blob: aef5e0a42068c665462321add4b4632309ebae29 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Tests a very simple end to end T=1 using the echo backend.
*/
#include <string.h>
#include <vector>
#include <gtest/gtest.h>
#include <ese/ese.h>
#include <ese/teq1.h>
#define LOG_TAG "TEQ1_UNITTESTS"
#include <ese/log.h>
#include "teq1_private.h"
ESE_INCLUDE_HW(ESE_HW_FAKE);
using ::testing::Test;
// TODO:
// - Unittests of each function
// - teq1_rules matches Annex A of ISO 7816-3
// Tests teq1_frame_error_check to avoid testing every combo that
// ends in 255 in the rule engine.
class Teq1FrameErrorCheck : public virtual Test {
public:
Teq1FrameErrorCheck() { }
virtual ~Teq1FrameErrorCheck() { }
struct Teq1Frame tx_frame_, rx_frame_;
struct Teq1State state_;
struct Teq1CardState card_state_;
};
TEST_F(Teq1FrameErrorCheck, info_parity) {
static const uint8_t kRxPCBs[] = {
TEQ1_I(0, 0),
TEQ1_I(1, 0),
TEQ1_I(0, 1),
TEQ1_I(1, 1),
255,
};
const uint8_t *pcb = &kRxPCBs[0];
/* The PCBs above are all valid for a sent unchained I block with advancing
* sequence #s.
*/
tx_frame_.header.PCB = TEQ1_I(0, 0);
state_.card_state = &card_state_;
state_.card_state->seq.card = 1;
while (*pcb != 255) {
rx_frame_.header.PCB = *pcb;
rx_frame_.header.LEN = 2;
rx_frame_.INF[0] = 'A';
rx_frame_.INF[1] = 'B';
rx_frame_.INF[2] = teq1_compute_LRC(&rx_frame_);
EXPECT_EQ(0, teq1_frame_error_check(&state_, &tx_frame_, &rx_frame_)) << teq1_pcb_to_name(rx_frame_.header.PCB);
rx_frame_.INF[2] = teq1_compute_LRC(&rx_frame_) - 1;
// Reset so we check the LRC error instead of a wrong seq.
state_.card_state->seq.card = !state_.card_state->seq.card;
EXPECT_EQ(TEQ1_R(0, 0, 1), teq1_frame_error_check(&state_, &tx_frame_, &rx_frame_));
state_.card_state->seq.card = !state_.card_state->seq.card;
pcb++;
}
};
TEST_F(Teq1FrameErrorCheck, length_mismatch) {
};
TEST_F(Teq1FrameErrorCheck, unchained_r_block) {
};
TEST_F(Teq1FrameErrorCheck, unexpected_seq) {
};
class Teq1RulesTest : public virtual Test {
public:
Teq1RulesTest() :
tx_data_(INF_LEN, 'A'),
rx_data_(INF_LEN, 'B'),
card_state_({ .seq = { .card = 1, .interface = 1, }, }),
state_(TEQ1_INIT_STATE(tx_data_.data(), static_cast<uint32_t>(tx_data_.size()),
rx_data_.data(), static_cast<uint32_t>(rx_data_.size()),
&card_state_)) {
memset(&tx_frame_, 0, sizeof(struct Teq1Frame));
memset(&tx_next_, 0, sizeof(struct Teq1Frame));
memset(&rx_frame_, 0, sizeof(struct Teq1Frame));
}
virtual ~Teq1RulesTest() { }
virtual void SetUp() {}
virtual void TearDown() { }
struct Teq1Frame tx_frame_;
struct Teq1Frame tx_next_;
struct Teq1Frame rx_frame_;
std::vector<uint8_t> tx_data_;
std::vector<uint8_t> rx_data_;
struct Teq1CardState card_state_;
struct Teq1State state_;
};
class Teq1ErrorFreeTest : public Teq1RulesTest {
};
class Teq1ErrorHandlingTest : public Teq1RulesTest {
};
class Teq1CompleteTest : public Teq1ErrorFreeTest {
public:
virtual void SetUp() {
tx_frame_.header.PCB = TEQ1_I(0, 0);
teq1_fill_info_block(&state_, &tx_frame_);
// Check that the tx_data was fully consumed.
