srcs_0_4, 2);
// 20 21 30 31 40 41 50 51
srcs[2] = _mm_srli_si128(srcs_0_4, 4);
// 30 31 40 41 50 51 60 61
srcs[3] = _mm_srli_si128(srcs_0_4, 6);
int y = 0;
do {
// 40 41 50 51 60 61 70 71
srcs[4] = Load2<3>(src, srcs[4]);
src += src_stride;
// 80 81
srcs[8] = Load2<0>(src, srcs[8]);
src += src_stride;
// 80 81 90 91
srcs[8] = Load2<1>(src, srcs[8]);
src += src_stride;
// 80 81 90 91 a0 a1
srcs[8] = Load2<2>(src, srcs[8]);
src += src_stride;
// 40 41 50 51 60 61 70 71 80 81 90 91 a0 a1
const __m128i srcs_4_8 = _mm_unpacklo_epi64(srcs[4], srcs[8]);
// 50 51 60 61 70 71 80 81
srcs[5] = _mm_srli_si128(srcs_4_8, 2);
// 60 61 70 71 80 81 90 91
srcs[6] = _mm_srli_si128(srcs_4_8, 4);
// 70 71 80 81 90 91 a0 a1
srcs[7] = _mm_srli_si128(srcs_4_8, 6);
// This uses srcs[0]..srcs[7].
const __m128i sums = SumVerticalTaps<filter_index>(srcs, v_tap);
const __m128i results_16 =
RightShiftWithRounding_S16(sums, kFilterBits - 1);
const __m128i results = _mm_packus_epi16(results_16, results_16);
Store2(dst8, results);
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 2));
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 4));
dst8 += dst_stride;
Store2(dst8, _mm_srli_si128(results, 6));
dst8 += dst_stride;
srcs[0] = srcs[4];
srcs[1] = srcs[5];
srcs[2] = srcs[6];
srcs[3] = srcs[7];
srcs[4] = srcs[8];
y += 4;
} while (y < height);
}
}
void ConvolveVertical_SSE4_1(const void* const reference,
const ptrdiff_t reference_stride,
const int /*horizontal_filter_index*/,
const int vertical_filter_index,
const int /*subpixel_x*/, const int subpixel_y,
const int width, const int height,
void* prediction, const ptrdiff_t pred_stride) {
const int filter_index = GetFilterIndex(vertical_filter_index, height);
const int vertical_taps = GetNumTapsInFilter(filter_index);
const ptrdiff_t src_stride = reference_stride;
const auto* src = static_cast<const uint8_t*>(reference) -
(vertical_taps / 2 - 1) * src_stride;
auto* dest = static_cast<uint8_t*>(prediction);
const ptrdiff_t dest_stride = pred_stride;
const int filter_id = (subpixel_y >> 6) & kSubPixelMask;
assert(filter_id != 0);
__m128i taps[4];
const __m128i v_filter =
LoadLo8(kHalfSubPixelFilters[filter_index][filter_id]);
if (filter_index < 2) { // 6 tap.
SetupTaps<6>(&v_filter, taps);
if (width == 2) {
FilterVertical2xH<0>(src, src_stride, dest, dest_stride, height, taps);
} else if (width == 4) {
FilterVertical4xH<0>(src, src_stride, dest, dest_stride, height, taps);
} else {
FilterVertical<0>(src, src_stride, dest, dest_stride, width, height,
taps);
}
} else if (filter_index == 2) { // 8 tap.
SetupTaps<8>(&v_filter, taps);
if (width == 2) {
FilterVertical2xH<2>(src, src_stride, dest, dest_stride, height, taps);
} else if (width == 4) {
FilterVertical4xH<2>(src, src_stride, dest, dest_stride, height, taps);
} else {
FilterVertical<2>(src, src_stride, dest, dest_stride, width, height,
taps);
}
} else if (filter_index == 3) { // 2 tap.
SetupTaps<2>(&v_filter, taps);
if (width == 2) {
FilterVertical2xH<3>(src, src_stride, dest, dest_stride, height, taps);
} else if (width == 4) {
FilterVertical4xH<3>(src, src_stride, dest, dest_stride, height, taps);
} else {
FilterVertical<3>(src, src_stride, dest, dest_stride, width, height,
taps);
}
} else if (filter_index == 4) { // 4 tap.
SetupTaps<4>(&v_filter, taps);
if (width == 2) {
FilterVertical2xH<4>(src, src_stride, dest, dest_stride, height, taps);
} else if (width == 4) {
FilterVertical4xH<4>(src, src_stride, dest, dest_stride, height, taps);
} else {
FilterVertical<4>(src, src_stride, dest, dest_stride, width, height,
taps);
}
} else {
// TODO(slavarnway): Investigate adding |filter_index| == 1 special cases.
