blob: a6bc1c3be1d1d74b001e10ead95953f7c39c0228 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "vp9_rtcd.h"
#include "vp9/common/idct.h"
#include "quantize.h"
#include "vp9/common/reconintra.h"
#include "vp9/common/reconintra4x4.h"
#include "encodemb.h"
#include "vp9/common/invtrans.h"
#include "encodeintra.h"
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
int vp9_encode_intra(VP9_COMP *cpi, MACROBLOCK *x, int use_16x16_pred) {
int i;
int intra_pred_var = 0;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
(void) cpi;
if (use_16x16_pred) {
mbmi->mode = DC_PRED;
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame = INTRA_FRAME;
vp9_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
} else {
for (i = 0; i < 16; i++) {
x->e_mbd.block[i].bmi.as_mode.first = B_DC_PRED;
vp9_encode_intra4x4block(IF_RTCD(&cpi->rtcd), x, i);
}
}
intra_pred_var = vp9_get_mb_ss(x->src_diff);
return intra_pred_var;
}
void vp9_encode_intra4x4block(const VP9_ENCODER_RTCD *rtcd,
MACROBLOCK *x, int ib) {
BLOCKD *b = &x->e_mbd.block[ib];
BLOCK *be = &x->block[ib];
TX_TYPE tx_type;
#if CONFIG_NEWBINTRAMODES
b->bmi.as_mode.context = vp9_find_bpred_context(b);
#endif
#if CONFIG_COMP_INTRA_PRED
if (b->bmi.as_mode.second == (B_PREDICTION_MODE)(B_DC_PRED - 1)) {
#endif
vp9_intra4x4_predict(b, b->bmi.as_mode.first, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
vp9_comp_intra4x4_predict(b, b->bmi.as_mode.first, b->bmi.as_mode.second,
b->predictor);
}
#endif
vp9_subtract_b(be, b, 16);
tx_type = get_tx_type(&x->e_mbd, b);
if (tx_type != DCT_DCT) {
vp9_fht(be->src_diff, 32, be->coeff, tx_type, 4);
vp9_ht_quantize_b_4x4(be, b, tx_type);
vp9_ihtllm_c(b->dqcoeff, b->diff, 32, tx_type, 4);
} else {
x->vp9_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(be, b) ;
vp9_inverse_transform_b_4x4(IF_RTCD(&rtcd->common->idct), b, 32);
}
vp9_recon_b(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
}
void vp9_encode_intra4x4mby(const VP9_ENCODER_RTCD *rtcd, MACROBLOCK *mb) {
int i;
for (i = 0; i < 16; i++)
vp9_encode_intra4x4block(rtcd, mb, i);
return;
}
void vp9_encode_intra16x16mby(const VP9_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCK *b = &x->block[0];
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
TX_TYPE tx_type;
#if CONFIG_COMP_INTRA_PRED
if (xd->mode_info_context->mbmi.second_mode == (MB_PREDICTION_MODE)(DC_PRED - 1))
#endif
vp9_build_intra_predictors_mby(xd);
#if CONFIG_COMP_INTRA_PRED
else
vp9_build_comp_intra_predictors_mby(xd);
#endif
vp9_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride);
if (tx_size == TX_16X16) {
BLOCKD *bd = &xd->block[0];
tx_type = get_tx_type(xd, bd);
if (tx_type != DCT_DCT) {
vp9_fht(b->src_diff, 32, b->coeff, tx_type, 16);
vp9_quantize_mby_16x16(x);
if (x->optimize)
vp9_optimize_mby_16x16(x, rtcd);
vp9_ihtllm_c(bd->dqcoeff, bd->diff, 32, tx_type, 16);
} else {
vp9_transform_mby_16x16(x);
vp9_quantize_mby_16x16(x);
if (x->optimize)
vp9_optimize_mby_16x16(x, rtcd);
vp9_inverse_transform_mby_16x16(IF_RTCD(&rtcd->common->idct), xd);
}
} else if (tx_size == TX_8X8) {
vp9_transform_mby_8x8(x);
vp9_quantize_mby_8x8(x);
if (x->optimize)
vp9_optimize_mby_8x8(x, rtcd);
vp9_inverse_transform_mby_8x8(IF_RTCD(&rtcd->common->idct), xd);
} else {
vp9_transform_mby_4x4(x);
vp9_quantize_mby_4x4(x);
if (x->optimize)
vp9_optimize_mby_4x4(x, rtcd);
vp9_inverse_transform_mby_4x4(IF_RTCD(&rtcd->common->idct), xd);
}
vp9_recon_mby(xd);
}
void vp9_encode_intra16x16mbuv(const VP9_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
#if CONFIG_COMP_INTRA_PRED
