blob: 9c011791f65e7cb522db192ab35c4746c9125eae [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/rdopt.h"
#include "aom_dsp/aom_dsp_common.h"
#include "av1/encoder/tpl_model.h"
static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
for (int i = 0; i < REFERENCE_MODES; i++)
td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i];
for (int i = 0; i < REF_FRAMES; i++)
td->rd_counts.global_motion_used[i] +=
td_t->rd_counts.global_motion_used[i];
td->rd_counts.compound_ref_used_flag |=
td_t->rd_counts.compound_ref_used_flag;
td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
for (int i = 0; i < TX_SIZES_ALL; i++) {
for (int j = 0; j < TX_TYPES; j++)
td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j];
}
for (int i = 0; i < BLOCK_SIZES_ALL; i++) {
for (int j = 0; j < 2; j++) {
td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j];
}
}
for (int i = 0; i < 2; i++) {
td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i];
}
}
static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
const int mib_size = cm->seq_params.mib_size;
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int row = 0; row < cm->tiles.rows; row++) {
for (int col = 0; col < cm->tiles.cols; col++) {
TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col];
const TileInfo *const tile_info = &tile_data->tile_info;
for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
mi_row += mib_size) {
if (mi_row == tile_info->mi_row_start)
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
for (int mi_col = tile_info->mi_col_start;
mi_col < tile_info->mi_col_end; mi_col += mib_size) {
const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col;
MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str;
MB_MODE_INFO *mbmi = mi[0];
if (mbmi->skip_txfm == 1 &&
(mbmi->sb_type == cm->seq_params.sb_size)) {
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
mbmi->delta_lf_from_base = xd->delta_lf_from_base;
} else {
if (cm->delta_q_info.delta_lf_multi) {
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
} else {
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
}
}
}
}
void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
int c) {
(void)row_mt_sync;
(void)r;
(void)c;
return;
}
void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
int c, int cols) {
(void)row_mt_sync;
(void)r;
(void)c;
(void)cols;
return;
}
void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) {
#if CONFIG_MULTITHREAD
const int nsync = row_mt_sync->sync_range;
if (r) {
pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
pthread_mutex_lock(mutex);
while (c > row_mt_sync->num_finished_cols[r - 1] - nsync) {
pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)row_mt_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c,
int cols) {
#if CONFIG_MULTITHREAD
const int nsync = row_mt_sync->sync_range;
int cur;
// Only signal when there are enough encoded blocks for next row to run.
int sig = 1;
if (c < cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = cols + nsync;
}
if (sig) {
pthread_mutex_lock(&row_mt_sync->mutex_[r]);
row_mt_sync->num_finished_cols[r] = cur;
pthread_cond_signal(&row_mt_sync->cond_[r]);
pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
}
#else
(void)row_mt_sync;
(void)r;
(void)c;
(void)cols;
#endif // CONFIG_MULTITHREAD
}
// Allocate memory for row synchronization
static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync,
AV1_COMMON *cm, int rows) {
#if CONFIG_MULTITHREAD
int i;
CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
if (row_mt_sync->mutex_) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
}
}
CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
if (row_mt_sync->cond_) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&row_mt_sync->cond_[i], NULL);
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));
row_mt_sync->rows = rows;
// Set up nsync.
row_mt_sync->sync_range = 1;
}
// Deallocate row based multi-threading synchronization related mutex and data
static void row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
if (row_mt_sync != NULL) {
#if CONFIG_MULTITHREAD
int i;
if (row_mt_sync->mutex_ != NULL) {
for (i = 0; i < row_mt_sync->rows; ++i) {
pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
}
aom_free(row_mt_sync->mutex_);
}
if (row_mt_sync->cond_ != NULL) {
for (i = 0; i < row_mt_sync->rows; ++i) {
pthread_cond_destroy(&row_mt_sync->cond_[i]);
}
aom_free(row_mt_sync->cond_);
}
#endif // CONFIG_MULTITHREAD
aom_free(row_mt_sync->num_finished_cols);
// clear the structure as the source of this call may be dynamic change
// in tiles in which case this call will be followed by an _alloc()
// which may fail.
