| /* SPDX-License-Identifier: LGPL-2.1-or-later */ |
| /* |
| * Copyright (C) 2020, Raspberry Pi Ltd |
| * |
| * dng_writer.cpp - DNG writer |
| */ |
| |
| #include "dng_writer.h" |
| |
| #include <algorithm> |
| #include <iostream> |
| #include <map> |
| |
| #include <tiffio.h> |
| |
| #include <libcamera/control_ids.h> |
| #include <libcamera/formats.h> |
| #include <libcamera/property_ids.h> |
| |
| using namespace libcamera; |
| |
| enum CFAPatternColour : uint8_t { |
| CFAPatternRed = 0, |
| CFAPatternGreen = 1, |
| CFAPatternBlue = 2, |
| }; |
| |
| struct FormatInfo { |
| uint8_t bitsPerSample; |
| CFAPatternColour pattern[4]; |
| void (*packScanline)(void *output, const void *input, |
| unsigned int width); |
| void (*thumbScanline)(const FormatInfo &info, void *output, |
| const void *input, unsigned int width, |
| unsigned int stride); |
| }; |
| |
| struct Matrix3d { |
| Matrix3d() |
| { |
| } |
| |
| Matrix3d(float m0, float m1, float m2, |
| float m3, float m4, float m5, |
| float m6, float m7, float m8) |
| { |
| m[0] = m0, m[1] = m1, m[2] = m2; |
| m[3] = m3, m[4] = m4, m[5] = m5; |
| m[6] = m6, m[7] = m7, m[8] = m8; |
| } |
| |
| Matrix3d(const Span<const float> &span) |
| : Matrix3d(span[0], span[1], span[2], |
| span[3], span[4], span[5], |
| span[6], span[7], span[8]) |
| { |
| } |
| |
| static Matrix3d diag(float diag0, float diag1, float diag2) |
| { |
| return Matrix3d(diag0, 0, 0, 0, diag1, 0, 0, 0, diag2); |
| } |
| |
| static Matrix3d identity() |
| { |
| return Matrix3d(1, 0, 0, 0, 1, 0, 0, 0, 1); |
| } |
| |
| Matrix3d transpose() const |
| { |
| return { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] }; |
| } |
| |
| Matrix3d cofactors() const |
| { |
| return { m[4] * m[8] - m[5] * m[7], |
| -(m[3] * m[8] - m[5] * m[6]), |
| m[3] * m[7] - m[4] * m[6], |
| -(m[1] * m[8] - m[2] * m[7]), |
| m[0] * m[8] - m[2] * m[6], |
| -(m[0] * m[7] - m[1] * m[6]), |
| m[1] * m[5] - m[2] * m[4], |
| -(m[0] * m[5] - m[2] * m[3]), |
| m[0] * m[4] - m[1] * m[3] }; |
| } |
| |
| Matrix3d adjugate() const |
| { |
| return cofactors().transpose(); |
| } |
| |
| float determinant() const |
| { |
| return m[0] * (m[4] * m[8] - m[5] * m[7]) - |
| m[1] * (m[3] * m[8] - m[5] * m[6]) + |
| m[2] * (m[3] * m[7] - m[4] * m[6]); |
| } |
| |
| Matrix3d inverse() const |
| { |
| return adjugate() * (1.0 / determinant()); |
| } |
| |
| Matrix3d operator*(const Matrix3d &other) const |
| { |
| Matrix3d result; |
| for (unsigned int i = 0; i < 3; i++) { |
| for (unsigned int j = 0; j < 3; j++) { |
| result.m[i * 3 + j] = |
| m[i * 3 + 0] * other.m[0 + j] + |
| m[i * 3 + 1] * other.m[3 + j] + |
| m[i * 3 + 2] * other.m[6 + j]; |
| } |
| } |
| return result; |
| } |
| |
| Matrix3d operator*(float f) const |
| { |
| Matrix3d result; |
| for (unsigned int i = 0; i < 9; i++) |
| result.m[i] = m[i] * f; |
| return result; |
| } |
| |
| float m[9]; |
| }; |
| |
| void packScanlineSBGGR8(void *output, const void *input, unsigned int width) |
| { |
| const uint8_t *in = static_cast<const uint8_t *>(input); |
| uint8_t *out = static_cast<uint8_t *>(output); |
| |
| std::copy(in, in + width, out); |
| } |
| |
| void packScanlineSBGGR10P(void *output, const void *input, unsigned int width) |
| { |
| const uint8_t *in = static_cast<const uint8_t *>(input); |
| uint8_t *out = static_cast<uint8_t *>(output); |
| |
| /* \todo Can this be made more efficient? */ |
| for (unsigned int x = 0; x < width; x += 4) { |
| *out++ = in[0]; |
