blob: c8df35790cbccb1e9e66b238b3cea6ca2b46bb24 [file] [log] [blame]
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/convolve.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"
namespace libgav1 {
namespace dsp {
namespace {
constexpr int kHorizontalOffset = 3;
constexpr int kVerticalOffset = 3;
// Compound prediction output ranges from ConvolveTest.ShowRange.
// Bitdepth: 8 Input range: [ 0, 255]
// intermediate range: [ -7140, 23460]
// first pass output range: [ -1785, 5865]
// intermediate range: [ -328440, 589560]
// second pass output range: [ 0, 255]
// compound second pass output range: [ -5132, 9212]
//
// Bitdepth: 10 Input range: [ 0, 1023]
// intermediate range: [ -28644, 94116]
// first pass output range: [ -7161, 23529]
// intermediate range: [-1317624, 2365176]
// second pass output range: [ 0, 1023]
// compound second pass output range: [ 3988, 61532]
//
// Bitdepth: 12 Input range: [ 0, 4095]
// intermediate range: [ -114660, 376740]
// first pass output range: [ -7166, 23546]
// intermediate range: [-1318560, 2366880]
// second pass output range: [ 0, 4095]
// compound second pass output range: [ 3974, 61559]
template <int bitdepth, typename Pixel>
void ConvolveScale2D_C(const void* const reference,
const ptrdiff_t reference_stride,
const int horizontal_filter_index,
const int vertical_filter_index, const int subpixel_x,
const int subpixel_y, const int step_x, const int step_y,
const int width, const int height, void* prediction,
const ptrdiff_t pred_stride) {
constexpr int kRoundBitsHorizontal = (bitdepth == 12)
? kInterRoundBitsHorizontal12bpp
: kInterRoundBitsHorizontal;
constexpr int kRoundBitsVertical =
(bitdepth == 12) ? kInterRoundBitsVertical12bpp : kInterRoundBitsVertical;
const int intermediate_height =
(((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >>
kScaleSubPixelBits) +
kSubPixelTaps;
// The output of the horizontal filter, i.e. the intermediate_result, is
// guaranteed to fit in int16_t.
int16_t intermediate_result[kMaxSuperBlockSizeInPixels *
(2 * kMaxSuperBlockSizeInPixels + 8)];
const int intermediate_stride = kMaxSuperBlockSizeInPixels;
const int max_pixel_value = (1 << bitdepth) - 1;
// Horizontal filter.
// Filter types used for width <= 4 are different from those for width > 4.
// When width > 4, the valid filter index range is always [0, 3].
// When width <= 4, the valid filter index range is always [4, 5].
// Similarly for height.
int filter_index = GetFilterIndex(horizontal_filter_index, width);
int16_t* intermediate = intermediate_result;
const auto* src = static_cast<const Pixel*>(reference);
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
auto* dest = static_cast<Pixel*>(prediction);
const ptrdiff_t dest_stride = pred_stride / sizeof(Pixel);
const int ref_x = subpixel_x >> kScaleSubPixelBits;
// Note: assume the input src is already aligned to the correct start
// position.
int y = 0;
do {
int p = subpixel_x;
int x = 0;
do {
int sum = 0;
const Pixel* src_x = &src[(p >> kScaleSubPixelBits) - ref_x];
const int filter_id = (p >> 6) & kSubPixelMask;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] * src_x[k];
}
intermediate[x] = RightShiftWithRounding(sum, kRoundBitsHorizontal - 1);
p += step_x;
} while (++x < width);
src += src_stride;
intermediate += intermediate_stride;
} while (++y < intermediate_height);
// Vertical filter.