EXPECT_EQ(0UL, state_.app_data.tx_len);
rx_frame_.header.PCB = TEQ1_I(0, 0);
rx_frame_.header.LEN = INF_LEN;
ASSERT_EQ(static_cast<unsigned long>(INF_LEN), tx_data_.size()); // Catch fixture changes.
// Supply TX data and make sure it overwrites RX data on consumption.
memcpy(rx_frame_.INF, tx_data_.data(), INF_LEN);
rx_frame_.INF[INF_LEN] = teq1_compute_LRC(&rx_frame_);
}
virtual void RunRules() {
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
EXPECT_EQ(0, state_.errors);
EXPECT_EQ(NULL, state_.last_error_message)
<< "Last error: " << state_.last_error_message;
EXPECT_EQ(0, tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
EXPECT_EQ(kRuleResultComplete, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
}
};
TEST_F(Teq1CompleteTest, I00_I00_empty) {
// No data.
state_.app_data.tx_len = 0;
state_.app_data.rx_len = 0;
// Re-zero the prepared frames.
teq1_fill_info_block(&state_, &tx_frame_);
rx_frame_.header.LEN = 0;
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
RunRules();
EXPECT_EQ(0U, rx_frame_.header.LEN);
};
TEST_F(Teq1CompleteTest, I00_I00_data) {
RunRules();
// Ensure that the rx_frame data was copied out to rx_data.
EXPECT_EQ(0UL, state_.app_data.rx_len);
EXPECT_EQ(tx_data_, rx_data_);
};
TEST_F(Teq1CompleteTest, I10_I10_data) {
tx_frame_.header.PCB = TEQ1_I(1, 0);
rx_frame_.header.PCB = TEQ1_I(0, 0);
rx_frame_.INF[INF_LEN] = teq1_compute_LRC(&rx_frame_);
RunRules();
// Ensure that the rx_frame data was copied out to rx_data.
EXPECT_EQ(INF_LEN, rx_frame_.header.LEN);
EXPECT_EQ(0UL, state_.app_data.rx_len);
EXPECT_EQ(tx_data_, rx_data_);
};
// Note, IFS is not tested as it is not supported on current hardware.
TEST_F(Teq1ErrorFreeTest, I00_WTX0_WTX1_data) {
tx_frame_.header.PCB = TEQ1_I(0, 0);
teq1_fill_info_block(&state_, &tx_frame_);
// Check that the tx_data was fully consumed.
EXPECT_EQ(0UL, state_.app_data.tx_len);
rx_frame_.header.PCB = TEQ1_S_WTX(0);
rx_frame_.header.LEN = 1;
rx_frame_.INF[0] = 2; /* Wait x 2 */
rx_frame_.INF[1] = teq1_compute_LRC(&rx_frame_);
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
teq1_trace_transmit(tx_next_.header.PCB, tx_next_.header.LEN);
EXPECT_EQ(0, state_.errors);
EXPECT_EQ(NULL, state_.last_error_message)
<< "Last error: " << state_.last_error_message;
EXPECT_EQ(TEQ1_S_WTX(1), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
EXPECT_EQ(state_.wait_mult, 2);
EXPECT_EQ(state_.wait_mult, rx_frame_.INF[0]);
// Ensure the next call will use the original TX frame.
EXPECT_EQ(kRuleResultSingleShot, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
};
class Teq1ErrorFreeChainingTest : public Teq1ErrorFreeTest {
public:
virtual void RunRules() {
state_.app_data.tx_len = oversized_data_len_;
tx_data_.resize(oversized_data_len_, 'C');
state_.app_data.tx_buf = tx_data_.data();
teq1_fill_info_block(&state_, &tx_frame_);
// Ensure More bit was set.
EXPECT_EQ(1, bs_get(PCB.I.more_data, tx_frame_.header.PCB));
// Check that the tx_data was fully consumed.
EXPECT_EQ(static_cast<uint32_t>(oversized_data_len_ - INF_LEN),
state_.app_data.tx_len);
// No one is checking the TX LRC since there is no card present.
rx_frame_.header.LEN = 0;
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
teq1_trace_transmit(tx_next_.header.PCB, tx_next_.header.LEN);
EXPECT_EQ(0, state_.errors);
EXPECT_EQ(NULL, state_.last_error_message)
<< "Last error: " << state_.last_error_message;
EXPECT_EQ(kRuleResultContinue, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
// Check that the tx_buf was drained already for the next frame.
// ...