| *out++ = (in[4] & 0x03) << 6 | in[1] >> 2; |
| *out++ = (in[1] & 0x03) << 6 | (in[4] & 0x0c) << 2 | in[2] >> 4; |
| *out++ = (in[2] & 0x0f) << 4 | (in[4] & 0x30) >> 2 | in[3] >> 6; |
| *out++ = (in[3] & 0x3f) << 2 | (in[4] & 0xc0) >> 6; |
| in += 5; |
| } |
| } |
| |
| void packScanlineSBGGR12P(void *output, const void *input, unsigned int width) |
| { |
| const uint8_t *in = static_cast<const uint8_t *>(input); |
| uint8_t *out = static_cast<uint8_t *>(output); |
| |
| /* \todo Can this be made more efficient? */ |
| for (unsigned int i = 0; i < width; i += 2) { |
| *out++ = in[0]; |
| *out++ = (in[2] & 0x0f) << 4 | in[1] >> 4; |
| *out++ = (in[1] & 0x0f) << 4 | in[2] >> 4; |
| in += 3; |
| } |
| } |
| |
| void thumbScanlineSBGGRxxP(const FormatInfo &info, void *output, |
| const void *input, unsigned int width, |
| unsigned int stride) |
| { |
| const uint8_t *in = static_cast<const uint8_t *>(input); |
| uint8_t *out = static_cast<uint8_t *>(output); |
| |
| /* Number of bytes corresponding to 16 pixels. */ |
| unsigned int skip = info.bitsPerSample * 16 / 8; |
| |
| for (unsigned int x = 0; x < width; x++) { |
| uint8_t value = (in[0] + in[1] + in[stride] + in[stride + 1]) >> 2; |
| *out++ = value; |
| *out++ = value; |
| *out++ = value; |
| in += skip; |
| } |
| } |
| |
| void packScanlineIPU3(void *output, const void *input, unsigned int width) |
| { |
| const uint8_t *in = static_cast<const uint8_t *>(input); |
| uint16_t *out = static_cast<uint16_t *>(output); |
| |
| /* |
| * Upscale the 10-bit format to 16-bit as it's not trivial to pack it |
| * as 10-bit without gaps. |
| * |
| * \todo Improve packing to keep the 10-bit sample size. |
| */ |
| unsigned int x = 0; |
| while (true) { |
| for (unsigned int i = 0; i < 6; i++) { |
| *out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6; |
| if (++x >= width) |
| return; |
| |
| *out++ = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4; |
| if (++x >= width) |
| return; |
| |
| *out++ = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2; |
| if (++x >= width) |
| return; |
| |
| *out++ = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0; |
| if (++x >= width) |
| return; |
| |
| in += 5; |
| } |
| |
| *out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6; |
| if (++x >= width) |
| return; |
| |
| in += 2; |
| } |
| } |
| |
| void thumbScanlineIPU3([[maybe_unused]] const FormatInfo &info, void *output, |
| const void *input, unsigned int width, |
| unsigned int stride) |
| { |
| uint8_t *out = static_cast<uint8_t *>(output); |
| |
| for (unsigned int x = 0; x < width; x++) { |
| unsigned int pixel = x * 16; |
| unsigned int block = pixel / 25; |
| unsigned int pixelInBlock = pixel - block * 25; |
| |
| /* |
| * If the pixel is the last in the block cheat a little and |
| * move one pixel backward to avoid reading between two blocks |
| * and having to deal with the padding bits. |
| */ |
| if (pixelInBlock == 24) |
| pixelInBlock--; |
| |
| const uint8_t *in = static_cast<const uint8_t *>(input) |
| + block * 32 + (pixelInBlock / 4) * 5; |
| |
| uint16_t val1, val2, val3, val4; |
| switch (pixelInBlock % 4) { |
| case 0: |
| val1 = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6; |
| val2 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4; |
| val3 = (in[stride + 1] & 0x03) << 14 | (in[stride + 0] & 0xff) << 6; |
| val4 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4; |
| break; |
| case 1: |
| val1 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4; |
