blob: 6e28f90cde36221ff47ebde1f7ac475ac0007d7f [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_reconintra.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9_rtcd.h"
void vp9_subtract_block(int rows, int cols,
int16_t *diff_ptr, int diff_stride,
const uint8_t *src_ptr, int src_stride,
const uint8_t *pred_ptr, int pred_stride) {
int r, c;
for (r = 0; r < rows; r++) {
for (c = 0; c < cols; c++)
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
diff_ptr += diff_stride;
pred_ptr += pred_stride;
src_ptr += src_stride;
}
}
static void subtract_plane(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize, int plane) {
const MACROBLOCKD * const xd = &x->e_mbd;
const int bw = 4 << (b_width_log2(bsize) - xd->plane[plane].subsampling_x);
const int bh = 4 << (b_height_log2(bsize) - xd->plane[plane].subsampling_y);
const uint8_t *src = x->plane[plane].src.buf;
const int src_stride = x->plane[plane].src.stride;
assert(plane < 3);
vp9_subtract_block(bh, bw,
x->plane[plane].src_diff, bw, src, src_stride,
xd->plane[plane].dst.buf, xd->plane[plane].dst.stride);
}
void vp9_subtract_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
subtract_plane(x, bsize, 0);
}
void vp9_subtract_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
int i;
for (i = 1; i < MAX_MB_PLANE; i++)
subtract_plane(x, bsize, i);
}
void vp9_subtract_sb(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
vp9_subtract_sby(x, bsize);
vp9_subtract_sbuv(x, bsize);
}
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
#define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
typedef struct vp9_token_state vp9_token_state;
struct vp9_token_state {
int rate;
int error;
int next;
signed char token;
short qc;
};
// TODO: experiments to find optimal multiple numbers
#define Y1_RD_MULT 4
#define UV_RD_MULT 2
static const int plane_rd_mult[4] = {
Y1_RD_MULT,
UV_RD_MULT,
};
#define UPDATE_RD_COST()\
{\
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
if (rd_cost0 == rd_cost1) {\
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
}\
}
// This function is a place holder for now but may ultimately need
// to scan previous tokens to work out the correct context.
static int trellis_get_coeff_context(const int *scan,
const int *nb,
int idx, int token,
uint8_t *token_cache,
int pad, int l) {
int bak = token_cache[scan[idx]], pt;
token_cache[scan[idx]] = token;
pt = vp9_get_coef_context(scan, nb, pad, token_cache, idx + 1, l);
token_cache[scan[idx]] = bak;
return pt;
}
static void optimize_b(VP9_COMMON *const cm, MACROBLOCK *mb,
int plane, int block, BLOCK_SIZE_TYPE bsize,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
TX_SIZE tx_size) {
const int ref = mb->e_mbd.mode_info_context->mbmi.ref_frame != INTRA_FRAME;
MACROBLOCKD *const xd = &mb->e_mbd;
vp9_token_state tokens[1025][2];
unsigned best_index[1025][2];
const int16_t *coeff_ptr = BLOCK_OFFSET(mb->plane[plane].coeff,
block, 16);
int16_t *qcoeff_ptr;
int16_t *dqcoeff_ptr;
int eob = xd->plane[plane].eobs[block], final_eob, sz = 0;
const int i0 = 0;
int rc, x, next, i;
int64_t rdmult, rddiv, rd_cost0, rd_cost1;
int rate0, rate1, error0, error1, t0, t1;
int best, band, pt;
PLANE_TYPE type = xd->plane[plane].plane_type;
int err_mult = plane_rd_mult[type];
int default_eob, pad;
int const *scan, *nb;
const int mul = 1 + (tx_size == TX_32X32);
uint8_t token_cache[1024];
const int ib = txfrm_block_to_raster_block(xd, bsize, plane,
block, 2 * tx_size);
const int16_t *dequant_ptr = xd->plane[plane].dequant;