filter_index = GetFilterIndex(vertical_filter_index, height);
intermediate = intermediate_result;
int p = subpixel_y & 1023;
y = 0;
do {
const int filter_id = (p >> 6) & kSubPixelMask;
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum +=
kHalfSubPixelFilters[filter_index][filter_id][k] *
intermediate[((p >> kScaleSubPixelBits) + k) * intermediate_stride +
x];
}
dest[x] = Clip3(RightShiftWithRounding(sum, kRoundBitsVertical - 1), 0,
max_pixel_value);
} while (++x < width);
dest += dest_stride;
p += step_y;
} while (++y < height);
}
template <int bitdepth, typename Pixel>
void ConvolveCompoundScale2D_C(const void* const reference,
const ptrdiff_t reference_stride,
const int horizontal_filter_index,
const int vertical_filter_index,
const int subpixel_x, const int subpixel_y,
const int step_x, const int step_y,
const int width, const int height,
void* prediction, const ptrdiff_t pred_stride) {
// All compound functions output to the predictor buffer with |pred_stride|
// equal to |width|.
assert(pred_stride == width);
// Compound functions start at 4x4.
assert(width >= 4 && height >= 4);
constexpr int kRoundBitsHorizontal = (bitdepth == 12)
? kInterRoundBitsHorizontal12bpp
: kInterRoundBitsHorizontal;
constexpr int kRoundBitsVertical = kInterRoundBitsCompoundVertical;
const int intermediate_height =
(((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >>
kScaleSubPixelBits) +
kSubPixelTaps;
// The output of the horizontal filter, i.e. the intermediate_result, is
// guaranteed to fit in int16_t.
int16_t intermediate_result[kMaxSuperBlockSizeInPixels *
(2 * kMaxSuperBlockSizeInPixels + 8)];
const int intermediate_stride = kMaxSuperBlockSizeInPixels;
// Horizontal filter.
// Filter types used for width <= 4 are different from those for width > 4.
// When width > 4, the valid filter index range is always [0, 3].
// When width <= 4, the valid filter index range is always [4, 5].
// Similarly for height.
int filter_index = GetFilterIndex(horizontal_filter_index, width);
int16_t* intermediate = intermediate_result;
const auto* src = static_cast<const Pixel*>(reference);
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
auto* dest = static_cast<uint16_t*>(prediction);
const int ref_x = subpixel_x >> kScaleSubPixelBits;
// Note: assume the input src is already aligned to the correct start
// position.
int y = 0;
do {
int p = subpixel_x;
int x = 0;
do {
int sum = 0;
const Pixel* src_x = &src[(p >> kScaleSubPixelBits) - ref_x];
const int filter_id = (p >> 6) & kSubPixelMask;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] * src_x[k];
}
intermediate[x] = RightShiftWithRounding(sum, kRoundBitsHorizontal - 1);
p += step_x;
} while (++x < width);
src += src_stride;
intermediate += intermediate_stride;
} while (++y < intermediate_height);
// Vertical filter.
filter_index = GetFilterIndex(vertical_filter_index, height);
intermediate = intermediate_result;
int p = subpixel_y & 1023;
y = 0;
do {
const int filter_id = (p >> 6) & kSubPixelMask;
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum +=
kHalfSubPixelFilters[filter_index][filter_id][k] *
intermediate[((p >> kScaleSubPixelBits) + k) * intermediate_stride +
x];
}
sum = RightShiftWithRounding(sum, kRoundBitsVertical - 1);
sum += (bitdepth == 8) ? 0 : kCompoundOffset;
dest[x] = sum;
} while (++x < width);
dest += pred_stride;
p += step_y;
} while (++y < height);
}
template <int bitdepth, typename Pixel>
void ConvolveCompound2D_C(const void* const reference,
const ptrdiff_t reference_stride,
const int horizontal_filter_index,
const int vertical_filter_index, const int subpixel_x,
const int subpixel_y, const int width,
const int height, void* prediction,
const ptrdiff_t pred_stride) {
// All compound functions output to the predictor buffer with |pred_stride|
// equal to |width|.
assert(pred_stride == width);
// Compound functions start at 4x4.
assert(width >= 4 && height >= 4);
constexpr int kRoundBitsHorizontal = (bitdepth == 12)
? kInterRoundBitsHorizontal12bpp
: kInterRoundBitsHorizontal;
constexpr int kRoundBitsVertical = kInterRoundBitsCompoundVertical;
const int intermediate_height = height + kSubPixelTaps - 1;
// The output of the horizontal filter, i.e. the intermediate_result, is
// guaranteed to fit in int16_t.
int16_t intermediate_result[kMaxSuperBlockSizeInPixels *
(kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1)];
const int intermediate_stride = kMaxSuperBlockSizeInPixels;
// Horizontal filter.