av1_zero(*row_mt_sync);
}
}
static void row_mt_mem_alloc(AV1_COMP *cpi, int max_sb_rows) {
struct AV1Common *cm = &cpi->common;
AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int tile_col, tile_row;
// Allocate memory for row based multi-threading
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_index = tile_row * tile_cols + tile_col;
TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_sb_rows);
if (cpi->oxcf.cdf_update_mode) {
const int sb_cols_in_tile =
av1_get_sb_cols_in_tile(cm, this_tile->tile_info);
const int num_row_ctx = AOMMAX(1, (sb_cols_in_tile - 1));
CHECK_MEM_ERROR(cm, this_tile->row_ctx,
(FRAME_CONTEXT *)aom_memalign(
16, num_row_ctx * sizeof(*this_tile->row_ctx)));
}
}
}
enc_row_mt->allocated_tile_cols = tile_cols;
enc_row_mt->allocated_tile_rows = tile_rows;
enc_row_mt->allocated_sb_rows = max_sb_rows;
}
void av1_row_mt_mem_dealloc(AV1_COMP *cpi) {
AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
const int tile_cols = enc_row_mt->allocated_tile_cols;
const int tile_rows = enc_row_mt->allocated_tile_rows;
int tile_col, tile_row;
// Free row based multi-threading sync memory
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_index = tile_row * tile_cols + tile_col;
TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);
if (cpi->oxcf.cdf_update_mode) aom_free(this_tile->row_ctx);
}
}
enc_row_mt->allocated_sb_rows = 0;
enc_row_mt->allocated_tile_cols = 0;
enc_row_mt->allocated_tile_rows = 0;
}
static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id,
int num_tiles, int num_workers) {
int tile_id = 0;
int i;
for (i = 0; i < num_workers; i++) {
thread_id_to_tile_id[i] = tile_id++;
if (tile_id == num_tiles) tile_id = 0;
}
}
static AOM_INLINE int get_next_job(TileDataEnc *const tile_data,
int *current_mi_row, int mib_size) {
AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
const int mi_row_end = tile_data->tile_info.mi_row_end;
if (row_mt_sync->next_mi_row < mi_row_end) {
*current_mi_row = row_mt_sync->next_mi_row;
row_mt_sync->num_threads_working++;
row_mt_sync->next_mi_row += mib_size;
return 1;
}
return 0;
}
static AOM_INLINE void switch_tile_and_get_next_job(
AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id,
int *current_mi_row, int *end_of_frame) {
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int tile_id = -1; // Stores the tile ID with minimum proc done
int max_mis_to_encode = 0;
int min_num_threads_working = INT_MAX;
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_index = tile_row * tile_cols + tile_col;
TileDataEnc *const this_tile = &tile_data[tile_index];
AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
int num_sb_rows_in_tile =
av1_get_sb_rows_in_tile(cm, this_tile->tile_info);
int num_sb_cols_in_tile =
av1_get_sb_cols_in_tile(cm, this_tile->tile_info);
int theoretical_limit_on_threads =
AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
int num_threads_working = row_mt_sync->num_threads_working;
if (num_threads_working < theoretical_limit_on_threads) {
int num_mis_to_encode =
this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row;
// Tile to be processed by this thread is selected on the basis of
// availability of jobs:
// 1) If jobs are available, tile to be processed is chosen on the
// basis of minimum number of threads working for that tile. If two or
// more tiles have same number of threads working for them, then the
// tile with maximum number of jobs available will be chosen.
// 2) If no jobs are available, then end_of_frame is reached.
if (num_mis_to_encode > 0) {
if (num_threads_working < min_num_threads_working) {
min_num_threads_working = num_threads_working;
max_mis_to_encode = 0;
}
if (num_threads_working == min_num_threads_working &&
num_mis_to_encode > max_mis_to_encode) {
tile_id = tile_index;
max_mis_to_encode = num_mis_to_encode;
}
}
}
}
}
if (tile_id == -1) {
*end_of_frame = 1;
} else {
// Update the current tile id to the tile id that will be processed next,
// which will be the least processed tile.