assert((!type && !plane) || (type && plane));
dqcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16);
qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff, block, 16);
switch (tx_size) {
default:
case TX_4X4: {
const TX_TYPE tx_type = plane == 0 ? get_tx_type_4x4(xd, ib) : DCT_DCT;
default_eob = 16;
scan = get_scan_4x4(tx_type);
break;
}
case TX_8X8: {
const TX_TYPE tx_type = plane == 0 ? get_tx_type_8x8(xd, ib) : DCT_DCT;
scan = get_scan_8x8(tx_type);
default_eob = 64;
break;
}
case TX_16X16: {
const TX_TYPE tx_type = plane == 0 ? get_tx_type_16x16(xd, ib) : DCT_DCT;
scan = get_scan_16x16(tx_type);
default_eob = 256;
break;
}
case TX_32X32:
scan = vp9_default_zig_zag1d_32x32;
default_eob = 1024;
break;
}
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
rdmult = (rdmult * 9) >> 4;
rddiv = mb->rddiv;
memset(best_index, 0, sizeof(best_index));
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = 0; i < eob; i++)
token_cache[scan[i]] = vp9_dct_value_tokens_ptr[qcoeff_ptr[scan[i]]].token;
nb = vp9_get_coef_neighbors_handle(scan, &pad);
for (i = eob; i-- > i0;) {
int base_bits, d2, dx;
rc = scan[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp9_dct_value_tokens_ptr + x)->token;
/* Consider both possible successor states. */
if (next < default_eob) {
band = get_coef_band(scan, tx_size, i + 1);
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache,
pad, default_eob);
rate0 +=
mb->token_costs[tx_size][type][ref][band][pt][tokens[next][0].token];
rate1 +=
mb->token_costs[tx_size][type][ref][band][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
dx = mul * (dqcoeff_ptr[rc] - coeff_ptr[rc]);
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc]) * mul) &&
(abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) * mul +
dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
} else {
t0 = t1 = (vp9_dct_value_tokens_ptr + x)->token;
}
if (next < default_eob) {
band = get_coef_band(scan, tx_size, i + 1);
if (t0 != DCT_EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache,
pad, default_eob);
rate0 += mb->token_costs[tx_size][type][ref][band][pt][
tokens[next][0].token];
}
if (t1 != DCT_EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache,
pad, default_eob);
rate1 += mb->token_costs[tx_size][type][ref][band][pt][
tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
if (shortcut) {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else {
band = get_coef_band(scan, tx_size, i + 1);
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN) {
tokens[next][0].rate +=
mb->token_costs[tx_size][type][ref][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN) {
tokens[next][1].rate +=
mb->token_costs[tx_size][type][ref][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = get_coef_band(scan, tx_size, i + 1);
pt = combine_entropy_contexts(*a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_size][type][ref][band][pt][t0];
rate1 += mb->token_costs[tx_size][type][ref][band][pt][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
vpx_memset(qcoeff_ptr, 0, sizeof(*qcoeff_ptr) * (16 << (tx_size * 2)));
vpx_memset(dqcoeff_ptr, 0, sizeof(*dqcoeff_ptr) * (16 << (tx_size * 2)));
for (i = next; i < eob; i = next) {
x = tokens[i][best].qc;
if (x) {
final_eob = i;
}
rc = scan[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]) / mul;
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
xd->plane[plane].eobs[block] = final_eob;
*a = *l = (final_eob > 0);
}
struct optimize_block_args {
VP9_COMMON *cm;
