blob: 8816b9159e9c305a9b6bde88e4ab23847221be3b [file] [log] [blame]
/*
* Copyright (c) 2009-2010 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.util;
import com.jme3.math.ColorRGBA;
import com.jme3.math.FastMath;
import com.jme3.math.Vector2f;
import com.jme3.math.Vector3f;
import com.jme3.scene.*;
import com.jme3.scene.VertexBuffer.Format;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.scene.VertexBuffer.Usage;
import com.jme3.scene.mesh.IndexBuffer;
import static com.jme3.util.BufferUtils.*;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.util.ArrayList;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
*
* @author Lex (Aleksey Nikiforov)
*/
public class TangentBinormalGenerator {
private static final float ZERO_TOLERANCE = 0.0000001f;
private static final Logger log = Logger.getLogger(
TangentBinormalGenerator.class.getName());
private static float toleranceAngle;
private static float toleranceDot;
static {
setToleranceAngle(45);
}
private static class VertexInfo {
public final Vector3f position;
public final Vector3f normal;
public final ArrayList<Integer> indices = new ArrayList<Integer>();
public VertexInfo(Vector3f position, Vector3f normal) {
this.position = position;
this.normal = normal;
}
}
/** Collects all the triangle data for one vertex.
*/
private static class VertexData {
public final ArrayList<TriangleData> triangles = new ArrayList<TriangleData>();
public VertexData() { }
}
/** Keeps track of tangent, binormal, and normal for one triangle.
*/
public static class TriangleData {
public final Vector3f tangent;
public final Vector3f binormal;
public final Vector3f normal;
public TriangleData(Vector3f tangent, Vector3f binormal, Vector3f normal) {
this.tangent = tangent;
this.binormal = binormal;
this.normal = normal;
}
}
private static VertexData[] initVertexData(int size) {
VertexData[] vertices = new VertexData[size];
for (int i = 0; i < size; i++) {
vertices[i] = new VertexData();
}
return vertices;
}
public static void generate(Mesh mesh) {
generate(mesh, true);
}
public static void generate(Spatial scene) {
if (scene instanceof Node) {
Node node = (Node) scene;
for (Spatial child : node.getChildren()) {
generate(child);
}
} else {
Geometry geom = (Geometry) scene;
Mesh mesh = geom.getMesh();
// Check to ensure mesh has texcoords and normals before generating
if (mesh.getBuffer(Type.TexCoord) != null
&& mesh.getBuffer(Type.Normal) != null){
generate(geom.getMesh());
}
}
}
public static void generate(Mesh mesh, boolean approxTangents) {
int[] index = new int[3];
Vector3f[] v = new Vector3f[3];
Vector2f[] t = new Vector2f[3];
for (int i = 0; i < 3; i++) {
v[i] = new Vector3f();
t[i] = new Vector2f();
}
if (mesh.getBuffer(Type.Normal) == null) {
throw new IllegalArgumentException("The given mesh has no normal data!");
}
VertexData[] vertices;
switch (mesh.getMode()) {
case Triangles:
vertices = processTriangles(mesh, index, v, t);
break;
case TriangleStrip:
vertices = processTriangleStrip(mesh, index, v, t);
break;
case TriangleFan:
vertices = processTriangleFan(mesh, index, v, t);
break;
default:
throw new UnsupportedOperationException(
mesh.getMode() + " is not supported.");
}
processTriangleData(mesh, vertices, approxTangents);
//if the mesh has a bind pose, we need to generate the bind pose for the tangent buffer
if (mesh.getBuffer(Type.BindPosePosition) != null) {
VertexBuffer tangents = mesh.getBuffer(Type.Tangent);
if (tangents != null) {
VertexBuffer bindTangents = new VertexBuffer(Type.BindPoseTangent);
bindTangents.setupData(Usage.CpuOnly,
4,
Format.Float,
BufferUtils.clone(tangents.getData()));
if (mesh.getBuffer(Type.BindPoseTangent) != null) {
mesh.clearBuffer(Type.BindPoseTangent);