*cur_tile_id = tile_id;
get_next_job(&tile_data[tile_id], current_mi_row, cm->seq_params.mib_size);
}
}
static int enc_row_mt_worker_hook(void *arg1, void *unused) {
EncWorkerData *const thread_data = (EncWorkerData *)arg1;
AV1_COMP *const cpi = thread_data->cpi;
AV1_COMMON *const cm = &cpi->common;
int thread_id = thread_data->thread_id;
AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
#if CONFIG_MULTITHREAD
pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
#endif
(void)unused;
assert(cur_tile_id != -1);
int end_of_frame = 0;
while (1) {
int current_mi_row = -1;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(enc_row_mt_mutex_);
#endif
if (!get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
cm->seq_params.mib_size)) {
// No jobs are available for the current tile. Query for the status of
// other tiles and get the next job if available
switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
&current_mi_row, &end_of_frame);
}
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
if (end_of_frame == 1) break;
TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
const TileInfo *const tile_info = &this_tile->tile_info;
const int tile_row = tile_info->tile_row;
const int tile_col = tile_info->tile_col;
ThreadData *td = thread_data->td;
assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end);
td->mb.e_mbd.tile_ctx = td->tctx;
td->mb.tile_pb_ctx = &this_tile->tctx;
if (this_tile->allow_update_cdf) {
td->mb.row_ctx = this_tile->row_ctx;
if (current_mi_row == tile_info->mi_row_start)
memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
} else {
memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
}
av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
&td->mb.e_mbd);
cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params);
av1_crc32c_calculator_init(&td->mb.mb_rd_record.crc_calculator);
av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(enc_row_mt_mutex_);
#endif
row_mt_sync->num_threads_working--;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
}
return 1;
}
static int enc_worker_hook(void *arg1, void *unused) {
EncWorkerData *const thread_data = (EncWorkerData *)arg1;
AV1_COMP *const cpi = thread_data->cpi;
const AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int t;
(void)unused;
for (t = thread_data->start; t < tile_rows * tile_cols;
t += cpi->mt_info.num_workers) {
int tile_row = t / tile_cols;
int tile_col = t % tile_cols;
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
}
return 1;
}
static AOM_INLINE void create_enc_workers(AV1_COMP *cpi, int num_workers) {
AV1_COMMON *const cm = &cpi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
MultiThreadInfo *const mt_info = &cpi->mt_info;
int sb_mi_size = av1_get_sb_mi_size(cm);
CHECK_MEM_ERROR(cm, mt_info->workers,
aom_malloc(num_workers * sizeof(*mt_info->workers)));
CHECK_MEM_ERROR(cm, mt_info->tile_thr_data,
aom_calloc(num_workers, sizeof(*mt_info->tile_thr_data)));
#if CONFIG_MULTITHREAD
if (cpi->oxcf.row_mt == 1) {
AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
if (enc_row_mt->mutex_ == NULL) {
CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
aom_malloc(sizeof(*(enc_row_mt->mutex_))));
if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
}
}
#endif
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
++mt_info->num_workers;
winterface->init(worker);
worker->thread_name = "aom enc worker";
thread_data->cpi = cpi;
thread_data->thread_id = i;
if (i > 0) {
// Allocate thread data.
CHECK_MEM_ERROR(cm, thread_data->td,
aom_memalign(32, sizeof(*thread_data->td)));
av1_zero(*thread_data->td);
// Set up sms_tree.
av1_setup_sms_tree(cpi, thread_data->td);
av1_setup_shared_coeff_buffer(cm, &thread_data->td->shared_coeff_buf);
CHECK_MEM_ERROR(cm, thread_data->td->above_pred_buf,
(uint8_t *)aom_memalign(
16, MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*thread_data->td->above_pred_buf)));
CHECK_MEM_ERROR(cm, thread_data->td->left_pred_buf,
(uint8_t *)aom_memalign(
16, MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*thread_data->td->left_pred_buf)));
CHECK_MEM_ERROR(
cm, thread_data->td->wsrc_buf,
(int32_t *)aom_memalign(
16, MAX_SB_SQUARE * sizeof(*thread_data->td->wsrc_buf)));
CHECK_MEM_ERROR(cm, thread_data->td->inter_modes_info,
(InterModesInfo *)aom_malloc(
sizeof(*thread_data->td->inter_modes_info)));
for (int x = 0; x < 2; x++)
for (int y = 0; y < 2; y++)
CHECK_MEM_ERROR(
cm, thread_data->td->hash_value_buffer[x][y],
(uint32_t *)aom_malloc(
AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
sizeof(*thread_data->td->hash_value_buffer[0][0])));
CHECK_MEM_ERROR(
cm, thread_data->td->mask_buf,
(int32_t *)aom_memalign(
16, MAX_SB_SQUARE * sizeof(*thread_data->td->mask_buf)));
// Allocate frame counters in thread data.
CHECK_MEM_ERROR(cm, thread_data->td->counts,
aom_calloc(1, sizeof(*thread_data->td->counts)));
// Allocate buffers used by palette coding mode.