// See convolve_neon.cc
SetupTaps<4>(&v_filter, taps);
if (width == 2) {
FilterVertical2xH<5>(src, src_stride, dest, dest_stride, height, taps);
} else if (width == 4) {
FilterVertical4xH<5>(src, src_stride, dest, dest_stride, height, taps);
} else {
FilterVertical<5>(src, src_stride, dest, dest_stride, width, height,
taps);
}
}
}
void ConvolveCompoundCopy_SSE4(
const void* const reference, const ptrdiff_t reference_stride,
const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/,
const int /*subpixel_x*/, const int /*subpixel_y*/, const int width,
const int height, void* prediction, const ptrdiff_t pred_stride) {
const auto* src = static_cast<const uint8_t*>(reference);
const ptrdiff_t src_stride = reference_stride;
auto* dest = static_cast<uint16_t*>(prediction);
constexpr int kRoundBitsVertical =
kInterRoundBitsVertical - kInterRoundBitsCompoundVertical;
if (width >= 16) {
int y = height;
do {
int x = 0;
do {
const __m128i v_src = LoadUnaligned16(&src[x]);
const __m128i v_src_ext_lo = _mm_cvtepu8_epi16(v_src);
const __m128i v_src_ext_hi =
_mm_cvtepu8_epi16(_mm_srli_si128(v_src, 8));
const __m128i v_dest_lo =
_mm_slli_epi16(v_src_ext_lo, kRoundBitsVertical);
const __m128i v_dest_hi =
_mm_slli_epi16(v_src_ext_hi, kRoundBitsVertical);
// TODO(slavarnway): Investigate using aligned stores.
StoreUnaligned16(&dest[x], v_dest_lo);
StoreUnaligned16(&dest[x + 8], v_dest_hi);
x += 16;
} while (x < width);
src += src_stride;
dest += pred_stride;
} while (--y != 0);
} else if (width == 8) {
int y = height;
do {
const __m128i v_src = LoadLo8(&src[0]);
const __m128i v_src_ext = _mm_cvtepu8_epi16(v_src);
const __m128i v_dest = _mm_slli_epi16(v_src_ext, kRoundBitsVertical);
StoreUnaligned16(&dest[0], v_dest);
src += src_stride;
dest += pred_stride;
} while (--y != 0);
} else { /* width == 4 */
int y = height;
do {
const __m128i v_src0 = Load4(&src[0]);
const __m128i v_src1 = Load4(&src[src_stride]);
const __m128i v_src = _mm_unpacklo_epi32(v_src0, v_src1);
const __m128i v_src_ext = _mm_cvtepu8_epi16(v_src);
const __m128i v_dest = _mm_slli_epi16(v_src_ext, kRoundBitsVertical);
StoreLo8(&dest[0], v_dest);
StoreHi8(&dest[pred_stride], v_dest);
src += src_stride * 2;
dest += pred_stride * 2;
y -= 2;
} while (y != 0);
}
}
void ConvolveCompoundVertical_SSE4_1(
const void* const reference, const ptrdiff_t reference_stride,
const int /*horizontal_filter_index*/, const int vertical_filter_index,
const int /*subpixel_x*/, const int subpixel_y, const int width,
const int height, void* prediction, const ptrdiff_t /*pred_stride*/) {
const int filter_index = GetFilterIndex(vertical_filter_index, height);
const int vertical_taps = GetNumTapsInFilter(filter_index);
const ptrdiff_t src_stride = reference_stride;
const auto* src = static_cast<const uint8_t*>(reference) -
(vertical_taps / 2 - 1) * src_stride;
auto* dest = static_cast<uint16_t*>(prediction);
const int filter_id = (subpixel_y >> 6) & kSubPixelMask;
assert(filter_id != 0);
__m128i taps[4];
const __m128i v_filter =
LoadLo8(kHalfSubPixelFilters[filter_index][filter_id]);
if (filter_index < 2) { // 6 tap.
SetupTaps<6>(&v_filter, taps);
if (width == 4) {
FilterVertical4xH<0, /*is_compound=*/true>(src, src_stride, dest, 4,
height, taps);
} else {
FilterVertical<0, /*is_compound=*/true>(src, src_stride, dest, width,
width, height, taps);
}
} else if (filter_index == 2) { // 8 tap.
SetupTaps<8>(&v_filter, taps);
if (width == 4) {
FilterVertical4xH<2, /*is_compound=*/true>(src, src_stride, dest, 4,
height, taps);
} else {
FilterVertical<2, /*is_compound=*/true>(src, src_stride, dest, width,
width, height, taps);
}
} else if (filter_index == 3) { // 2 tap.
SetupTaps<2>(&v_filter, taps);
if (width == 4) {
FilterVertical4xH<3, /*is_compound=*/true>(src, src_stride, dest, 4,
height, taps);
} else {
FilterVertical<3, /*is_compound=*/true>(src, src_stride, dest, width,
width, height, taps);
}
} else if (filter_index == 4) { // 4 tap.
SetupTaps<4>(&v_filter, taps);
if (width == 4) {
FilterVertical4xH<4, /*is_compound=*/true>(src, src_stride, dest, 4,
height, taps);
} else {
FilterVertical<4, /*is_compound=*/true>(src, src_stride, dest, width,
width, height, taps);
}
} else {
SetupTaps<4>(&v_filter, taps);
if (width == 4) {
FilterVertical4xH<5, /*is_compound=*/true>(src, src_stride, dest, 4,
height, taps);
} else {
FilterVertical<5, /*is_compound=*/true>(src, src_stride, dest, width,
width, height, taps);
}
}
}
void ConvolveHorizontal_SSE4_1(const void* const reference,
const ptrdiff_t reference_stride,
const int horizontal_filter_index,
const int /*vertical_filter_index*/,
const int subpixel_x, const int /*subpixel_y*/,
const int width, const int height,
void* prediction, const ptrdiff_t pred_stride) {
const int filter_index = GetFilterIndex(horizontal_filter_index, width);
// Set |src| to the outermost tap.
