blob: 014a86528e7b8e8b5c6eabbe5e0069b60e53cf92 [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/persistent_sample_map.h"
#include "base/logging.h"
#include "base/stl_util.h"
namespace base {
typedef HistogramBase::Count Count;
typedef HistogramBase::Sample Sample;
namespace {
// An iterator for going through a PersistentSampleMap. The logic here is
// identical to that of SampleMapIterator but with different data structures.
// Changes here likely need to be duplicated there.
class PersistentSampleMapIterator : public SampleCountIterator {
public:
typedef std::map<HistogramBase::Sample, HistogramBase::Count*>
SampleToCountMap;
explicit PersistentSampleMapIterator(const SampleToCountMap& sample_counts);
~PersistentSampleMapIterator() override;
// SampleCountIterator:
bool Done() const override;
void Next() override;
void Get(HistogramBase::Sample* min,
HistogramBase::Sample* max,
HistogramBase::Count* count) const override;
private:
void SkipEmptyBuckets();
SampleToCountMap::const_iterator iter_;
const SampleToCountMap::const_iterator end_;
};
PersistentSampleMapIterator::PersistentSampleMapIterator(
const SampleToCountMap& sample_counts)
: iter_(sample_counts.begin()),
end_(sample_counts.end()) {
SkipEmptyBuckets();
}
PersistentSampleMapIterator::~PersistentSampleMapIterator() {}
bool PersistentSampleMapIterator::Done() const {
return iter_ == end_;
}
void PersistentSampleMapIterator::Next() {
DCHECK(!Done());
++iter_;
SkipEmptyBuckets();
}
void PersistentSampleMapIterator::Get(Sample* min,
Sample* max,
Count* count) const {
DCHECK(!Done());
if (min)
*min = iter_->first;
if (max)
*max = iter_->first + 1;
if (count)
*count = *iter_->second;
}
void PersistentSampleMapIterator::SkipEmptyBuckets() {
while (!Done() && *iter_->second == 0) {
++iter_;
}
}
// This structure holds an entry for a PersistentSampleMap within a persistent
// memory allocator. The "id" must be unique across all maps held by an
// allocator or they will get attached to the wrong sample map.
struct SampleRecord {
uint64_t id; // Unique identifier of owner.
Sample value; // The value for which this record holds a count.
Count count; // The count associated with the above value.
};
// The type-id used to identify sample records inside an allocator.
const uint32_t kTypeIdSampleRecord = 0x8FE6A69F + 1; // SHA1(SampleRecord) v1
} // namespace
PersistentSampleMap::PersistentSampleMap(
uint64_t id,
PersistentMemoryAllocator* allocator,
Metadata* meta)
: HistogramSamples(id, meta),
allocator_(allocator) {
// This is created once but will continue to return new iterables even when
// it has previously reached the end.
allocator->CreateIterator(&sample_iter_);
// Load all existing samples during construction. It's no worse to do it
// here than at some point in the future and could be better if construction
// takes place on some background thread. New samples could be created at
// any time by parallel threads; if so, they'll get loaded when needed.
ImportSamples(kAllSamples);
}
PersistentSampleMap::~PersistentSampleMap() {}
void PersistentSampleMap::Accumulate(Sample value, Count count) {
*GetOrCreateSampleCountStorage(value) += count;
IncreaseSum(static_cast<int64_t>(count) * value);
IncreaseRedundantCount(count);
}
Count PersistentSampleMap::GetCount(Sample value) const {
// Have to override "const" to make sure all samples have been loaded before
// being able to know what value to return.
Count* count_pointer =
const_cast<PersistentSampleMap*>(this)->GetSampleCountStorage(value);
return count_pointer ? *count_pointer : 0;
}
Count PersistentSampleMap::TotalCount() const {
// Have to override "const" in order to make sure all samples have been
// loaded before trying to iterate over the map.
const_cast<PersistentSampleMap*>(this)->ImportSamples(kAllSamples);
Count count = 0;
for (const auto& entry : sample_counts_) {
count += *entry.second;
}
return count;
}
scoped_ptr<SampleCountIterator> PersistentSampleMap::Iterator() const {
// Have to override "const" in order to make sure all samples have been
// loaded before trying to iterate over the map.
const_cast<PersistentSampleMap*>(this)->ImportSamples(kAllSamples);
return make_scoped_ptr(new PersistentSampleMapIterator(sample_counts_));
}
bool PersistentSampleMap::AddSubtractImpl(SampleCountIterator* iter,
Operator op) {
Sample min;
Sample max;
Count count;
for (; !iter->Done(); iter->Next()) {
iter->Get(&min, &max, &count);
if (min + 1 != max)
return false; // SparseHistogram only supports bucket with size 1.