}
mesh.setBuffer(bindTangents);
tangents.setUsage(Usage.Stream);
}
}
}
private static VertexData[] processTriangles(Mesh mesh,
int[] index, Vector3f[] v, Vector2f[] t) {
IndexBuffer indexBuffer = mesh.getIndexBuffer();
FloatBuffer vertexBuffer = (FloatBuffer) mesh.getBuffer(Type.Position).getData();
if (mesh.getBuffer(Type.TexCoord) == null) {
throw new IllegalArgumentException("Can only generate tangents for "
+ "meshes with texture coordinates");
}
FloatBuffer textureBuffer = (FloatBuffer) mesh.getBuffer(Type.TexCoord).getData();
VertexData[] vertices = initVertexData(vertexBuffer.capacity() / 3);
for (int i = 0; i < indexBuffer.size() / 3; i++) {
for (int j = 0; j < 3; j++) {
index[j] = indexBuffer.get(i * 3 + j);
populateFromBuffer(v[j], vertexBuffer, index[j]);
populateFromBuffer(t[j], textureBuffer, index[j]);
}
TriangleData triData = processTriangle(index, v, t);
if (triData != null) {
vertices[index[0]].triangles.add(triData);
vertices[index[1]].triangles.add(triData);
vertices[index[2]].triangles.add(triData);
}
}
return vertices;
}
private static VertexData[] processTriangleStrip(Mesh mesh,
int[] index, Vector3f[] v, Vector2f[] t) {
IndexBuffer indexBuffer = mesh.getIndexBuffer();
FloatBuffer vertexBuffer = (FloatBuffer) mesh.getBuffer(Type.Position).getData();
FloatBuffer textureBuffer = (FloatBuffer) mesh.getBuffer(Type.TexCoord).getData();
VertexData[] vertices = initVertexData(vertexBuffer.capacity() / 3);
index[0] = indexBuffer.get(0);
index[1] = indexBuffer.get(1);
populateFromBuffer(v[0], vertexBuffer, index[0]);
populateFromBuffer(v[1], vertexBuffer, index[1]);
populateFromBuffer(t[0], textureBuffer, index[0]);
populateFromBuffer(t[1], textureBuffer, index[1]);
for (int i = 2; i < indexBuffer.size(); i++) {
index[2] = indexBuffer.get(i);
BufferUtils.populateFromBuffer(v[2], vertexBuffer, index[2]);
BufferUtils.populateFromBuffer(t[2], textureBuffer, index[2]);
boolean isDegenerate = isDegenerateTriangle(v[0], v[1], v[2]);
TriangleData triData = processTriangle(index, v, t);
if (triData != null && !isDegenerate) {
vertices[index[0]].triangles.add(triData);
vertices[index[1]].triangles.add(triData);
vertices[index[2]].triangles.add(triData);
}
Vector3f vTemp = v[0];
v[0] = v[1];
v[1] = v[2];
v[2] = vTemp;
Vector2f tTemp = t[0];
t[0] = t[1];
t[1] = t[2];
t[2] = tTemp;
index[0] = index[1];
index[1] = index[2];
}
return vertices;
}
private static VertexData[] processTriangleFan(Mesh mesh,
int[] index, Vector3f[] v, Vector2f[] t) {
IndexBuffer indexBuffer = mesh.getIndexBuffer();
FloatBuffer vertexBuffer = (FloatBuffer) mesh.getBuffer(Type.Position).getData();
FloatBuffer textureBuffer = (FloatBuffer) mesh.getBuffer(Type.TexCoord).getData();
VertexData[] vertices = initVertexData(vertexBuffer.capacity() / 3);
index[0] = indexBuffer.get(0);
index[1] = indexBuffer.get(1);
populateFromBuffer(v[0], vertexBuffer, index[0]);
populateFromBuffer(v[1], vertexBuffer, index[1]);
populateFromBuffer(t[0], textureBuffer, index[0]);
populateFromBuffer(t[1], textureBuffer, index[1]);
for (int i = 2; i < vertexBuffer.capacity() / 3; i++) {
index[2] = indexBuffer.get(i);
populateFromBuffer(v[2], vertexBuffer, index[2]);
populateFromBuffer(t[2], textureBuffer, index[2]);
TriangleData triData = processTriangle(index, v, t);
if (triData != null) {
vertices[index[0]].triangles.add(triData);
vertices[index[1]].triangles.add(triData);
vertices[index[2]].triangles.add(triData);
}
Vector3f vTemp = v[1];
v[1] = v[2];
v[2] = vTemp;
Vector2f tTemp = t[1];
t[1] = t[2];
t[2] = tTemp;
index[1] = index[2];
}
return vertices;
}
// check if the area is greater than zero
private static boolean isDegenerateTriangle(Vector3f a, Vector3f b, Vector3f c) {