const auto* src = static_cast<const uint8_t*>(reference) - kHorizontalOffset;
auto* dest = static_cast<uint8_t*>(prediction);
DoHorizontalPass(src, reference_stride, dest, pred_stride, width, height,
subpixel_x, filter_index);
}
void ConvolveCompoundHorizontal_SSE4_1(
const void* const reference, const ptrdiff_t reference_stride,
const int horizontal_filter_index, const int /*vertical_filter_index*/,
const int subpixel_x, const int /*subpixel_y*/, const int width,
const int height, void* prediction, const ptrdiff_t /*pred_stride*/) {
const int filter_index = GetFilterIndex(horizontal_filter_index, width);
const auto* src = static_cast<const uint8_t*>(reference) - kHorizontalOffset;
auto* dest = static_cast<uint16_t*>(prediction);
DoHorizontalPass</*is_2d=*/false, /*is_compound=*/true>(
src, reference_stride, dest, width, width, height, subpixel_x,
filter_index);
}
void ConvolveCompound2D_SSE4_1(
const void* const reference, const ptrdiff_t reference_stride,
const int horizontal_filter_index, const int vertical_filter_index,
const int subpixel_x, const int subpixel_y, const int width,
const int height, void* prediction, const ptrdiff_t /*pred_stride*/) {
// The output of the horizontal filter, i.e. the intermediate_result, is
// guaranteed to fit in int16_t.
alignas(16) uint16_t
intermediate_result[kMaxSuperBlockSizeInPixels *
(kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1)];
// Horizontal filter.
// Filter types used for width <= 4 are different from those for width > 4.
// When width > 4, the valid filter index range is always [0, 3].
// When width <= 4, the valid filter index range is always [4, 5].
// Similarly for height.
const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width);
const int vert_filter_index = GetFilterIndex(vertical_filter_index, height);
const int vertical_taps = GetNumTapsInFilter(vert_filter_index);
const int intermediate_height = height + vertical_taps - 1;
const ptrdiff_t src_stride = reference_stride;
const auto* const src = static_cast<const uint8_t*>(reference) -
(vertical_taps / 2 - 1) * src_stride -
kHorizontalOffset;
DoHorizontalPass</*is_2d=*/true, /*is_compound=*/true>(
src, src_stride, intermediate_result, width, width, intermediate_height,
subpixel_x, horiz_filter_index);
// Vertical filter.
auto* dest = static_cast<uint16_t*>(prediction);
const int filter_id = ((subpixel_y & 1023) >> 6) & kSubPixelMask;
assert(filter_id != 0);
const ptrdiff_t dest_stride = width;
__m128i taps[4];
const __m128i v_filter =
LoadLo8(kHalfSubPixelFilters[vert_filter_index][filter_id]);
if (vertical_taps == 8) {
SetupTaps<8, /*is_2d_vertical=*/true>(&v_filter, taps);
if (width == 4) {
Filter2DVertical4xH<8, /*is_compound=*/true>(intermediate_result, dest,
dest_stride, height, taps);
} else {
Filter2DVertical<8, /*is_compound=*/true>(
intermediate_result, dest, dest_stride, width, height, taps);
}
} else if (vertical_taps == 6) {
SetupTaps<6, /*is_2d_vertical=*/true>(&v_filter, taps);
if (width == 4) {
Filter2DVertical4xH<6, /*is_compound=*/true>(intermediate_result, dest,
dest_stride, height, taps);
} else {
Filter2DVertical<6, /*is_compound=*/true>(
intermediate_result, dest, dest_stride, width, height, taps);
}
} else if (vertical_taps == 4) {
SetupTaps<4, /*is_2d_vertical=*/true>(&v_filter, taps);
if (width == 4) {
Filter2DVertical4xH<4, /*is_compound=*/true>(intermediate_result, dest,
dest_stride, height, taps);
} else {
Filter2DVertical<4, /*is_compound=*/true>(
intermediate_result, dest, dest_stride, width, height, taps);
}
} else { // |vertical_taps| == 2
SetupTaps<2, /*is_2d_vertical=*/true>(&v_filter, taps);
if (width == 4) {
Filter2DVertical4xH<2, /*is_compound=*/true>(intermediate_result, dest,
dest_stride, height, taps);
} else {
Filter2DVertical<2, /*is_compound=*/true>(
intermediate_result, dest, dest_stride, width, height, taps);
}
}
}
// Pre-transposed filters.