*GetOrCreateSampleCountStorage(min) +=
(op == HistogramSamples::ADD) ? count : -count;
}
return true;
}
Count* PersistentSampleMap::GetSampleCountStorage(Sample value) {
DCHECK_LE(0, value);
// If |value| is already in the map, just return that.
auto it = sample_counts_.find(value);
if (it != sample_counts_.end())
return it->second;
// Import any new samples from persistent memory looking for the value.
return ImportSamples(value);
}
Count* PersistentSampleMap::GetOrCreateSampleCountStorage(Sample value) {
// Get any existing count storage.
Count* count_pointer = GetSampleCountStorage(value);
if (count_pointer)
return count_pointer;
// Create a new record in persistent memory for the value.
PersistentMemoryAllocator::Reference ref =
allocator_->Allocate(sizeof(SampleRecord), kTypeIdSampleRecord);
SampleRecord* record =
allocator_->GetAsObject<SampleRecord>(ref, kTypeIdSampleRecord);
if (!record) {
// If the allocator was unable to create a record then it is full or
// corrupt. Instead, allocate the counter from the heap. This sample will
// not be persistent, will not be shared, and will leak but it's better
// than crashing.
NOTREACHED() << "full=" << allocator_->IsFull()
<< ", corrupt=" << allocator_->IsCorrupt();
count_pointer = new Count(0);
sample_counts_[value] = count_pointer;
return count_pointer;
}
record->id = id();
record->value = value;
record->count = 0; // Should already be zero but don't trust other processes.
allocator_->MakeIterable(ref);
// A race condition between two independent processes (i.e. two independent
// histogram objects sharing the same sample data) could cause two of the
// above records to be created. The allocator, however, forces a strict
// ordering on iterable objects so use the import method to actually add the
// just-created record. This ensures that all PersistentSampleMap objects
// will always use the same record, whichever was first made iterable.
// Thread-safety within a process where multiple threads use the same
// histogram object is delegated to the controlling histogram object which,
// for sparse histograms, is a lock object.
count_pointer = ImportSamples(value);
DCHECK(count_pointer);
return count_pointer;
}
Count* PersistentSampleMap::ImportSamples(Sample until_value) {
// TODO(bcwhite): This import operates in O(V+N) total time per sparse
// histogram where V is the number of values for this object and N is
// the number of other iterable objects in the allocator. This becomes
// O(S*(SV+N)) or O(S^2*V + SN) overall where S is the number of sparse
// histograms.
//
// This is actually okay when histograms are expected to exist for the
// lifetime of the program, spreading the cost out, and S and V are
// relatively small, as is the current case.
//
// However, it is not so good for objects that are created, detroyed, and
// recreated on a periodic basis, such as when making a snapshot of
// sparse histograms owned by another, ongoing process. In that case, the
// entire cost is compressed into a single sequential operation... on the
// UI thread no less.
//
// This will be addressed in a future CL.
uint32_t type_id;
PersistentMemoryAllocator::Reference ref;
while ((ref = allocator_->GetNextIterable(&sample_iter_, &type_id)) != 0) {
if (type_id == kTypeIdSampleRecord) {
SampleRecord* record =
allocator_->GetAsObject<SampleRecord>(ref, kTypeIdSampleRecord);
if (!record)
continue;
// A sample record has been found but may not be for this histogram.
if (record->id != id())
continue;
// Check if the record's value is already known.
if (!ContainsKey(sample_counts_, record->value)) {
// No: Add it to map of known values if the value is valid.
if (record->value >= 0)
sample_counts_[record->value] = &record->count;
} else {
// Yes: Ignore it; it's a duplicate caused by a race condition -- see
// code & comment in GetOrCreateSampleCountStorage() for details.
// Check that nothing ever operated on the duplicate record.
DCHECK_EQ(0, record->count);
}
// Stop if it's the value being searched for.
if (record->value == until_value)
return &record->count;
}
}
return nullptr;
}
} // namespace base