| val2 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2; |
| val3 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4; |
| val4 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2; |
| break; |
| case 2: |
| val1 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2; |
| val2 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0; |
| val3 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2; |
| val4 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0; |
| break; |
| case 3: |
| val1 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0; |
| val2 = (in[6] & 0x03) << 14 | (in[5] & 0xff) << 6; |
| val3 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0; |
| val4 = (in[stride + 6] & 0x03) << 14 | (in[stride + 5] & 0xff) << 6; |
| break; |
| } |
| |
| uint8_t value = (val1 + val2 + val3 + val4) >> 10; |
| *out++ = value; |
| *out++ = value; |
| *out++ = value; |
| } |
| } |
| |
| static const std::map<PixelFormat, FormatInfo> formatInfo = { |
| { formats::SBGGR8, { |
| .bitsPerSample = 8, |
| .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, |
| .packScanline = packScanlineSBGGR8, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SGBRG8, { |
| .bitsPerSample = 8, |
| .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, |
| .packScanline = packScanlineSBGGR8, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SGRBG8, { |
| .bitsPerSample = 8, |
| .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, |
| .packScanline = packScanlineSBGGR8, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SRGGB8, { |
| .bitsPerSample = 8, |
| .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, |
| .packScanline = packScanlineSBGGR8, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SBGGR10_CSI2P, { |
| .bitsPerSample = 10, |
| .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, |
| .packScanline = packScanlineSBGGR10P, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SGBRG10_CSI2P, { |
| .bitsPerSample = 10, |
| .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, |
| .packScanline = packScanlineSBGGR10P, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SGRBG10_CSI2P, { |
| .bitsPerSample = 10, |
| .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, |
| .packScanline = packScanlineSBGGR10P, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SRGGB10_CSI2P, { |
| .bitsPerSample = 10, |
| .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, |
| .packScanline = packScanlineSBGGR10P, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SBGGR12_CSI2P, { |
| .bitsPerSample = 12, |
| .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, |
| .packScanline = packScanlineSBGGR12P, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SGBRG12_CSI2P, { |
| .bitsPerSample = 12, |
| .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, |
| .packScanline = packScanlineSBGGR12P, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SGRBG12_CSI2P, { |
| .bitsPerSample = 12, |
| .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, |
| .packScanline = packScanlineSBGGR12P, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SRGGB12_CSI2P, { |
| .bitsPerSample = 12, |
| .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, |
| .packScanline = packScanlineSBGGR12P, |
| .thumbScanline = thumbScanlineSBGGRxxP, |
| } }, |
| { formats::SBGGR10_IPU3, { |
| .bitsPerSample = 16, |
| .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, |
| .packScanline = packScanlineIPU3, |