template <int filter_index>
inline void GetHalfSubPixelFilter(__m128i* output) {
// Filter 0
alignas(
16) static constexpr int8_t kHalfSubPixel6TapSignedFilterColumns[6][16] =
{{0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0},
{0, -3, -5, -6, -7, -7, -8, -7, -7, -6, -6, -6, -5, -4, -2, -1},
{64, 63, 61, 58, 55, 51, 47, 42, 38, 33, 29, 24, 19, 14, 9, 4},
{0, 4, 9, 14, 19, 24, 29, 33, 38, 42, 47, 51, 55, 58, 61, 63},
{0, -1, -2, -4, -5, -6, -6, -6, -7, -7, -8, -7, -7, -6, -5, -3},
{0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
// Filter 1
alignas(16) static constexpr int8_t
kHalfSubPixel6TapMixedSignedFilterColumns[6][16] = {
{0, 1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0},
{0, 14, 13, 11, 10, 9, 8, 8, 7, 6, 5, 4, 3, 2, 2, 1},
{64, 31, 31, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 18, 17},
{0, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 31, 31},
{0, 1, 2, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 13, 14},
{0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 1}};
// Filter 2
alignas(
16) static constexpr int8_t kHalfSubPixel8TapSignedFilterColumns[8][16] =
{{0, -1, -1, -1, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, 0},
{0, 1, 3, 4, 5, 5, 5, 5, 6, 5, 4, 4, 3, 3, 2, 1},
{0, -3, -6, -9, -11, -11, -12, -12, -12, -11, -10, -9, -7, -5, -3, -1},
{64, 63, 62, 60, 58, 54, 50, 45, 40, 35, 30, 24, 19, 13, 8, 4},
{0, 4, 8, 13, 19, 24, 30, 35, 40, 45, 50, 54, 58, 60, 62, 63},
{0, -1, -3, -5, -7, -9, -10, -11, -12, -12, -12, -11, -11, -9, -6, -3},
{0, 1, 2, 3, 3, 4, 4, 5, 6, 5, 5, 5, 5, 4, 3, 1},
{0, 0, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -1, -1, -1}};
// Filter 3
alignas(16) static constexpr uint8_t kHalfSubPixel2TapFilterColumns[2][16] = {
{64, 60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4},
{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60}};
// Filter 4
alignas(
16) static constexpr int8_t kHalfSubPixel4TapSignedFilterColumns[4][16] =
{{0, -2, -4, -5, -6, -6, -7, -6, -6, -5, -5, -5, -4, -3, -2, -1},
{64, 63, 61, 58, 55, 51, 47, 42, 38, 33, 29, 24, 19, 14, 9, 4},
{0, 4, 9, 14, 19, 24, 29, 33, 38, 42, 47, 51, 55, 58, 61, 63},
{0, -1, -2, -3, -4, -5, -5, -5, -6, -6, -7, -6, -6, -5, -4, -2}};
// Filter 5
alignas(
16) static constexpr uint8_t kSubPixel4TapPositiveFilterColumns[4][16] = {
{0, 15, 13, 11, 10, 9, 8, 7, 6, 6, 5, 4, 3, 2, 2, 1},
{64, 31, 31, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 18, 17},
{0, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 31, 31},
{0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 13, 15}};
switch (filter_index) {
case 0:
output[0] = LoadAligned16(kHalfSubPixel6TapSignedFilterColumns[0]);
output[1] = LoadAligned16(kHalfSubPixel6TapSignedFilterColumns[1]);
output[2] = LoadAligned16(kHalfSubPixel6TapSignedFilterColumns[2]);
output[3] = LoadAligned16(kHalfSubPixel6TapSignedFilterColumns[3]);
output[4] = LoadAligned16(kHalfSubPixel6TapSignedFilterColumns[4]);
output[5] = LoadAligned16(kHalfSubPixel6TapSignedFilterColumns[5]);
break;
case 1:
// The term "mixed" refers to the fact that the outer taps have a mix of
// negative and positive values.
output[0] = LoadAligned16(kHalfSubPixel6TapMixedSignedFilterColumns[0]);
output[1] = LoadAligned16(kHalfSubPixel6TapMixedSignedFilterColumns[1]);
output[2] = LoadAligned16(kHalfSubPixel6TapMixedSignedFilterColumns[2]);
output[3] = LoadAligned16(kHalfSubPixel6TapMixedSignedFilterColumns[3]);
output[4] = LoadAligned16(kHalfSubPixel6TapMixedSignedFilterColumns[4]);
output[5] = LoadAligned16(kHalfSubPixel6TapMixedSignedFilterColumns[5]);
break;
case 2:
output[0] = LoadAligned16(kHalfSubPixel8TapSignedFilterColumns[0]);
output[1] = LoadAligned16(kHalfSubPixel8TapSignedFilterColumns[1]);
output[2] = LoadAligned16(kHalfSubPixel8TapSignedFilterColumns[2]);
output[3] = LoadAligned16(kHalfSubPixel8TapSignedFilterColumns[3]);
output[4] = LoadAligned16(kHalfSubPixel8TapSignedFilterColumns[4]);
output[5] = LoadAligned16(kHalfSubPixel8TapSignedFilterColumns[5]);
output[6] = LoadAligned16(kHalfSubPixel8TapSignedFilterColumns[6]);
output[7] = LoadAligned16(kHalfSubPixel8TapSignedFilterColumns[7]);
break;
case 3:
output[0] = LoadAligned16(kHalfSubPixel2TapFilterColumns[0]);
output[1] = LoadAligned16(kHalfSubPixel2TapFilterColumns[1]);
break;
case 4:
output[0] = LoadAligned16(kHalfSubPixel4TapSignedFilterColumns[0]);
output[1] = LoadAligned16(kHalfSubPixel4TapSignedFilterColumns[1]);
output[2] = LoadAligned16(kHalfSubPixel4TapSignedFilterColumns[2]);
output[3] = LoadAligned16(kHalfSubPixel4TapSignedFilterColumns[3]);
break;
default:
assert(filter_index == 5);
output[0] = LoadAligned16(kSubPixel4TapPositiveFilterColumns[0]);
output[1] = LoadAligned16(kSubPixel4TapPositiveFilterColumns[1]);
output[2] = LoadAligned16(kSubPixel4TapPositiveFilterColumns[2]);
output[3] = LoadAligned16(kSubPixel4TapPositiveFilterColumns[3]);
break;
}
}
// There are many opportunities for overreading in scaled convolve, because
// the range of starting points for filter windows is anywhere from 0 to 16
// for 8 destination pixels, and the window sizes range from 2 to 8. To
// accommodate this range concisely, we use |grade_x| to mean the most steps
// in src that can be traversed in a single |step_x| increment, i.e. 1 or 2.