if (xd->mode_info_context->mbmi.second_uv_mode == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
vp9_build_intra_predictors_mbuv(xd);
#if CONFIG_COMP_INTRA_PRED
} else {
vp9_build_comp_intra_predictors_mbuv(xd);
}
#endif
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
xd->predictor, x->src.uv_stride);
if (tx_size == TX_4X4) {
vp9_transform_mbuv_4x4(x);
vp9_quantize_mbuv_4x4(x);
if (x->optimize)
vp9_optimize_mbuv_4x4(x, rtcd);
vp9_inverse_transform_mbuv_4x4(IF_RTCD(&rtcd->common->idct), xd);
} else /* 16x16 or 8x8 */ {
vp9_transform_mbuv_8x8(x);
vp9_quantize_mbuv_8x8(x);
if (x->optimize)
vp9_optimize_mbuv_8x8(x, rtcd);
vp9_inverse_transform_mbuv_8x8(IF_RTCD(&rtcd->common->idct), xd);
}
vp9_recon_intra_mbuv(xd);
}
void vp9_encode_intra8x8(const VP9_ENCODER_RTCD *rtcd,
MACROBLOCK *x, int ib) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCKD *b = &xd->block[ib];
BLOCK *be = &x->block[ib];
const int iblock[4] = {0, 1, 4, 5};
int i;
TX_TYPE tx_type;
#if CONFIG_COMP_INTRA_PRED
if (b->bmi.as_mode.second == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
vp9_intra8x8_predict(b, b->bmi.as_mode.first, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
vp9_comp_intra8x8_predict(b, b->bmi.as_mode.first, b->bmi.as_mode.second,
b->predictor);
}
#endif
if (xd->mode_info_context->mbmi.txfm_size == TX_8X8) {
int idx = (ib & 0x02) ? (ib + 2) : ib;
// generate residual blocks
vp9_subtract_4b_c(be, b, 16);
tx_type = get_tx_type(xd, xd->block + idx);
if (tx_type != DCT_DCT) {
vp9_fht(be->src_diff, 32, (x->block + idx)->coeff,
tx_type, 8);
x->quantize_b_8x8(x->block + idx, xd->block + idx);
vp9_ihtllm_c(xd->block[idx].dqcoeff, xd->block[ib].diff, 32,
tx_type, 8);
} else {
x->vp9_short_fdct8x8(be->src_diff, (x->block + idx)->coeff, 32);
x->quantize_b_8x8(x->block + idx, xd->block + idx);
vp9_idct_idct8(xd->block[idx].dqcoeff, xd->block[ib].diff, 32);
}
} else {
for (i = 0; i < 4; i++) {
b = &xd->block[ib + iblock[i]];
be = &x->block[ib + iblock[i]];
vp9_subtract_b(be, b, 16);
x->vp9_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(be, b);
vp9_inverse_transform_b_4x4(IF_RTCD(&rtcd->common->idct), b, 32);
}
}
// reconstruct submacroblock
for (i = 0; i < 4; i++) {
b = &xd->block[ib + iblock[i]];
vp9_recon_b_c(b->predictor, b->diff, *(b->base_dst) + b->dst,
b->dst_stride);
}
}
void vp9_encode_intra8x8mby(const VP9_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
int i, ib;
for (i = 0; i < 4; i++) {
ib = vp9_i8x8_block[i];
vp9_encode_intra8x8(rtcd, x, ib);
}
}
void vp9_encode_intra_uv4x4(const VP9_ENCODER_RTCD *rtcd,
MACROBLOCK *x, int ib,
int mode, int second) {
BLOCKD *b = &x->e_mbd.block[ib];
BLOCK *be = &x->block[ib];
#if CONFIG_COMP_INTRA_PRED
if (second == -1) {
#endif
vp9_intra_uv4x4_predict(b, mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
vp9_comp_intra_uv4x4_predict(b, mode, second, b->predictor);
}
#endif
vp9_subtract_b(be, b, 8);
x->vp9_short_fdct4x4(be->src_diff, be->coeff, 16);
x->quantize_b_4x4(be, b);
vp9_inverse_transform_b_4x4(IF_RTCD(&rtcd->common->idct), b, 16);
vp9_recon_uv_b_c(b->predictor, b->diff, *(b->base_dst) + b->dst,
b->dst_stride);
}
void vp9_encode_intra8x8mbuv(const VP9_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
int i, ib, mode, second;
BLOCKD *b;
for (i = 0; i < 4; i++) {
ib = vp9_i8x8_block[i];
b = &x->e_mbd.block[ib];
mode = b->bmi.as_mode.first;
#if CONFIG_COMP_INTRA_PRED
second = b->bmi.as_mode.second;
#else
second = -1;
#endif
/*u */
vp9_encode_intra_uv4x4(rtcd, x, i + 16, mode, second);
/*v */
vp9_encode_intra_uv4x4(rtcd, x, i + 20, mode, second);
}
}