// Filter types used for width <= 4 are different from those for width > 4.
// When width > 4, the valid filter index range is always [0, 3].
// When width <= 4, the valid filter index range is always [4, 5].
// Similarly for height.
int filter_index = GetFilterIndex(horizontal_filter_index, width);
int16_t* intermediate = intermediate_result;
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
const auto* src = static_cast<const Pixel*>(reference) -
kVerticalOffset * src_stride - kHorizontalOffset;
auto* dest = static_cast<uint16_t*>(prediction);
int filter_id = (subpixel_x >> 6) & kSubPixelMask;
// If |filter_id| == 0 then ConvolveVertical() should be called.
assert(filter_id != 0);
int y = 0;
do {
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] * src[x + k];
}
intermediate[x] = RightShiftWithRounding(sum, kRoundBitsHorizontal - 1);
} while (++x < width);
src += src_stride;
intermediate += intermediate_stride;
} while (++y < intermediate_height);
// Vertical filter.
filter_index = GetFilterIndex(vertical_filter_index, height);
intermediate = intermediate_result;
filter_id = ((subpixel_y & 1023) >> 6) & kSubPixelMask;
// If |filter_id| == 0 then ConvolveHorizontal() should be called.
assert(filter_id != 0);
y = 0;
do {
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] *
intermediate[k * intermediate_stride + x];
}
sum = RightShiftWithRounding(sum, kRoundBitsVertical - 1);
sum += (bitdepth == 8) ? 0 : kCompoundOffset;
dest[x] = sum;
} while (++x < width);
dest += pred_stride;
intermediate += intermediate_stride;
} while (++y < height);
}
// This function is a simplified version of ConvolveCompound2D_C.
// It is called when it is single prediction mode, where both horizontal and
// vertical filtering are required.
// The output is the single prediction of the block, clipped to valid pixel
// range.
template <int bitdepth, typename Pixel>
void Convolve2D_C(const void* const reference, const ptrdiff_t reference_stride,
const int horizontal_filter_index,
const int vertical_filter_index, const int subpixel_x,
const int subpixel_y, const int width, const int height,
void* prediction, const ptrdiff_t pred_stride) {
constexpr int kRoundBitsHorizontal = (bitdepth == 12)
? kInterRoundBitsHorizontal12bpp
: kInterRoundBitsHorizontal;
constexpr int kRoundBitsVertical =
(bitdepth == 12) ? kInterRoundBitsVertical12bpp : kInterRoundBitsVertical;
const int intermediate_height = height + kSubPixelTaps - 1;
// The output of the horizontal filter, i.e. the intermediate_result, is
// guaranteed to fit in int16_t.
int16_t intermediate_result[kMaxSuperBlockSizeInPixels *
(kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1)];
const int intermediate_stride = kMaxSuperBlockSizeInPixels;
const int max_pixel_value = (1 << bitdepth) - 1;
// Horizontal filter.
// Filter types used for width <= 4 are different from those for width > 4.
// When width > 4, the valid filter index range is always [0, 3].
// When width <= 4, the valid filter index range is always [4, 5].