// More importantly, |grade_x| answers the question "how many vector loads are
// needed to cover the source values?"
// When |grade_x| == 1, the maximum number of source values needed is 8 separate
// starting positions plus 7 more to cover taps, all fitting into 16 bytes.
// When |grade_x| > 1, we are guaranteed to exceed 8 whole steps in src for
// every 8 |step_x| increments, on top of 8 possible taps. The first load covers
// the starting sources for each kernel, while the final load covers the taps.
// Since the offset value of src_x cannot exceed 8 and |num_taps| does not
// exceed 4 when width <= 4, |grade_x| is set to 1 regardless of the value of
// |step_x|.
template <int num_taps, int grade_x>
inline void PrepareSourceVectors(const uint8_t* src, const __m128i src_indices,
__m128i* const source /*[num_taps >> 1]*/) {
const __m128i src_vals = LoadUnaligned16(src);
source[0] = _mm_shuffle_epi8(src_vals, src_indices);
if (grade_x == 1) {
if (num_taps > 2) {
source[1] = _mm_shuffle_epi8(_mm_srli_si128(src_vals, 2), src_indices);
}
if (num_taps > 4) {
source[2] = _mm_shuffle_epi8(_mm_srli_si128(src_vals, 4), src_indices);
}
if (num_taps > 6) {
source[3] = _mm_shuffle_epi8(_mm_srli_si128(src_vals, 6), src_indices);
}
} else {
assert(grade_x > 1);
assert(num_taps != 4);
// grade_x > 1 also means width >= 8 && num_taps != 4
const __m128i src_vals_ext = LoadLo8(src + 16);
if (num_taps > 2) {
source[1] = _mm_shuffle_epi8(_mm_alignr_epi8(src_vals_ext, src_vals, 2),
src_indices);
source[2] = _mm_shuffle_epi8(_mm_alignr_epi8(src_vals_ext, src_vals, 4),
src_indices);
}
if (num_taps > 6) {
source[3] = _mm_shuffle_epi8(_mm_alignr_epi8(src_vals_ext, src_vals, 6),
src_indices);
}
}
}
template <int num_taps>
inline void PrepareHorizontalTaps(const __m128i subpel_indices,
const __m128i* filter_taps,
__m128i* out_taps) {
const __m128i scale_index_offsets =
_mm_srli_epi16(subpel_indices, kFilterIndexShift);
const __m128i filter_index_mask = _mm_set1_epi8(kSubPixelMask);
const __m128i filter_indices =
_mm_and_si128(_mm_packus_epi16(scale_index_offsets, scale_index_offsets),
filter_index_mask);
// Line up taps for maddubs_epi16.
// The unpack is also assumed to be lighter than shift+alignr.
for (int k = 0; k < (num_taps >> 1); ++k) {
const __m128i taps0 = _mm_shuffle_epi8(filter_taps[2 * k], filter_indices);
const __m128i taps1 =
_mm_shuffle_epi8(filter_taps[2 * k + 1], filter_indices);
out_taps[k] = _mm_unpacklo_epi8(taps0, taps1);
}
}
inline __m128i HorizontalScaleIndices(const __m128i subpel_indices) {
const __m128i src_indices16 =
_mm_srli_epi16(subpel_indices, kScaleSubPixelBits);
const __m128i src_indices = _mm_packus_epi16(src_indices16, src_indices16);
return _mm_unpacklo_epi8(src_indices,
_mm_add_epi8(src_indices, _mm_set1_epi8(1)));
}
template <int grade_x, int filter_index, int num_taps>
inline void ConvolveHorizontalScale(const uint8_t* src, ptrdiff_t src_stride,
int width, int subpixel_x, int step_x,
int intermediate_height,
int16_t* intermediate) {
// Account for the 0-taps that precede the 2 nonzero taps.
const int kernel_offset = (8 - num_taps) >> 1;
const int ref_x = subpixel_x >> kScaleSubPixelBits;
const int step_x8 = step_x << 3;
__m128i filter_taps[num_taps];
GetHalfSubPixelFilter<filter_index>(filter_taps);
const __m128i index_steps =
_mm_mullo_epi16(_mm_set_epi16(7, 6, 5, 4, 3, 2, 1, 0),
_mm_set1_epi16(static_cast<int16_t>(step_x)));
__m128i taps[num_taps >> 1];
__m128i source[num_taps >> 1];
int p = subpixel_x;
// Case when width <= 4 is possible.
if (filter_index >= 3) {
if (filter_index > 3 || width <= 4) {
const uint8_t* src_x =
&src[(p >> kScaleSubPixelBits) - ref_x + kernel_offset];
// Only add steps to the 10-bit truncated p to avoid overflow.
const __m128i p_fraction = _mm_set1_epi16(p & 1023);
const __m128i subpel_indices = _mm_add_epi16(index_steps, p_fraction);
PrepareHorizontalTaps<num_taps>(subpel_indices, filter_taps, taps);
const __m128i packed_indices = HorizontalScaleIndices(subpel_indices);
int y = intermediate_height;
do {
// Load and line up source values with the taps. Width 4 means no need
// to load extended source.