| .thumbScanline = thumbScanlineIPU3, |
| } }, |
| { formats::SGBRG10_IPU3, { |
| .bitsPerSample = 16, |
| .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, |
| .packScanline = packScanlineIPU3, |
| .thumbScanline = thumbScanlineIPU3, |
| } }, |
| { formats::SGRBG10_IPU3, { |
| .bitsPerSample = 16, |
| .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, |
| .packScanline = packScanlineIPU3, |
| .thumbScanline = thumbScanlineIPU3, |
| } }, |
| { formats::SRGGB10_IPU3, { |
| .bitsPerSample = 16, |
| .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, |
| .packScanline = packScanlineIPU3, |
| .thumbScanline = thumbScanlineIPU3, |
| } }, |
| }; |
| |
| int DNGWriter::write(const char *filename, const Camera *camera, |
| const StreamConfiguration &config, |
| const ControlList &metadata, |
| [[maybe_unused]] const FrameBuffer *buffer, |
| const void *data) |
| { |
| const ControlList &cameraProperties = camera->properties(); |
| |
| const auto it = formatInfo.find(config.pixelFormat); |
| if (it == formatInfo.cend()) { |
| std::cerr << "Unsupported pixel format" << std::endl; |
| return -EINVAL; |
| } |
| const FormatInfo *info = &it->second; |
| |
| TIFF *tif = TIFFOpen(filename, "w"); |
| if (!tif) { |
| std::cerr << "Failed to open tiff file" << std::endl; |
| return -EINVAL; |
| } |
| |
| /* |
| * Scanline buffer, has to be large enough to store both a RAW scanline |
| * or a thumbnail scanline. The latter will always be much smaller than |
| * the former as we downscale by 16 in both directions. |
| */ |
| uint8_t scanline[(config.size.width * info->bitsPerSample + 7) / 8]; |
| |
| toff_t rawIFDOffset = 0; |
| toff_t exifIFDOffset = 0; |
| |
| /* |
| * Start with a thumbnail in IFD 0 for compatibility with TIFF baseline |
| * readers, as required by the TIFF/EP specification. Tags that apply to |
| * the whole file are stored here. |
| */ |
| const uint8_t version[] = { 1, 2, 0, 0 }; |
| |
| TIFFSetField(tif, TIFFTAG_DNGVERSION, version); |
| TIFFSetField(tif, TIFFTAG_DNGBACKWARDVERSION, version); |
| TIFFSetField(tif, TIFFTAG_FILLORDER, FILLORDER_MSB2LSB); |
| TIFFSetField(tif, TIFFTAG_MAKE, "libcamera"); |
| |
| const auto &model = cameraProperties.get(properties::Model); |
| if (model) { |
| TIFFSetField(tif, TIFFTAG_MODEL, model->c_str()); |
| /* \todo set TIFFTAG_UNIQUECAMERAMODEL. */ |
| } |
| |
| TIFFSetField(tif, TIFFTAG_SOFTWARE, "qcam"); |
| TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT); |
| |
| /* |
| * Thumbnail-specific tags. The thumbnail is stored as an RGB image |
| * with 1/16 of the raw image resolution. Greyscale would save space, |
| * but doesn't seem well supported by RawTherapee. |
| */ |
| TIFFSetField(tif, TIFFTAG_SUBFILETYPE, FILETYPE_REDUCEDIMAGE); |
| TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width / 16); |
| TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height / 16); |
| TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8); |
| TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE); |
| TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB); |
| TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3); |
| TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); |
| TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); |
| |
| /* |
| * Fill in some reasonable colour information in the DNG. We supply |
| * the "neutral" colour values which determine the white balance, and the |
| * "ColorMatrix1" which converts XYZ to (un-white-balanced) camera RGB. |