// Similarly for height.
int filter_index = GetFilterIndex(horizontal_filter_index, width);
int16_t* intermediate = intermediate_result;
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
const auto* src = static_cast<const Pixel*>(reference) -
kVerticalOffset * src_stride - kHorizontalOffset;
auto* dest = static_cast<Pixel*>(prediction);
const ptrdiff_t dest_stride = pred_stride / sizeof(Pixel);
int filter_id = (subpixel_x >> 6) & kSubPixelMask;
// If |filter_id| == 0 then ConvolveVertical() should be called.
assert(filter_id != 0);
int y = 0;
do {
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] * src[x + k];
}
intermediate[x] = RightShiftWithRounding(sum, kRoundBitsHorizontal - 1);
} while (++x < width);
src += src_stride;
intermediate += intermediate_stride;
} while (++y < intermediate_height);
// Vertical filter.
filter_index = GetFilterIndex(vertical_filter_index, height);
intermediate = intermediate_result;
filter_id = ((subpixel_y & 1023) >> 6) & kSubPixelMask;
// If |filter_id| == 0 then ConvolveHorizontal() should be called.
assert(filter_id != 0);
y = 0;
do {
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] *
intermediate[k * intermediate_stride + x];
}
dest[x] = Clip3(RightShiftWithRounding(sum, kRoundBitsVertical - 1), 0,
max_pixel_value);
} while (++x < width);
dest += dest_stride;
intermediate += intermediate_stride;
} while (++y < height);
}
// This function is a simplified version of Convolve2D_C.
// It is called when it is single prediction mode, where only horizontal
// filtering is required.
// The output is the single prediction of the block, clipped to valid pixel
// range.
template <int bitdepth, typename Pixel>
void ConvolveHorizontal_C(const void* const reference,
const ptrdiff_t reference_stride,
const int horizontal_filter_index,
const int /*vertical_filter_index*/,
const int subpixel_x, const int /*subpixel_y*/,
const int width, const int height, void* prediction,
const ptrdiff_t pred_stride) {
constexpr int kRoundBitsHorizontal = (bitdepth == 12)
? kInterRoundBitsHorizontal12bpp
: kInterRoundBitsHorizontal;
const int filter_index = GetFilterIndex(horizontal_filter_index, width);
const int bits = kFilterBits - kRoundBitsHorizontal;
const auto* src = static_cast<const Pixel*>(reference) - kHorizontalOffset;
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
auto* dest = static_cast<Pixel*>(prediction);
const ptrdiff_t dest_stride = pred_stride / sizeof(Pixel);
const int filter_id = (subpixel_x >> 6) & kSubPixelMask;
const int max_pixel_value = (1 << bitdepth) - 1;
int y = 0;
do {
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] * src[x + k];
}
sum = RightShiftWithRounding(sum, kRoundBitsHorizontal - 1);
dest[x] = Clip3(RightShiftWithRounding(sum, bits), 0, max_pixel_value);
} while (++x < width);
src += src_stride;
dest += dest_stride;
} while (++y < height);
}
// This function is a simplified version of Convolve2D_C.
// It is called when it is single prediction mode, where only vertical
// filtering is required.
// The output is the single prediction of the block, clipped to valid pixel
// range.
template <int bitdepth, typename Pixel>
void ConvolveVertical_C(const void* const reference,
const ptrdiff_t reference_stride,
const int /*horizontal_filter_index*/,
const int vertical_filter_index,
const int /*subpixel_x*/, const int subpixel_y,
const int width, const int height, void* prediction,
const ptrdiff_t pred_stride) {
const int filter_index = GetFilterIndex(vertical_filter_index, height);
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
const auto* src =
static_cast<const Pixel*>(reference) - kVerticalOffset * src_stride;
auto* dest = static_cast<Pixel*>(prediction);
const ptrdiff_t dest_stride = pred_stride / sizeof(Pixel);
const int filter_id = (subpixel_y >> 6) & kSubPixelMask;
// Copy filters must call ConvolveCopy().