EXPECT_EQ(static_cast<uint32_t>(oversized_data_len_ - (2 * INF_LEN)),
state_.app_data.tx_len);
// Belt and suspenders: make sure no RX buf was used.
EXPECT_EQ(rx_data_.size(), state_.app_data.rx_len);
}
int oversized_data_len_;
};
TEST_F(Teq1ErrorFreeChainingTest, I01_R1_I11_chaining) {
oversized_data_len_ = INF_LEN * 3;
tx_frame_.header.PCB = TEQ1_I(0, 0);
rx_frame_.header.PCB = TEQ1_R(1, 0, 0);
RunRules();
EXPECT_EQ(TEQ1_I(1, 1), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
};
TEST_F(Teq1ErrorFreeChainingTest, I11_R0_I01_chaining) {
oversized_data_len_ = INF_LEN * 3;
tx_frame_.header.PCB = TEQ1_I(1, 0);
rx_frame_.header.PCB = TEQ1_R(0, 0, 0);
RunRules();
EXPECT_EQ(TEQ1_I(0, 1), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
};
TEST_F(Teq1ErrorFreeChainingTest, I11_R0_I00_chaining) {
oversized_data_len_ = INF_LEN * 2; // Exactly 2 frames worth.
tx_frame_.header.PCB = TEQ1_I(1, 0);
rx_frame_.header.PCB = TEQ1_R(0, 0, 0);
RunRules();
EXPECT_EQ(TEQ1_I(0, 0), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
};
//
// Error handling tests
//
//
class Teq1Retransmit : public Teq1ErrorHandlingTest {
public:
virtual void SetUp() {
// No data.
state_.app_data.rx_len = 0;
state_.app_data.tx_len = 0;
tx_frame_.header.PCB = TEQ1_I(0, 0);
teq1_fill_info_block(&state_, &tx_frame_);
// No one is checking the TX LRC since there is no card present.
// Assume the card may not even set the error bit.
rx_frame_.header.LEN = 0;
rx_frame_.header.PCB = TEQ1_R(0, 0, 0);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
}
virtual void TearDown() {
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
// Not counted as an error as it was on the card-side.
EXPECT_EQ(0, state_.errors);
const char *kNull = NULL;
EXPECT_EQ(kNull, state_.last_error_message) << state_.last_error_message;
EXPECT_EQ(kRuleResultRetransmit, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
}
};
TEST_F(Teq1Retransmit, I00_R000_I00) {
rx_frame_.header.PCB = TEQ1_R(0, 0, 0);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
};
TEST_F(Teq1Retransmit, I00_R001_I00) {
rx_frame_.header.PCB = TEQ1_R(0, 0, 1);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
};
TEST_F(Teq1Retransmit, I00_R010_I00) {
rx_frame_.header.PCB = TEQ1_R(0, 1, 0);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
};
TEST_F(Teq1Retransmit, I00_R011_I00) {
rx_frame_.header.PCB = TEQ1_R(0, 1, 1);
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_);
}
TEST_F(Teq1ErrorHandlingTest, I00_I00_bad_lrc) {
// No data.
state_.app_data.rx_len = 0;
state_.app_data.tx_len = 0;
tx_frame_.header.PCB = TEQ1_I(0, 0);
teq1_fill_info_block(&state_, &tx_frame_);
// No one is checking the TX LRC since there is no card present.
rx_frame_.header.PCB = TEQ1_I(0, 0);
rx_frame_.header.LEN = 0;
rx_frame_.INF[0] = teq1_compute_LRC(&rx_frame_) - 1;
teq1_trace_header();
teq1_trace_transmit(tx_frame_.header.PCB, tx_frame_.header.LEN);
teq1_trace_receive(rx_frame_.header.PCB, rx_frame_.header.LEN);
enum RuleResult result = teq1_rules(&state_, &tx_frame_, &rx_frame_, &tx_next_);
EXPECT_EQ(1, state_.errors);
const char *kNull = NULL;
EXPECT_NE(kNull, state_.last_error_message);
EXPECT_STREQ("Invalid frame received", state_.last_error_message);
EXPECT_EQ(TEQ1_R(0, 0, 1), tx_next_.header.PCB)
<< "Actual next TX: " << teq1_pcb_to_name(tx_next_.header.PCB);
EXPECT_EQ(kRuleResultSingleShot, result)
<< "Actual result name: " << teq1_rule_result_to_name(result);
};