| * Note that this is not a "proper" colour calibration for the DNG, |
| * nonetheless, many tools should be able to render the colours better. |
| */ |
| float neutral[3] = { 1, 1, 1 }; |
| Matrix3d wbGain = Matrix3d::identity(); |
| /* From http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html */ |
| const Matrix3d rgb2xyz(0.4124564, 0.3575761, 0.1804375, |
| 0.2126729, 0.7151522, 0.0721750, |
| 0.0193339, 0.1191920, 0.9503041); |
| Matrix3d ccm = Matrix3d::identity(); |
| /* |
| * Pick a reasonable number eps to protect against singularities. It |
| * should be comfortably larger than the point at which we run into |
| * numerical trouble, yet smaller than any plausible gain that we might |
| * apply to a colour, either explicitly or as part of the colour matrix. |
| */ |
| const double eps = 1e-2; |
| |
| const auto &colourGains = metadata.get(controls::ColourGains); |
| if (colourGains) { |
| if ((*colourGains)[0] > eps && (*colourGains)[1] > eps) { |
| wbGain = Matrix3d::diag((*colourGains)[0], 1, (*colourGains)[1]); |
| neutral[0] = 1.0 / (*colourGains)[0]; /* red */ |
| neutral[2] = 1.0 / (*colourGains)[1]; /* blue */ |
| } |
| } |
| |
| const auto &ccmControl = metadata.get(controls::ColourCorrectionMatrix); |
| if (ccmControl) { |
| Matrix3d ccmSupplied(*ccmControl); |
| if (ccmSupplied.determinant() > eps) |
| ccm = ccmSupplied; |
| } |
| |
| /* |
| * rgb2xyz is known to be invertible, and we've ensured above that both |
| * the ccm and wbGain matrices are non-singular, so the product of all |
| * three is guaranteed to be invertible too. |
| */ |
| Matrix3d colorMatrix1 = (rgb2xyz * ccm * wbGain).inverse(); |
| |
| TIFFSetField(tif, TIFFTAG_COLORMATRIX1, 9, colorMatrix1.m); |
| TIFFSetField(tif, TIFFTAG_ASSHOTNEUTRAL, 3, neutral); |
| |
| /* |
| * Reserve space for the SubIFD and ExifIFD tags, pointing to the IFD |
| * for the raw image and EXIF data respectively. The real offsets will |
| * be set later. |
| */ |
| TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset); |
| TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset); |
| |
| /* Write the thumbnail. */ |
| const uint8_t *row = static_cast<const uint8_t *>(data); |
| for (unsigned int y = 0; y < config.size.height / 16; y++) { |
| info->thumbScanline(*info, &scanline, row, |
| config.size.width / 16, config.stride); |
| |
| if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) { |
| std::cerr << "Failed to write thumbnail scanline" |
| << std::endl; |
| TIFFClose(tif); |
| return -EINVAL; |
| } |
| |
| row += config.stride * 16; |
| } |
| |
| TIFFWriteDirectory(tif); |
| |
| /* Create a new IFD for the RAW image. */ |
| const uint16_t cfaRepeatPatternDim[] = { 2, 2 }; |
| const uint8_t cfaPlaneColor[] = { |
| CFAPatternRed, |
| CFAPatternGreen, |
| CFAPatternBlue |
| }; |
| |
| TIFFSetField(tif, TIFFTAG_SUBFILETYPE, 0); |
| TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width); |
| TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height); |
| TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, info->bitsPerSample); |
| TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE); |
| TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_CFA); |
| TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1); |
| TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); |
| TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); |
| TIFFSetField(tif, TIFFTAG_CFAREPEATPATTERNDIM, cfaRepeatPatternDim); |
| if (TIFFLIB_VERSION < 20201219) |