assert(filter_id != 0);
const int max_pixel_value = (1 << bitdepth) - 1;
int y = 0;
do {
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] *
src[k * src_stride + x];
}
dest[x] = Clip3(RightShiftWithRounding(sum, kFilterBits - 1), 0,
max_pixel_value);
} while (++x < width);
src += src_stride;
dest += dest_stride;
} while (++y < height);
}
template <int bitdepth, typename Pixel>
void ConvolveCopy_C(const void* const reference,
const ptrdiff_t reference_stride,
const int /*horizontal_filter_index*/,
const int /*vertical_filter_index*/,
const int /*subpixel_x*/, const int /*subpixel_y*/,
const int width, const int height, void* prediction,
const ptrdiff_t pred_stride) {
const auto* src = static_cast<const uint8_t*>(reference);
auto* dest = static_cast<uint8_t*>(prediction);
int y = 0;
do {
memcpy(dest, src, width * sizeof(Pixel));
src += reference_stride;
dest += pred_stride;
} while (++y < height);
}
template <int bitdepth, typename Pixel>
void ConvolveCompoundCopy_C(const void* const reference,
const ptrdiff_t reference_stride,
const int /*horizontal_filter_index*/,
const int /*vertical_filter_index*/,
const int /*subpixel_x*/, const int /*subpixel_y*/,
const int width, const int height, void* prediction,
const ptrdiff_t pred_stride) {
// All compound functions output to the predictor buffer with |pred_stride|
// equal to |width|.
assert(pred_stride == width);
// Compound functions start at 4x4.
assert(width >= 4 && height >= 4);
constexpr int kRoundBitsVertical =
((bitdepth == 12) ? kInterRoundBitsVertical12bpp
: kInterRoundBitsVertical) -
kInterRoundBitsCompoundVertical;
const auto* src = static_cast<const Pixel*>(reference);
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
auto* dest = static_cast<uint16_t*>(prediction);
int y = 0;
do {
int x = 0;
do {
int sum = (bitdepth == 8) ? 0 : ((1 << bitdepth) + (1 << (bitdepth - 1)));
sum += src[x];
dest[x] = sum << kRoundBitsVertical;
} while (++x < width);
src += src_stride;
dest += pred_stride;
} while (++y < height);
}
// This function is a simplified version of ConvolveCompound2D_C.
// It is called when it is compound prediction mode, where only horizontal
// filtering is required.
// The output is not clipped to valid pixel range. Its output will be
// blended with another predictor to generate the final prediction of the block.
template <int bitdepth, typename Pixel>
void ConvolveCompoundHorizontal_C(
const void* const reference, const ptrdiff_t reference_stride,
const int horizontal_filter_index, const int /*vertical_filter_index*/,
const int subpixel_x, const int /*subpixel_y*/, const int width,
const int height, void* prediction, const ptrdiff_t pred_stride) {
// All compound functions output to the predictor buffer with |pred_stride|
// equal to |width|.
assert(pred_stride == width);
// Compound functions start at 4x4.
assert(width >= 4 && height >= 4);
constexpr int kRoundBitsHorizontal = (bitdepth == 12)
? kInterRoundBitsHorizontal12bpp
: kInterRoundBitsHorizontal;
const int filter_index = GetFilterIndex(horizontal_filter_index, width);
const auto* src = static_cast<const Pixel*>(reference) - kHorizontalOffset;
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
auto* dest = static_cast<uint16_t*>(prediction);
const int filter_id = (subpixel_x >> 6) & kSubPixelMask;
// Copy filters must call ConvolveCopy().
assert(filter_id != 0);
int y = 0;
do {
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] * src[x + k];
}
sum = RightShiftWithRounding(sum, kRoundBitsHorizontal - 1);
sum += (bitdepth == 8) ? 0 : kCompoundOffset;
dest[x] = sum;
} while (++x < width);
src += src_stride;
dest += pred_stride;
} while (++y < height);
}
// This function is a simplified version of ConvolveCompound2D_C.
// It is called when it is compound prediction mode, where only vertical
// filtering is required.