return (a.subtract(b).cross(c.subtract(b))).lengthSquared() == 0;
}
public static TriangleData processTriangle(int[] index,
Vector3f[] v, Vector2f[] t) {
Vector3f edge1 = new Vector3f();
Vector3f edge2 = new Vector3f();
Vector2f edge1uv = new Vector2f();
Vector2f edge2uv = new Vector2f();
Vector3f tangent = new Vector3f();
Vector3f binormal = new Vector3f();
Vector3f normal = new Vector3f();
t[1].subtract(t[0], edge1uv);
t[2].subtract(t[0], edge2uv);
float det = edge1uv.x * edge2uv.y - edge1uv.y * edge2uv.x;
boolean normalize = false;
if (Math.abs(det) < ZERO_TOLERANCE) {
log.log(Level.WARNING, "Colinear uv coordinates for triangle "
+ "[{0}, {1}, {2}]; tex0 = [{3}, {4}], "
+ "tex1 = [{5}, {6}], tex2 = [{7}, {8}]",
new Object[]{index[0], index[1], index[2],
t[0].x, t[0].y, t[1].x, t[1].y, t[2].x, t[2].y});
det = 1;
normalize = true;
}
v[1].subtract(v[0], edge1);
v[2].subtract(v[0], edge2);
tangent.set(edge1);
tangent.normalizeLocal();
binormal.set(edge2);
binormal.normalizeLocal();
if (Math.abs(Math.abs(tangent.dot(binormal)) - 1)
< ZERO_TOLERANCE) {
log.log(Level.WARNING, "Vertices are on the same line "
+ "for triangle [{0}, {1}, {2}].",
new Object[]{index[0], index[1], index[2]});
}
float factor = 1 / det;
tangent.x = (edge2uv.y * edge1.x - edge1uv.y * edge2.x) * factor;
tangent.y = (edge2uv.y * edge1.y - edge1uv.y * edge2.y) * factor;
tangent.z = (edge2uv.y * edge1.z - edge1uv.y * edge2.z) * factor;
if (normalize) {
tangent.normalizeLocal();
}
binormal.x = (edge1uv.x * edge2.x - edge2uv.x * edge1.x) * factor;
binormal.y = (edge1uv.x * edge2.y - edge2uv.x * edge1.y) * factor;
binormal.z = (edge1uv.x * edge2.z - edge2uv.x * edge1.z) * factor;
if (normalize) {
binormal.normalizeLocal();
}
tangent.cross(binormal, normal);
normal.normalizeLocal();
return new TriangleData(
tangent,
binormal,
normal);
}
public static void setToleranceAngle(float angle) {
if (angle < 0 || angle > 179) {
throw new IllegalArgumentException(
"The angle must be between 0 and 179 degrees.");
}
toleranceDot = FastMath.cos(angle * FastMath.DEG_TO_RAD);
toleranceAngle = angle;
}
private static boolean approxEqual(Vector3f u, Vector3f v) {
float tolerance = 1E-4f;
return (FastMath.abs(u.x - v.x) < tolerance) &&
(FastMath.abs(u.y - v.y) < tolerance) &&
(FastMath.abs(u.z - v.z) < tolerance);
}
private static ArrayList<VertexInfo> linkVertices(Mesh mesh) {
ArrayList<VertexInfo> vertexMap = new ArrayList<VertexInfo>();
FloatBuffer vertexBuffer = (FloatBuffer) mesh.getBuffer(Type.Position).getData();
FloatBuffer normalBuffer = (FloatBuffer) mesh.getBuffer(Type.Normal).getData();
Vector3f position = new Vector3f();
Vector3f normal = new Vector3f();
final int size = vertexBuffer.capacity() / 3;
for (int i = 0; i < size; i++) {
populateFromBuffer(position, vertexBuffer, i);
populateFromBuffer(normal, normalBuffer, i);
boolean found = false;
for (int j = 0; j < vertexMap.size(); j++) {
VertexInfo vertexInfo = vertexMap.get(j);
if (approxEqual(vertexInfo.position, position) &&
approxEqual(vertexInfo.normal, normal))
{
vertexInfo.indices.add(i);
found = true;
break;
}
}
if (!found) {
VertexInfo vertexInfo = new VertexInfo(position.clone(), normal.clone());
vertexInfo.indices.add(i);
vertexMap.add(vertexInfo);
}
}
return vertexMap;
}
private static void processTriangleData(Mesh mesh, VertexData[] vertices,
boolean approxTangent)
{
ArrayList<VertexInfo> vertexMap = linkVertices(mesh);
FloatBuffer normalBuffer = (FloatBuffer) mesh.getBuffer(Type.Normal).getData();
FloatBuffer tangents = BufferUtils.createFloatBuffer(vertices.length * 4);
// FloatBuffer binormals = BufferUtils.createFloatBuffer(vertices.length * 3);