CHECK_MEM_ERROR(
cm, thread_data->td->palette_buffer,
aom_memalign(16, sizeof(*thread_data->td->palette_buffer)));
av1_alloc_compound_type_rd_buffers(cm, &thread_data->td->comp_rd_buffer);
CHECK_MEM_ERROR(
cm, thread_data->td->tmp_conv_dst,
aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
sizeof(*thread_data->td->tmp_conv_dst)));
for (int j = 0; j < 2; ++j) {
CHECK_MEM_ERROR(
cm, thread_data->td->tmp_obmc_bufs[j],
aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*thread_data->td->tmp_obmc_bufs[j])));
}
CHECK_MEM_ERROR(
cm, thread_data->td->mbmi_ext,
aom_calloc(sb_mi_size, sizeof(*thread_data->td->mbmi_ext)));
if (cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) {
const int num_64x64_blocks =
(cm->seq_params.sb_size == BLOCK_64X64) ? 1 : 4;
CHECK_MEM_ERROR(
cm, thread_data->td->vt64x64,
aom_malloc(sizeof(*thread_data->td->vt64x64) * num_64x64_blocks));
}
// Create threads
if (!winterface->reset(worker))
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Tile encoder thread creation failed");
} else {
// Main thread acts as a worker and uses the thread data in cpi.
thread_data->td = &cpi->td;
}
if (cpi->oxcf.row_mt == 1)
CHECK_MEM_ERROR(
cm, thread_data->td->tctx,
(FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
winterface->sync(worker);
}
}
static AOM_INLINE void launch_enc_workers(MultiThreadInfo *const mt_info,
int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
// Encode a frame
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
// Set the starting tile for each thread.
thread_data->start = i;
if (i == 0)
winterface->execute(worker);
else
winterface->launch(worker);
}
}
static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info,
AV1_COMMON *const cm, int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int had_error = 0;
// Encoding ends.
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
had_error |= !winterface->sync(worker);
}
if (had_error)
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Failed to encode tile data");
}
static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi,
int num_workers) {
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &cpi->mt_info.workers[i];
EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
cpi->intrabc_used |= thread_data->td->intrabc_used;
cpi->deltaq_used |= thread_data->td->deltaq_used;
// Accumulate counters.
if (i > 0) {
av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
accumulate_rd_opt(&cpi->td, thread_data->td);
cpi->td.mb.txb_split_count += thread_data->td->mb.txb_split_count;
#if CONFIG_SPEED_STATS
cpi->td.mb.tx_search_count += thread_data->td->mb.tx_search_count;
#endif // CONFIG_SPEED_STATS
}
}
}
static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
int num_workers) {
MultiThreadInfo *const mt_info = &cpi->mt_info;
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &mt_info->workers[i];
EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
worker->hook = hook;
worker->data1 = thread_data;
worker->data2 = NULL;
thread_data->td->intrabc_used = 0;
thread_data->td->deltaq_used = 0;
// Before encoding a frame, copy the thread data from cpi.
if (thread_data->td != &cpi->td) {
thread_data->td->mb = cpi->td.mb;
thread_data->td->rd_counts = cpi->td.rd_counts;
thread_data->td->mb.above_pred_buf = thread_data->td->above_pred_buf;
thread_data->td->mb.left_pred_buf = thread_data->td->left_pred_buf;
thread_data->td->mb.wsrc_buf = thread_data->td->wsrc_buf;
thread_data->td->mb.inter_modes_info = thread_data->td->inter_modes_info;
for (int x = 0; x < 2; x++) {
for (int y = 0; y < 2; y++) {
memcpy(thread_data->td->hash_value_buffer[x][y],
cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
sizeof(*thread_data->td->hash_value_buffer[0][0]));
thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] =
thread_data->td->hash_value_buffer[x][y];
}
}
thread_data->td->mb.mask_buf = thread_data->td->mask_buf;
thread_data->td->mb.mbmi_ext = thread_data->td->mbmi_ext;
}
if (thread_data->td->counts != &cpi->counts) {
memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
}
if (i > 0) {
thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer;
thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
for (int j = 0; j < 2; ++j) {
thread_data->td->mb.tmp_obmc_bufs[j] =
thread_data->td->tmp_obmc_bufs[j];
}
thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
for (int j = 0; j < 2; ++j) {
thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
thread_data->td->mb.tmp_obmc_bufs[j];
}
}
}
}
// Computes the number of workers for row multi-threading of encoding stage
static AOM_INLINE int compute_num_enc_row_mt_workers(AV1_COMMON *const cm,
int max_threads) {
TileInfo tile_info;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int total_num_threads_row_mt = 0;
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
av1_tile_init(&tile_info, cm, row, col);
const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info);
const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
total_num_threads_row_mt +=
AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
}
}
return AOMMIN(max_threads, total_num_threads_row_mt);
}
// Computes the number of workers for tile multi-threading of encoding stage
static AOM_INLINE int compute_num_enc_tile_mt_workers(AV1_COMMON *const cm,
int max_threads) {
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
return AOMMIN(max_threads, tile_cols * tile_rows);
}
// Computes the number of workers for encoding stage (row/tile multi-threading)
static AOM_INLINE int compute_num_enc_workers(AV1_COMP *cpi) {
if (cpi->oxcf.max_threads <= 1) return 1;
if (cpi->oxcf.row_mt && (cpi->oxcf.max_threads > 1))
return compute_num_enc_row_mt_workers(&cpi->common, cpi->oxcf.max_threads);
else
return compute_num_enc_tile_mt_workers(&cpi->common, cpi->oxcf.max_threads);
}
void av1_encode_tiles_mt(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MultiThreadInfo *const mt_info = &cpi->mt_info;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int num_workers = compute_num_enc_workers(cpi);
assert(IMPLIES(cpi->tile_data == NULL,
cpi->allocated_tiles < tile_cols * tile_rows));
if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);
av1_init_tile_data(cpi);
// Only run once to create threads and allocate thread data.