// The output is not clipped to valid pixel range. Its output will be
// blended with another predictor to generate the final prediction of the block.
template <int bitdepth, typename Pixel>
void ConvolveCompoundVertical_C(const void* const reference,
const ptrdiff_t reference_stride,
const int /*horizontal_filter_index*/,
const int vertical_filter_index,
const int /*subpixel_x*/, const int subpixel_y,
const int width, const int height,
void* prediction, const ptrdiff_t pred_stride) {
// All compound functions output to the predictor buffer with |pred_stride|
// equal to |width|.
assert(pred_stride == width);
// Compound functions start at 4x4.
assert(width >= 4 && height >= 4);
constexpr int kRoundBitsHorizontal = (bitdepth == 12)
? kInterRoundBitsHorizontal12bpp
: kInterRoundBitsHorizontal;
const int filter_index = GetFilterIndex(vertical_filter_index, height);
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
const auto* src =
static_cast<const Pixel*>(reference) - kVerticalOffset * src_stride;
auto* dest = static_cast<uint16_t*>(prediction);
const int filter_id = (subpixel_y >> 6) & kSubPixelMask;
// Copy filters must call ConvolveCopy().
assert(filter_id != 0);
int y = 0;
do {
int x = 0;
do {
int sum = 0;
for (int k = 0; k < kSubPixelTaps; ++k) {
sum += kHalfSubPixelFilters[filter_index][filter_id][k] *
src[k * src_stride + x];
}
sum = RightShiftWithRounding(sum, kRoundBitsHorizontal - 1);
sum += (bitdepth == 8) ? 0 : kCompoundOffset;
dest[x] = sum;
} while (++x < width);
src += src_stride;
dest += pred_stride;
} while (++y < height);
}
// This function is used when intra block copy is present.
// It is called when it is single prediction mode for U/V plane, where the
// reference block is from current frame and both horizontal and vertical
// filtering are required.
// The output is the single prediction of the block, clipped to valid pixel
// range.
template <int bitdepth, typename Pixel>
void ConvolveIntraBlockCopy2D_C(
const void* const reference, const ptrdiff_t reference_stride,
const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/,
const int /*subpixel_x*/, const int /*subpixel_y*/, const int width,
const int height, void* prediction, const ptrdiff_t pred_stride) {
const auto* src = static_cast<const Pixel*>(reference);
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
auto* dest = static_cast<Pixel*>(prediction);
const ptrdiff_t dest_stride = pred_stride / sizeof(Pixel);
const int intermediate_height = height + 1;
uint16_t intermediate_result[kMaxSuperBlockSizeInPixels *
(kMaxSuperBlockSizeInPixels + 1)];
uint16_t* intermediate = intermediate_result;
// Note: allow vertical access to height + 1. Because this function is only
// for u/v plane of intra block copy, such access is guaranteed to be within
// the prediction block.
int y = 0;
do {
int x = 0;
do {
intermediate[x] = src[x] + src[x + 1];
} while (++x < width);
src += src_stride;
intermediate += width;
} while (++y < intermediate_height);
intermediate = intermediate_result;
y = 0;
do {
int x = 0;
do {
dest[x] =
RightShiftWithRounding(intermediate[x] + intermediate[x + width], 2);
} while (++x < width);
intermediate += width;
dest += dest_stride;
} while (++y < height);
}
// This function is used when intra block copy is present.
// It is called when it is single prediction mode for U/V plane, where the
// reference block is from the current frame and only horizontal or vertical
// filtering is required.
// The output is the single prediction of the block, clipped to valid pixel
// range.
// The filtering of intra block copy is simply the average of current and
// the next pixel.