Vector3f tangent = new Vector3f();
Vector3f binormal = new Vector3f();
Vector3f normal = new Vector3f();
Vector3f givenNormal = new Vector3f();
Vector3f tangentUnit = new Vector3f();
Vector3f binormalUnit = new Vector3f();
for (int k = 0; k < vertexMap.size(); k++) {
float wCoord = -1;
VertexInfo vertexInfo = vertexMap.get(k);
givenNormal.set(vertexInfo.normal);
givenNormal.normalizeLocal();
TriangleData firstTriangle = vertices[vertexInfo.indices.get(0)].triangles.get(0);
// check tangent and binormal consistency
tangent.set(firstTriangle.tangent);
tangent.normalizeLocal();
binormal.set(firstTriangle.binormal);
binormal.normalizeLocal();
for (int i : vertexInfo.indices) {
ArrayList<TriangleData> triangles = vertices[i].triangles;
for (int j = 0; j < triangles.size(); j++) {
TriangleData triangleData = triangles.get(j);
tangentUnit.set(triangleData.tangent);
tangentUnit.normalizeLocal();
if (tangent.dot(tangentUnit) < toleranceDot) {
log.log(Level.WARNING,
"Angle between tangents exceeds tolerance "
+ "for vertex {0}.", i);
break;
}
if (!approxTangent) {
binormalUnit.set(triangleData.binormal);
binormalUnit.normalizeLocal();
if (binormal.dot(binormalUnit) < toleranceDot) {
log.log(Level.WARNING,
"Angle between binormals exceeds tolerance "
+ "for vertex {0}.", i);
break;
}
}
}
}
// find average tangent
tangent.set(0, 0, 0);
binormal.set(0, 0, 0);
int triangleCount = 0;
for (int i : vertexInfo.indices) {
ArrayList<TriangleData> triangles = vertices[i].triangles;
triangleCount += triangles.size();
boolean flippedNormal = false;
for (int j = 0; j < triangles.size(); j++) {
TriangleData triangleData = triangles.get(j);
tangent.addLocal(triangleData.tangent);
binormal.addLocal(triangleData.binormal);
if (givenNormal.dot(triangleData.normal) < 0) {
flippedNormal = true;
}
}
if (flippedNormal /*&& approxTangent*/) {
// Generated normal is flipped for this vertex,
// so binormal = normal.cross(tangent) will be flipped in the shader
// log.log(Level.WARNING,
// "Binormal is flipped for vertex {0}.", i);
wCoord = 1;
}
}
int blameVertex = vertexInfo.indices.get(0);
if (tangent.length() < ZERO_TOLERANCE) {
log.log(Level.WARNING,
"Shared tangent is zero for vertex {0}.", blameVertex);
// attempt to fix from binormal
if (binormal.length() >= ZERO_TOLERANCE) {
binormal.cross(givenNormal, tangent);
tangent.normalizeLocal();
} // if all fails use the tangent from the first triangle
else {
tangent.set(firstTriangle.tangent);
}
} else {
tangent.divideLocal(triangleCount);
}
tangentUnit.set(tangent);
tangentUnit.normalizeLocal();
if (Math.abs(Math.abs(tangentUnit.dot(givenNormal)) - 1)
< ZERO_TOLERANCE) {
log.log(Level.WARNING,
"Normal and tangent are parallel for vertex {0}.", blameVertex);
}
if (!approxTangent) {
if (binormal.length() < ZERO_TOLERANCE) {
log.log(Level.WARNING,
"Shared binormal is zero for vertex {0}.", blameVertex);
// attempt to fix from tangent
if (tangent.length() >= ZERO_TOLERANCE) {
givenNormal.cross(tangent, binormal);
binormal.normalizeLocal();
} // if all fails use the binormal from the first triangle
else {
binormal.set(firstTriangle.binormal);
}
} else {
binormal.divideLocal(triangleCount);
}
binormalUnit.set(binormal);
binormalUnit.normalizeLocal();
if (Math.abs(Math.abs(binormalUnit.dot(givenNormal)) - 1)
< ZERO_TOLERANCE) {
log.log(Level.WARNING,
"Normal and binormal are parallel for vertex {0}.", blameVertex);
}
if (Math.abs(Math.abs(binormalUnit.dot(tangentUnit)) - 1)
< ZERO_TOLERANCE) {
log.log(Level.WARNING,
"Tangent and binormal are parallel for vertex {0}.", blameVertex);
}
}
for (int i : vertexInfo.indices) {
if (approxTangent) {
// This calculation ensures that normal and tagent have a 90 degree angle.