| TIFFSetField(tif, TIFFTAG_CFAPATTERN, info->pattern); |
| else |
| TIFFSetField(tif, TIFFTAG_CFAPATTERN, 4, info->pattern); |
| TIFFSetField(tif, TIFFTAG_CFAPLANECOLOR, 3, cfaPlaneColor); |
| TIFFSetField(tif, TIFFTAG_CFALAYOUT, 1); |
| |
| const uint16_t blackLevelRepeatDim[] = { 2, 2 }; |
| float blackLevel[] = { 0.0f, 0.0f, 0.0f, 0.0f }; |
| uint32_t whiteLevel = (1 << info->bitsPerSample) - 1; |
| |
| const auto &blackLevels = metadata.get(controls::SensorBlackLevels); |
| if (blackLevels) { |
| Span<const int32_t, 4> levels = *blackLevels; |
| |
| /* |
| * The black levels control is specified in R, Gr, Gb, B order. |
| * Map it to the TIFF tag that is specified in CFA pattern |
| * order. |
| */ |
| unsigned int green = (info->pattern[0] == CFAPatternRed || |
| info->pattern[1] == CFAPatternRed) |
| ? 0 : 1; |
| |
| for (unsigned int i = 0; i < 4; ++i) { |
| unsigned int level; |
| |
| switch (info->pattern[i]) { |
| case CFAPatternRed: |
| level = levels[0]; |
| break; |
| case CFAPatternGreen: |
| level = levels[green + 1]; |
| green = (green + 1) % 2; |
| break; |
| case CFAPatternBlue: |
| default: |
| level = levels[3]; |
| break; |
| } |
| |
| /* Map the 16-bit value to the bits per sample range. */ |
| blackLevel[i] = level >> (16 - info->bitsPerSample); |
| } |
| } |
| |
| TIFFSetField(tif, TIFFTAG_BLACKLEVELREPEATDIM, &blackLevelRepeatDim); |
| TIFFSetField(tif, TIFFTAG_BLACKLEVEL, 4, &blackLevel); |
| TIFFSetField(tif, TIFFTAG_WHITELEVEL, 1, &whiteLevel); |
| |
| /* Write RAW content. */ |
| row = static_cast<const uint8_t *>(data); |
| for (unsigned int y = 0; y < config.size.height; y++) { |
| info->packScanline(&scanline, row, config.size.width); |
| |
| if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) { |
| std::cerr << "Failed to write RAW scanline" |
| << std::endl; |
| TIFFClose(tif); |
| return -EINVAL; |
| } |
| |
| row += config.stride; |
| } |
| |
| /* Checkpoint the IFD to retrieve its offset, and write it out. */ |
| TIFFCheckpointDirectory(tif); |
| rawIFDOffset = TIFFCurrentDirOffset(tif); |
| TIFFWriteDirectory(tif); |
| |
| /* Create a new IFD for the EXIF data and fill it. */ |
| TIFFCreateEXIFDirectory(tif); |
| |
| /* Store creation time. */ |
| time_t rawtime; |
| struct tm *timeinfo; |
| char strTime[20]; |
| |
| time(&rawtime); |
| timeinfo = localtime(&rawtime); |
| strftime(strTime, 20, "%Y:%m:%d %H:%M:%S", timeinfo); |
| |
| /* |
| * \todo Handle timezone information by setting OffsetTimeOriginal and |
| * OffsetTimeDigitized once libtiff catches up to the specification and |
| * has EXIFTAG_ defines to handle them. |
| */ |
| TIFFSetField(tif, EXIFTAG_DATETIMEORIGINAL, strTime); |
| TIFFSetField(tif, EXIFTAG_DATETIMEDIGITIZED, strTime); |
| |
| const auto &analogGain = metadata.get(controls::AnalogueGain); |
| if (analogGain) { |
| uint16_t iso = std::min(std::max(*analogGain * 100, 0.0f), 65535.0f); |
| TIFFSetField(tif, EXIFTAG_ISOSPEEDRATINGS, 1, &iso); |
| } |
| |
| const auto &exposureTime = metadata.get(controls::ExposureTime); |
| if (exposureTime) |
| TIFFSetField(tif, EXIFTAG_EXPOSURETIME, *exposureTime / 1e6); |
| |
| TIFFWriteCustomDirectory(tif, &exifIFDOffset); |
| |
| /* Update the IFD offsets and close the file. */ |
| TIFFSetDirectory(tif, 0); |
| TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset); |
| TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset); |
| TIFFWriteDirectory(tif); |
| |
| TIFFClose(tif); |
| |
| return 0; |
| } |