PrepareSourceVectors<num_taps, /*grade_x=*/1>(src_x, packed_indices,
source);
StoreLo8(intermediate, RightShiftWithRounding_S16(
SumOnePassTaps<filter_index>(source, taps),
kInterRoundBitsHorizontal - 1));
src_x += src_stride;
intermediate += kIntermediateStride;
} while (--y != 0);
return;
}
}
// |width| >= 8
int x = 0;
do {
const uint8_t* src_x =
&src[(p >> kScaleSubPixelBits) - ref_x + kernel_offset];
int16_t* intermediate_x = intermediate + x;
// Only add steps to the 10-bit truncated p to avoid overflow.
const __m128i p_fraction = _mm_set1_epi16(p & 1023);
const __m128i subpel_indices = _mm_add_epi16(index_steps, p_fraction);
PrepareHorizontalTaps<num_taps>(subpel_indices, filter_taps, taps);
const __m128i packed_indices = HorizontalScaleIndices(subpel_indices);
int y = intermediate_height;
do {
// For each x, a lane of src_k[k] contains src_x[k].
PrepareSourceVectors<num_taps, grade_x>(src_x, packed_indices, source);
// Shift by one less because the taps are halved.
StoreAligned16(
intermediate_x,
RightShiftWithRounding_S16(SumOnePassTaps<filter_index>(source, taps),
kInterRoundBitsHorizontal - 1));
src_x += src_stride;
intermediate_x += kIntermediateStride;
} while (--y != 0);
x += 8;
p += step_x8;
} while (x < width);
}
template <int num_taps>
inline void PrepareVerticalTaps(const int8_t* taps, __m128i* output) {
// Avoid overreading the filter due to starting at kernel_offset.
// The only danger of overread is in the final filter, which has 4 taps.
const __m128i filter =
_mm_cvtepi8_epi16((num_taps > 4) ? LoadLo8(taps) : Load4(taps));
output[0] = _mm_shuffle_epi32(filter, 0);
if (num_taps > 2) {
output[1] = _mm_shuffle_epi32(filter, 0x55);
}
if (num_taps > 4) {
output[2] = _mm_shuffle_epi32(filter, 0xAA);
}
if (num_taps > 6) {
output[3] = _mm_shuffle_epi32(filter, 0xFF);
}
}
// Process eight 16 bit inputs and output eight 16 bit values.
template <int num_taps, bool is_compound>
inline __m128i Sum2DVerticalTaps(const __m128i* const src,
const __m128i* taps) {
const __m128i src_lo_01 = _mm_unpacklo_epi16(src[0], src[1]);
__m128i sum_lo = _mm_madd_epi16(src_lo_01, taps[0]);
const __m128i src_hi_01 = _mm_unpackhi_epi16(src[0], src[1]);
__m128i sum_hi = _mm_madd_epi16(src_hi_01, taps[0]);
if (num_taps > 2) {
const __m128i src_lo_23 = _mm_unpacklo_epi16(src[2], src[3]);
sum_lo = _mm_add_epi32(sum_lo, _mm_madd_epi16(src_lo_23, taps[1]));
const __m128i src_hi_23 = _mm_unpackhi_epi16(src[2], src[3]);
sum_hi = _mm_add_epi32(sum_hi, _mm_madd_epi16(src_hi_23, taps[1]));
}
if (num_taps > 4) {
const __m128i src_lo_45 = _mm_unpacklo_epi16(src[4], src[5]);
sum_lo = _mm_add_epi32(sum_lo, _mm_madd_epi16(src_lo_45, taps[2]));
const __m128i src_hi_45 = _mm_unpackhi_epi16(src[4], src[5]);
sum_hi = _mm_add_epi32(sum_hi, _mm_madd_epi16(src_hi_45, taps[2]));
}
if (num_taps > 6) {
const __m128i src_lo_67 = _mm_unpacklo_epi16(src[6], src[7]);
sum_lo = _mm_add_epi32(sum_lo, _mm_madd_epi16(src_lo_67, taps[3]));
const __m128i src_hi_67 = _mm_unpackhi_epi16(src[6], src[7]);
sum_hi = _mm_add_epi32(sum_hi, _mm_madd_epi16(src_hi_67, taps[3]));
}
if (is_compound) {
return _mm_packs_epi32(
RightShiftWithRounding_S32(sum_lo, kInterRoundBitsCompoundVertical - 1),
RightShiftWithRounding_S32(sum_hi,
kInterRoundBitsCompoundVertical - 1));
}
return _mm_packs_epi32(
RightShiftWithRounding_S32(sum_lo, kInterRoundBitsVertical - 1),
RightShiftWithRounding_S32(sum_hi, kInterRoundBitsVertical - 1));
}
// Bottom half of each src[k] is the source for one filter, and the top half
// is the source for the other filter, for the next destination row.