template <int bitdepth, typename Pixel, bool is_horizontal>
void ConvolveIntraBlockCopy1D_C(
const void* const reference, const ptrdiff_t reference_stride,
const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/,
const int /*subpixel_x*/, const int /*subpixel_y*/, const int width,
const int height, void* prediction, const ptrdiff_t pred_stride) {
const auto* src = static_cast<const Pixel*>(reference);
const ptrdiff_t src_stride = reference_stride / sizeof(Pixel);
auto* dest = static_cast<Pixel*>(prediction);
const ptrdiff_t dest_stride = pred_stride / sizeof(Pixel);
const ptrdiff_t offset = is_horizontal ? 1 : src_stride;
int y = 0;
do {
int x = 0;
do {
dest[x] = RightShiftWithRounding(src[x] + src[x + offset], 1);
} while (++x < width);
src += src_stride;
dest += dest_stride;
} while (++y < height);
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(8);
assert(dsp != nullptr);
#if LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
dsp->convolve[0][0][0][0] = ConvolveCopy_C<8, uint8_t>;
dsp->convolve[0][0][0][1] = ConvolveHorizontal_C<8, uint8_t>;
dsp->convolve[0][0][1][0] = ConvolveVertical_C<8, uint8_t>;
dsp->convolve[0][0][1][1] = Convolve2D_C<8, uint8_t>;
dsp->convolve[0][1][0][0] = ConvolveCompoundCopy_C<8, uint8_t>;
dsp->convolve[0][1][0][1] = ConvolveCompoundHorizontal_C<8, uint8_t>;
dsp->convolve[0][1][1][0] = ConvolveCompoundVertical_C<8, uint8_t>;
dsp->convolve[0][1][1][1] = ConvolveCompound2D_C<8, uint8_t>;
dsp->convolve[1][0][0][0] = ConvolveCopy_C<8, uint8_t>;
dsp->convolve[1][0][0][1] =
ConvolveIntraBlockCopy1D_C<8, uint8_t, /*is_horizontal=*/true>;
dsp->convolve[1][0][1][0] =
ConvolveIntraBlockCopy1D_C<8, uint8_t, /*is_horizontal=*/false>;
dsp->convolve[1][0][1][1] = ConvolveIntraBlockCopy2D_C<8, uint8_t>;
dsp->convolve[1][1][0][0] = nullptr;
dsp->convolve[1][1][0][1] = nullptr;
dsp->convolve[1][1][1][0] = nullptr;
dsp->convolve[1][1][1][1] = nullptr;
dsp->convolve_scale[0] = ConvolveScale2D_C<8, uint8_t>;
dsp->convolve_scale[1] = ConvolveCompoundScale2D_C<8, uint8_t>;
#else // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
#ifndef LIBGAV1_Dsp8bpp_ConvolveCopy
dsp->convolve[0][0][0][0] = ConvolveCopy_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveHorizontal
dsp->convolve[0][0][0][1] = ConvolveHorizontal_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveVertical
dsp->convolve[0][0][1][0] = ConvolveVertical_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_Convolve2D
dsp->convolve[0][0][1][1] = Convolve2D_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveCompoundCopy
dsp->convolve[0][1][0][0] = ConvolveCompoundCopy_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveCompoundHorizontal
dsp->convolve[0][1][0][1] = ConvolveCompoundHorizontal_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveCompoundVertical
dsp->convolve[0][1][1][0] = ConvolveCompoundVertical_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveCompound2D
dsp->convolve[0][1][1][1] = ConvolveCompound2D_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveIntraBlockCopy
dsp->convolve[1][0][0][0] = ConvolveCopy_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveIntraBlockCopyHorizontal
dsp->convolve[1][0][0][1] =
ConvolveIntraBlockCopy1D_C<8, uint8_t, /*is_horizontal=*/true>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveIntraBlockCopyVertical
dsp->convolve[1][0][1][0] =
ConvolveIntraBlockCopy1D_C<8, uint8_t, /*is_horizontal=*/false>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveIntraBlockCopy2D
dsp->convolve[1][0][1][1] = ConvolveIntraBlockCopy2D_C<8, uint8_t>;
#endif
dsp->convolve[1][1][0][0] = nullptr;
dsp->convolve[1][1][0][1] = nullptr;
dsp->convolve[1][1][1][0] = nullptr;
dsp->convolve[1][1][1][1] = nullptr;