MACROBLOCK *x;
struct optimize_ctx *ctx;
};
void vp9_optimize_b(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, VP9_COMMON *cm, MACROBLOCK *mb,
struct optimize_ctx *ctx) {
MACROBLOCKD* const xd = &mb->e_mbd;
int x, y;
// find current entropy context
txfrm_block_to_raster_xy(xd, bsize, plane, block, ss_txfrm_size, &x, &y);
optimize_b(cm, mb, plane, block, bsize,
&ctx->ta[plane][x], &ctx->tl[plane][y],
ss_txfrm_size / 2);
}
static void optimize_block(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
const struct optimize_block_args* const args = arg;
vp9_optimize_b(plane, block, bsize, ss_txfrm_size, args->cm, args->x,
args->ctx);
}
void vp9_optimize_init(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize,
struct optimize_ctx *ctx) {
int p;
for (p = 0; p < MAX_MB_PLANE; p++) {
const struct macroblockd_plane* const plane = &xd->plane[p];
const int bwl = b_width_log2(bsize) - plane->subsampling_x;
const int bhl = b_height_log2(bsize) - plane->subsampling_y;
const TX_SIZE tx_size = tx_size_for_plane(xd, bsize, p);
int i, j;
for (i = 0; i < 1 << bwl; i += 1 << tx_size) {
int c = 0;
ctx->ta[p][i] = 0;
for (j = 0; j < 1 << tx_size && !c; j++) {
c = ctx->ta[p][i] |= plane->above_context[i + j];
}
}
for (i = 0; i < 1 << bhl; i += 1 << tx_size) {
int c = 0;
ctx->tl[p][i] = 0;
for (j = 0; j < 1 << tx_size && !c; j++) {
c = ctx->tl[p][i] |= plane->left_context[i + j];
}
}
}
}
void vp9_optimize_sby(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
struct optimize_ctx ctx;
struct optimize_block_args arg = {cm, x, &ctx};
vp9_optimize_init(&x->e_mbd, bsize, &ctx);
foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
#if !CONFIG_SB8X8
0,
#endif
optimize_block, &arg);
}
void vp9_optimize_sbuv(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
struct optimize_ctx ctx;
struct optimize_block_args arg = {cm, x, &ctx};
vp9_optimize_init(&x->e_mbd, bsize, &ctx);
foreach_transformed_block_uv(&x->e_mbd, bsize, optimize_block, &arg);
}
struct encode_b_args {
VP9_COMMON *cm;
MACROBLOCK *x;
struct optimize_ctx *ctx;
};
static void xform_quant(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
struct encode_b_args* const args = arg;
MACROBLOCK* const x = args->x;
MACROBLOCKD* const xd = &x->e_mbd;
const int bw = 4 << (b_width_log2(bsize) - xd->plane[plane].subsampling_x);
const int raster_block = txfrm_block_to_raster_block(xd, bsize, plane,
block, ss_txfrm_size);
int16_t* const src_diff = raster_block_offset_int16(xd, bsize, plane,
raster_block,
x->plane[plane].src_diff);
TX_TYPE tx_type = DCT_DCT;
switch (ss_txfrm_size / 2) {
case TX_32X32:
vp9_short_fdct32x32(src_diff,
BLOCK_OFFSET(x->plane[plane].coeff, block, 16),
bw * 2);
break;
case TX_16X16:
tx_type = plane == 0 ? get_tx_type_16x16(xd, raster_block) : DCT_DCT;
if (tx_type != DCT_DCT) {
vp9_short_fht16x16(src_diff,
BLOCK_OFFSET(x->plane[plane].coeff, block, 16),
bw, tx_type);
} else {
x->fwd_txm16x16(src_diff,
BLOCK_OFFSET(x->plane[plane].coeff, block, 16),
bw * 2);
}
break;
case TX_8X8:
tx_type = plane == 0 ? get_tx_type_8x8(xd, raster_block) : DCT_DCT;
if (tx_type != DCT_DCT) {
vp9_short_fht8x8(src_diff,
BLOCK_OFFSET(x->plane[plane].coeff, block, 16),
bw, tx_type);
} else {
x->fwd_txm8x8(src_diff,
BLOCK_OFFSET(x->plane[plane].coeff, block, 16),
bw * 2);
}
break;
case TX_4X4:
tx_type = plane == 0 ? get_tx_type_4x4(xd, raster_block) : DCT_DCT;
if (tx_type != DCT_DCT) {
vp9_short_fht4x4(src_diff,
BLOCK_OFFSET(x->plane[plane].coeff, block, 16),
bw, tx_type);
} else {