template <int num_taps, bool is_compound>
__m128i Sum2DVerticalTaps4x2(const __m128i* const src, const __m128i* taps_lo,
const __m128i* taps_hi) {
const __m128i src_lo_01 = _mm_unpacklo_epi16(src[0], src[1]);
__m128i sum_lo = _mm_madd_epi16(src_lo_01, taps_lo[0]);
const __m128i src_hi_01 = _mm_unpackhi_epi16(src[0], src[1]);
__m128i sum_hi = _mm_madd_epi16(src_hi_01, taps_hi[0]);
if (num_taps > 2) {
const __m128i src_lo_23 = _mm_unpacklo_epi16(src[2], src[3]);
sum_lo = _mm_add_epi32(sum_lo, _mm_madd_epi16(src_lo_23, taps_lo[1]));
const __m128i src_hi_23 = _mm_unpackhi_epi16(src[2], src[3]);
sum_hi = _mm_add_epi32(sum_hi, _mm_madd_epi16(src_hi_23, taps_hi[1]));
}
if (num_taps > 4) {
const __m128i src_lo_45 = _mm_unpacklo_epi16(src[4], src[5]);
sum_lo = _mm_add_epi32(sum_lo, _mm_madd_epi16(src_lo_45, taps_lo[2]));
const __m128i src_hi_45 = _mm_unpackhi_epi16(src[4], src[5]);
sum_hi = _mm_add_epi32(sum_hi, _mm_madd_epi16(src_hi_45, taps_hi[2]));
}
if (num_taps > 6) {
const __m128i src_lo_67 = _mm_unpacklo_epi16(src[6], src[7]);
sum_lo = _mm_add_epi32(sum_lo, _mm_madd_epi16(src_lo_67, taps_lo[3]));
const __m128i src_hi_67 = _mm_unpackhi_epi16(src[6], src[7]);
sum_hi = _mm_add_epi32(sum_hi, _mm_madd_epi16(src_hi_67, taps_hi[3]));
}
if (is_compound) {
return _mm_packs_epi32(
RightShiftWithRounding_S32(sum_lo, kInterRoundBitsCompoundVertical - 1),
RightShiftWithRounding_S32(sum_hi,
kInterRoundBitsCompoundVertical - 1));
}
return _mm_packs_epi32(
RightShiftWithRounding_S32(sum_lo, kInterRoundBitsVertical - 1),
RightShiftWithRounding_S32(sum_hi, kInterRoundBitsVertical - 1));
}
// |width_class| is 2, 4, or 8, according to the Store function that should be
// used.
template <int num_taps, int width_class, bool is_compound>
#if LIBGAV1_MSAN
__attribute__((no_sanitize_memory)) void ConvolveVerticalScale(
#else
inline void ConvolveVerticalScale(
#endif
const int16_t* src, const int width, const int subpixel_y,
const int filter_index, const int step_y, const int height, void* dest,
const ptrdiff_t dest_stride) {
constexpr ptrdiff_t src_stride = kIntermediateStride;
constexpr int kernel_offset = (8 - num_taps) / 2;
const int16_t* src_y = src;
// |dest| is 16-bit in compound mode, Pixel otherwise.
auto* dest16_y = static_cast<uint16_t*>(dest);
auto* dest_y = static_cast<uint8_t*>(dest);
__m128i s[num_taps];
int p = subpixel_y & 1023;
int y = height;
if (width_class <= 4) {
__m128i filter_taps_lo[num_taps >> 1];
__m128i filter_taps_hi[num_taps >> 1];
do { // y > 0
for (int i = 0; i < num_taps; ++i) {
s[i] = LoadLo8(src_y + i * src_stride);
}
int filter_id = (p >> 6) & kSubPixelMask;
const int8_t* filter0 =
kHalfSubPixelFilters[filter_index][filter_id] + kernel_offset;
PrepareVerticalTaps<num_taps>(filter0, filter_taps_lo);
p += step_y;
src_y = src + (p >> kScaleSubPixelBits) * src_stride;
for (int i = 0; i < num_taps; ++i) {
s[i] = LoadHi8(s[i], src_y + i * src_stride);
}
filter_id = (p >> 6) & kSubPixelMask;
const int8_t* filter1 =
kHalfSubPixelFilters[filter_index][filter_id] + kernel_offset;
PrepareVerticalTaps<num_taps>(filter1, filter_taps_hi);
p += step_y;
src_y = src + (p >> kScaleSubPixelBits) * src_stride;
const __m128i sums = Sum2DVerticalTaps4x2<num_taps, is_compound>(
s, filter_taps_lo, filter_taps_hi);
if (is_compound) {
assert(width_class > 2);
StoreLo8(dest16_y, sums);
dest16_y += dest_stride;
StoreHi8(dest16_y, sums);
dest16_y += dest_stride;
} else {
const __m128i result = _mm_packus_epi16(sums, sums);
if (width_class == 2) {
Store2(dest_y, result);
dest_y += dest_stride;
Store2(dest_y, _mm_srli_si128(result, 4));
} else {
Store4(dest_y, result);
dest_y += dest_stride;
Store4(dest_y, _mm_srli_si128(result, 4));
}
dest_y += dest_stride;
}
y -= 2;
} while (y != 0);
return;
}
// |width_class| >= 8
__m128i filter_taps[num_taps >> 1];
do { // y > 0
src_y = src + (p >> kScaleSubPixelBits) * src_stride;
const int filter_id = (p >> 6) & kSubPixelMask;
const int8_t* filter =
kHalfSubPixelFilters[filter_index][filter_id] + kernel_offset;
PrepareVerticalTaps<num_taps>(filter, filter_taps);
int x = 0;
do { // x < width
for (int i = 0; i < num_taps; ++i) {
s[i] = LoadUnaligned16(src_y + i * src_stride);
}
const __m128i sums =
Sum2DVerticalTaps<num_taps, is_compound>(s, filter_taps);
if (is_compound) {
StoreUnaligned16(dest16_y + x, sums);
} else {
StoreLo8(dest_y + x, _mm_packus_epi16(sums, sums));
}
x += 8;
src_y += 8;
} while (x < width);
p += step_y;
dest_y += dest_stride;
dest16_y += dest_stride;
} while (--y != 0);
}
template <bool is_compound>
void ConvolveScale2D_SSE4_1(const void* const reference,
const ptrdiff_t reference_stride,
const int horizontal_filter_index,
const int vertical_filter_index,
const int subpixel_x, const int subpixel_y,
const int step_x, const int step_y, const int width,
const int height, void* prediction,
const ptrdiff_t pred_stride) {
const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width);
const int vert_filter_index = GetFilterIndex(vertical_filter_index, height);
assert(step_x <= 2048);
// The output of the horizontal filter, i.e. the intermediate_result, is
// guaranteed to fit in int16_t.