#ifndef LIBGAV1_Dsp8bpp_ConvolveScale2D
dsp->convolve_scale[0] = ConvolveScale2D_C<8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_ConvolveCompoundScale2D
dsp->convolve_scale[1] = ConvolveCompoundScale2D_C<8, uint8_t>;
#endif
#endif // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
}
#if LIBGAV1_MAX_BITDEPTH >= 10
void Init10bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(10);
assert(dsp != nullptr);
#if LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
dsp->convolve[0][0][0][0] = ConvolveCopy_C<10, uint16_t>;
dsp->convolve[0][0][0][1] = ConvolveHorizontal_C<10, uint16_t>;
dsp->convolve[0][0][1][0] = ConvolveVertical_C<10, uint16_t>;
dsp->convolve[0][0][1][1] = Convolve2D_C<10, uint16_t>;
dsp->convolve[0][1][0][0] = ConvolveCompoundCopy_C<10, uint16_t>;
dsp->convolve[0][1][0][1] = ConvolveCompoundHorizontal_C<10, uint16_t>;
dsp->convolve[0][1][1][0] = ConvolveCompoundVertical_C<10, uint16_t>;
dsp->convolve[0][1][1][1] = ConvolveCompound2D_C<10, uint16_t>;
dsp->convolve[1][0][0][0] = ConvolveCopy_C<10, uint16_t>;
dsp->convolve[1][0][0][1] =
ConvolveIntraBlockCopy1D_C<10, uint16_t, /*is_horizontal=*/true>;
dsp->convolve[1][0][1][0] =
ConvolveIntraBlockCopy1D_C<10, uint16_t, /*is_horizontal=*/false>;
dsp->convolve[1][0][1][1] = ConvolveIntraBlockCopy2D_C<10, uint16_t>;
dsp->convolve[1][1][0][0] = nullptr;
dsp->convolve[1][1][0][1] = nullptr;
dsp->convolve[1][1][1][0] = nullptr;
dsp->convolve[1][1][1][1] = nullptr;
dsp->convolve_scale[0] = ConvolveScale2D_C<10, uint16_t>;
dsp->convolve_scale[1] = ConvolveCompoundScale2D_C<10, uint16_t>;
#else // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
#ifndef LIBGAV1_Dsp10bpp_ConvolveCopy
dsp->convolve[0][0][0][0] = ConvolveCopy_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveHorizontal
dsp->convolve[0][0][0][1] = ConvolveHorizontal_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveVertical
dsp->convolve[0][0][1][0] = ConvolveVertical_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_Convolve2D
dsp->convolve[0][0][1][1] = Convolve2D_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveCompoundCopy
dsp->convolve[0][1][0][0] = ConvolveCompoundCopy_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveCompoundHorizontal
dsp->convolve[0][1][0][1] = ConvolveCompoundHorizontal_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveCompoundVertical
dsp->convolve[0][1][1][0] = ConvolveCompoundVertical_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveCompound2D
dsp->convolve[0][1][1][1] = ConvolveCompound2D_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveIntraBlockCopy
dsp->convolve[1][0][0][0] = ConvolveCopy_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveIntraBlockHorizontal
dsp->convolve[1][0][0][1] =
ConvolveIntraBlockCopy1D_C<10, uint16_t, /*is_horizontal=*/true>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveIntraBlockVertical
dsp->convolve[1][0][1][0] =
ConvolveIntraBlockCopy1D_C<10, uint16_t, /*is_horizontal=*/false>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveIntraBlock2D
dsp->convolve[1][0][1][1] = ConvolveIntraBlockCopy2D_C<10, uint16_t>;
#endif
dsp->convolve[1][1][0][0] = nullptr;
dsp->convolve[1][1][0][1] = nullptr;
dsp->convolve[1][1][1][0] = nullptr;
dsp->convolve[1][1][1][1] = nullptr;
#ifndef LIBGAV1_Dsp10bpp_ConvolveScale2D
dsp->convolve_scale[0] = ConvolveScale2D_C<10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_ConvolveCompoundScale2D
dsp->convolve_scale[1] = ConvolveCompoundScale2D_C<10, uint16_t>;
#endif
#endif // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
}
#endif
} // namespace
void ConvolveInit_C() {
Init8bpp();
#if LIBGAV1_MAX_BITDEPTH >= 10
Init10bpp();
#endif
}
} // namespace dsp
} // namespace libgav1