blob: 6488d59251552573d880cdc6e83b656dea94e04d [file] [log] [blame]
/*
* Copyright (C) 2010 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.clearsilver.jsilver.syntax;
import com.google.clearsilver.jsilver.syntax.analysis.DepthFirstAdapter;
import com.google.clearsilver.jsilver.syntax.node.AAddExpression;
import com.google.clearsilver.jsilver.syntax.node.ADecimalExpression;
import com.google.clearsilver.jsilver.syntax.node.ADivideExpression;
import com.google.clearsilver.jsilver.syntax.node.AEqExpression;
import com.google.clearsilver.jsilver.syntax.node.AFunctionExpression;
import com.google.clearsilver.jsilver.syntax.node.AHexExpression;
import com.google.clearsilver.jsilver.syntax.node.AModuloExpression;
import com.google.clearsilver.jsilver.syntax.node.AMultiplyExpression;
import com.google.clearsilver.jsilver.syntax.node.ANameVariable;
import com.google.clearsilver.jsilver.syntax.node.ANeExpression;
import com.google.clearsilver.jsilver.syntax.node.ANegativeExpression;
import com.google.clearsilver.jsilver.syntax.node.ANumericAddExpression;
import com.google.clearsilver.jsilver.syntax.node.ANumericEqExpression;
import com.google.clearsilver.jsilver.syntax.node.ANumericExpression;
import com.google.clearsilver.jsilver.syntax.node.ANumericNeExpression;
import com.google.clearsilver.jsilver.syntax.node.ASubtractExpression;
import com.google.clearsilver.jsilver.syntax.node.PExpression;
import com.google.clearsilver.jsilver.syntax.node.PVariable;
/**
* AST visitor to add numeric expressions to the syntax tree.
*
* <p>
* There are three types of expression we need to process; addition, equality and inequality. By
* default these are treated as string expressions unless one of the operands is numeric, in which
* case the original expression is replaced with its numeric equivalent. This behavior seems to
* exactly match Clearsilver's type inference system.
*
* <p>
* Note how we preprocess our node before testing to see is it should be replaced. This is very
* important because it means that type inference is propagated correctly along compound
* expressions. Consider the expression:
*
* <pre>#a + b + c</pre>
*
* which is parsed (left-to-right) as:
*
* <pre>(#a + b) + c</pre>
*
* When we process the left-hand-side sub-expression {@code #a + b} it is turned into a numeric
* addition (due to the forced numeric value on the left). Then when we process the main expression
* we propagate the numeric type into it.
*
* <p>
* This matches Clearsilver behavior but means that the expressions:
*
* <pre>#a + b + c</pre>
*
* and
*
* <pre>c + b + #a</pre>
*
* produce different results (the {@code c + b} subexpression in the latter is evaluated as string
* concatenation and not numeric addition).
*/
public class TypeResolver extends DepthFirstAdapter {
@Override
public void caseAAddExpression(AAddExpression node) {
super.caseAAddExpression(node);
PExpression lhs = node.getLeft();
PExpression rhs = node.getRight();
if (isNumeric(lhs) || isNumeric(rhs)) {
node.replaceBy(new ANumericAddExpression(lhs, rhs));
}
}
@Override
public void caseAEqExpression(AEqExpression node) {
super.caseAEqExpression(node);
PExpression lhs = node.getLeft();
PExpression rhs = node.getRight();
if (isNumeric(lhs) || isNumeric(rhs)) {
node.replaceBy(new ANumericEqExpression(lhs, rhs));
}
}
@Override
public void caseANeExpression(ANeExpression node) {
super.caseANeExpression(node);
PExpression lhs = node.getLeft();
PExpression rhs = node.getRight();
if (isNumeric(lhs) || isNumeric(rhs)) {
node.replaceBy(new ANumericNeExpression(lhs, rhs));
}
}
/**
* Determines whether the given (sub)expression is numeric, which in turn means that its parent
* expression should be treated as numeric if possible.
*/
static boolean isNumeric(PExpression node) {
return node instanceof ANumericExpression // forced numeric (#a)
|| node instanceof ANumericAddExpression // numeric addition (a + b)
|| node instanceof ASubtractExpression // subtraction (a - b)
|| node instanceof AMultiplyExpression // multiplication (a * b)
|| node instanceof ADivideExpression // division (a / b)
|| node instanceof AModuloExpression // modulu (x % b)
|| node instanceof ADecimalExpression // literal decimal (213)
|| node instanceof AHexExpression // literal hex (0xabc or 0XABC)
|| node instanceof ANegativeExpression // negative expression (-a)
|| isNumericFunction(node); // numeric function (subcount)
}
/**
* Determine if the given expression represents a numeric function.
*/
static boolean isNumericFunction(PExpression node) {
if (!(node instanceof AFunctionExpression)) {
return false;
}
PVariable functionName = ((AFunctionExpression) node).getName();
if (functionName instanceof ANameVariable) {
String name = ((ANameVariable) functionName).getWord().getText();
if ("max".equals(name) || "min".equals(name) || "abs".equals(name) || "subcount".equals(name)) {
return true;
}
}
return false;
}
}