// TODO(petersonab): Reduce intermediate block stride to width to make smaller
// blocks faster.
alignas(16) int16_t
intermediate_result[kMaxSuperBlockSizeInPixels *
(2 * kMaxSuperBlockSizeInPixels + kSubPixelTaps)];
const int num_vert_taps = GetNumTapsInFilter(vert_filter_index);
const int intermediate_height =
(((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >>
kScaleSubPixelBits) +
num_vert_taps;
// Horizontal filter.
// Filter types used for width <= 4 are different from those for width > 4.
// When width > 4, the valid filter index range is always [0, 3].
// When width <= 4, the valid filter index range is always [3, 5].
// Similarly for height.
int16_t* intermediate = intermediate_result;
const ptrdiff_t src_stride = reference_stride;
const auto* src = static_cast<const uint8_t*>(reference);
const int vert_kernel_offset = (8 - num_vert_taps) / 2;
src += vert_kernel_offset * src_stride;
// Derive the maximum value of |step_x| at which all source values fit in one
// 16-byte load. Final index is src_x + |num_taps| - 1 < 16
// step_x*7 is the final base sub-pixel index for the shuffle mask for filter
// inputs in each iteration on large blocks. When step_x is large, we need a
// second register and alignr in order to gather all filter inputs.
// |num_taps| - 1 is the offset for the shuffle of inputs to the final tap.
const int num_horiz_taps = GetNumTapsInFilter(horiz_filter_index);
const int kernel_start_ceiling = 16 - num_horiz_taps;
// This truncated quotient |grade_x_threshold| selects |step_x| such that:
// (step_x * 7) >> kScaleSubPixelBits < single load limit
const int grade_x_threshold =
(kernel_start_ceiling << kScaleSubPixelBits) / 7;
switch (horiz_filter_index) {
case 0:
if (step_x > grade_x_threshold) {
ConvolveHorizontalScale<2, 0, 6>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
} else {
ConvolveHorizontalScale<1, 0, 6>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
}
break;
case 1:
if (step_x > grade_x_threshold) {
ConvolveHorizontalScale<2, 1, 6>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
} else {
ConvolveHorizontalScale<1, 1, 6>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
}
break;
case 2:
if (step_x > grade_x_threshold) {
ConvolveHorizontalScale<2, 2, 8>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
} else {
ConvolveHorizontalScale<1, 2, 8>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
}
break;
case 3:
if (step_x > grade_x_threshold) {
ConvolveHorizontalScale<2, 3, 2>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
} else {
ConvolveHorizontalScale<1, 3, 2>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
}
break;
case 4:
assert(width <= 4);
ConvolveHorizontalScale<1, 4, 4>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
break;
default:
assert(horiz_filter_index == 5);
assert(width <= 4);
ConvolveHorizontalScale<1, 5, 4>(src, src_stride, width, subpixel_x,
step_x, intermediate_height,
intermediate);
}
// Vertical filter.
intermediate = intermediate_result;
switch (vert_filter_index) {
case 0:
case 1:
if (!is_compound && width == 2) {
ConvolveVerticalScale<6, 2, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
} else if (width == 4) {
ConvolveVerticalScale<6, 4, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
} else {
ConvolveVerticalScale<6, 8, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
}
break;
case 2:
if (!is_compound && width == 2) {
ConvolveVerticalScale<8, 2, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
} else if (width == 4) {
ConvolveVerticalScale<8, 4, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
} else {
ConvolveVerticalScale<8, 8, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
}
break;
case 3:
if (!is_compound && width == 2) {
ConvolveVerticalScale<2, 2, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
} else if (width == 4) {
ConvolveVerticalScale<2, 4, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
} else {
ConvolveVerticalScale<2, 8, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
}
break;
default:
assert(vert_filter_index == 4 || vert_filter_index == 5);
if (!is_compound && width == 2) {
ConvolveVerticalScale<4, 2, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
} else if (width == 4) {
ConvolveVerticalScale<4, 4, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
} else {
ConvolveVerticalScale<4, 8, is_compound>(
intermediate, width, subpixel_y, vert_filter_index, step_y, height,
prediction, pred_stride);
}
}
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
dsp->convolve[0][0][0][1] = ConvolveHorizontal_SSE4_1;
dsp->convolve[0][0][1][0] = ConvolveVertical_SSE4_1;
dsp->convolve[0][0][1][1] = Convolve2D_SSE4_1;
dsp->convolve[0][1][0][0] = ConvolveCompoundCopy_SSE4;
dsp->convolve[0][1][0][1] = ConvolveCompoundHorizontal_SSE4_1;
dsp->convolve[0][1][1][0] = ConvolveCompoundVertical_SSE4_1;
dsp->convolve[0][1][1][1] = ConvolveCompound2D_SSE4_1;
dsp->convolve_scale[0] = ConvolveScale2D_SSE4_1<false>;
dsp->convolve_scale[1] = ConvolveScale2D_SSE4_1<true>;
}
} // namespace
} // namespace low_bitdepth
void ConvolveInit_SSE4_1() { low_bitdepth::Init8bpp(); }
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_ENABLE_SSE4_1
namespace libgav1 {
namespace dsp {
void ConvolveInit_SSE4_1() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_ENABLE_SSE4_1