x->fwd_txm4x4(src_diff,
BLOCK_OFFSET(x->plane[plane].coeff, block, 16),
bw * 2);
}
break;
default:
assert(0);
}
vp9_quantize(x, plane, block, 16 << ss_txfrm_size, tx_type);
}
static void encode_block(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
struct encode_b_args* const args = arg;
MACROBLOCK* const x = args->x;
MACROBLOCKD* const xd = &x->e_mbd;
const int bw = 4 << (b_width_log2(bsize) - xd->plane[plane].subsampling_x);
const int raster_block = txfrm_block_to_raster_block(xd, bsize, plane,
block, ss_txfrm_size);
int16_t* const diff = raster_block_offset_int16(xd, bsize, plane,
raster_block,
xd->plane[plane].diff);
TX_TYPE tx_type = DCT_DCT;
xform_quant(plane, block, bsize, ss_txfrm_size, arg);
if (x->optimize)
vp9_optimize_b(plane, block, bsize, ss_txfrm_size, args->cm, x, args->ctx);
switch (ss_txfrm_size / 2) {
case TX_32X32:
vp9_short_idct32x32(BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16),
diff, bw * 2);
break;
case TX_16X16:
tx_type = plane == 0 ? get_tx_type_16x16(xd, raster_block) : DCT_DCT;
if (tx_type == DCT_DCT) {
vp9_short_idct16x16(BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16),
diff, bw * 2);
} else {
vp9_short_iht16x16(BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16),
diff, bw, tx_type);
}
break;
case TX_8X8:
tx_type = plane == 0 ? get_tx_type_8x8(xd, raster_block) : DCT_DCT;
if (tx_type == DCT_DCT) {
vp9_short_idct8x8(BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16),
diff, bw * 2);
} else {
vp9_short_iht8x8(BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16),
diff, bw, tx_type);
}
break;
case TX_4X4:
tx_type = plane == 0 ? get_tx_type_4x4(xd, raster_block) : DCT_DCT;
if (tx_type == DCT_DCT) {
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
vp9_inverse_transform_b_4x4(xd, xd->plane[plane].eobs[block],
BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16), diff, bw * 2);
} else {
vp9_short_iht4x4(BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16),
diff, bw, tx_type);
}
break;
}
}
void vp9_xform_quant_sby(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD* const xd = &x->e_mbd;
struct encode_b_args arg = {cm, x, NULL};
foreach_transformed_block_in_plane(xd, bsize, 0,
#if !CONFIG_SB8X8
0,
#endif
xform_quant, &arg);
}
void vp9_xform_quant_sbuv(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD* const xd = &x->e_mbd;
struct encode_b_args arg = {cm, x, NULL};
foreach_transformed_block_uv(xd, bsize, xform_quant, &arg);
}
void vp9_encode_sby(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD* const xd = &x->e_mbd;
struct optimize_ctx ctx;
struct encode_b_args arg = {cm, x, &ctx};
vp9_subtract_sby(x, bsize);
if (x->optimize)
vp9_optimize_init(xd, bsize, &ctx);
foreach_transformed_block_in_plane(xd, bsize, 0,
#if !CONFIG_SB8X8
0,
#endif
encode_block, &arg);
vp9_recon_sby(xd, bsize);
}
void vp9_encode_sbuv(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD* const xd = &x->e_mbd;
struct optimize_ctx ctx;
struct encode_b_args arg = {cm, x, &ctx};
vp9_subtract_sbuv(x, bsize);
if (x->optimize)
vp9_optimize_init(xd, bsize, &ctx);
foreach_transformed_block_uv(xd, bsize, encode_block, &arg);
vp9_recon_sbuv(xd, bsize);
}
void vp9_encode_sb(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD* const xd = &x->e_mbd;
struct optimize_ctx ctx;
struct encode_b_args arg = {cm, x, &ctx};
vp9_subtract_sb(x, bsize);
if (x->optimize)
vp9_optimize_init(xd, bsize, &ctx);
foreach_transformed_block(xd, bsize, encode_block, &arg);
vp9_recon_sb(xd, bsize);
}