if (mt_info->num_workers == 0) {
create_enc_workers(cpi, num_workers);
} else {
num_workers = AOMMIN(num_workers, mt_info->num_workers);
}
prepare_enc_workers(cpi, enc_worker_hook, num_workers);
launch_enc_workers(&cpi->mt_info, num_workers);
sync_enc_workers(&cpi->mt_info, cm, num_workers);
accumulate_counters_enc_workers(cpi, num_workers);
}
// Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
// members, so we treat it as an array, and sum over the whole length.
void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
const FRAME_COUNTS *counts) {
unsigned int *const acc = (unsigned int *)acc_counts;
const unsigned int *const cnt = (const unsigned int *)counts;
const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
}
// Computes the maximum number of sb_rows for row multi-threading of encoding
// stage
static AOM_INLINE int compute_max_sb_rows(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int max_sb_rows = 0;
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
const int tile_index = row * cm->tiles.cols + col;
TileInfo tile_info = cpi->tile_data[tile_index].tile_info;
const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info);
max_sb_rows = AOMMAX(max_sb_rows, num_sb_rows_in_tile);
}
}
return max_sb_rows;
}
void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MultiThreadInfo *const mt_info = &cpi->mt_info;
AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
int max_sb_rows = 0;
// TODO(ravi.chaudhary@ittiam.com): Currently the percentage of
// post-processing stages in encoder is quiet low, so limiting the number of
// threads to the theoretical limit in row-mt does not have much impact on
// post-processing multi-threading stage. Need to revisit this when
// post-processing time starts shooting up.
int num_workers = compute_num_enc_workers(cpi);
assert(IMPLIES(cpi->tile_data == NULL,
cpi->allocated_tiles < tile_cols * tile_rows));
if (cpi->allocated_tiles < tile_cols * tile_rows) {
av1_row_mt_mem_dealloc(cpi);
av1_alloc_tile_data(cpi);
}
av1_init_tile_data(cpi);
max_sb_rows = compute_max_sb_rows(cpi);
if (enc_row_mt->allocated_tile_cols != tile_cols ||
enc_row_mt->allocated_tile_rows != tile_rows ||
enc_row_mt->allocated_sb_rows != max_sb_rows) {
av1_row_mt_mem_dealloc(cpi);
row_mt_mem_alloc(cpi, max_sb_rows);
}
memset(thread_id_to_tile_id, -1,
sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
int tile_index = tile_row * tile_cols + tile_col;
TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
// Initialize num_finished_cols to -1 for all rows.
memset(row_mt_sync->num_finished_cols, -1,
sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows);
row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
row_mt_sync->num_threads_working = 0;
av1_inter_mode_data_init(this_tile);
av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
this_tile->tile_info.mi_col_start,
this_tile->tile_info.mi_col_end, tile_row);
}
}
// Only run once to create threads and allocate thread data.
if (mt_info->num_workers == 0) {
create_enc_workers(cpi, num_workers);
} else {
num_workers = AOMMIN(num_workers, mt_info->num_workers);
}
assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
num_workers);
prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
launch_enc_workers(&cpi->mt_info, num_workers);
sync_enc_workers(&cpi->mt_info, cm, num_workers);
if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
accumulate_counters_enc_workers(cpi, num_workers);
}
void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *const tpl_mt_sync,
const int r, int c) {
(void)tpl_mt_sync;
(void)r;
(void)c;
return;
}
void av1_tpl_row_mt_sync_write_dummy(
AV1TplRowMultiThreadSync *const tpl_mt_sync, const int r, int c,
const int cols) {
(void)tpl_mt_sync;
(void)r;
(void)c;
(void)cols;
return;
}