// Removing this will lead to visual artifacts.
givenNormal.cross(tangent, binormal);
binormal.cross(givenNormal, tangent);
tangent.normalizeLocal();
tangents.put((i * 4), tangent.x);
tangents.put((i * 4) + 1, tangent.y);
tangents.put((i * 4) + 2, tangent.z);
tangents.put((i * 4) + 3, wCoord);
} else {
tangents.put((i * 4), tangent.x);
tangents.put((i * 4) + 1, tangent.y);
tangents.put((i * 4) + 2, tangent.z);
tangents.put((i * 4) + 3, wCoord);
//setInBuffer(binormal, binormals, i);
}
}
}
mesh.setBuffer(Type.Tangent, 4, tangents);
// if (!approxTangent) mesh.setBuffer(Type.Binormal, 3, binormals);
}
public static Mesh genTbnLines(Mesh mesh, float scale) {
if (mesh.getBuffer(Type.Tangent) == null) {
return genNormalLines(mesh, scale);
} else {
return genTangentLines(mesh, scale);
}
}
public static Mesh genNormalLines(Mesh mesh, float scale) {
FloatBuffer vertexBuffer = (FloatBuffer) mesh.getBuffer(Type.Position).getData();
FloatBuffer normalBuffer = (FloatBuffer) mesh.getBuffer(Type.Normal).getData();
ColorRGBA originColor = ColorRGBA.White;
ColorRGBA normalColor = ColorRGBA.Blue;
Mesh lineMesh = new Mesh();
lineMesh.setMode(Mesh.Mode.Lines);
Vector3f origin = new Vector3f();
Vector3f point = new Vector3f();
FloatBuffer lineVertex = BufferUtils.createFloatBuffer(vertexBuffer.capacity() * 2);
FloatBuffer lineColor = BufferUtils.createFloatBuffer(vertexBuffer.capacity() / 3 * 4 * 2);
for (int i = 0; i < vertexBuffer.capacity() / 3; i++) {
populateFromBuffer(origin, vertexBuffer, i);
populateFromBuffer(point, normalBuffer, i);
int index = i * 2;
setInBuffer(origin, lineVertex, index);
setInBuffer(originColor, lineColor, index);
point.multLocal(scale);
point.addLocal(origin);
setInBuffer(point, lineVertex, index + 1);
setInBuffer(normalColor, lineColor, index + 1);
}
lineMesh.setBuffer(Type.Position, 3, lineVertex);
lineMesh.setBuffer(Type.Color, 4, lineColor);
lineMesh.setStatic();
//lineMesh.setInterleaved();
return lineMesh;
}
private static Mesh genTangentLines(Mesh mesh, float scale) {
FloatBuffer vertexBuffer = (FloatBuffer) mesh.getBuffer(Type.Position).getData();
FloatBuffer normalBuffer = (FloatBuffer) mesh.getBuffer(Type.Normal).getData();
FloatBuffer tangentBuffer = (FloatBuffer) mesh.getBuffer(Type.Tangent).getData();
FloatBuffer binormalBuffer = null;
if (mesh.getBuffer(Type.Binormal) != null) {
binormalBuffer = (FloatBuffer) mesh.getBuffer(Type.Binormal).getData();
}
ColorRGBA originColor = ColorRGBA.White;
ColorRGBA tangentColor = ColorRGBA.Red;
ColorRGBA binormalColor = ColorRGBA.Green;
ColorRGBA normalColor = ColorRGBA.Blue;
Mesh lineMesh = new Mesh();
lineMesh.setMode(Mesh.Mode.Lines);
Vector3f origin = new Vector3f();
Vector3f point = new Vector3f();
Vector3f tangent = new Vector3f();
Vector3f normal = new Vector3f();
IntBuffer lineIndex = BufferUtils.createIntBuffer(vertexBuffer.capacity() / 3 * 6);
FloatBuffer lineVertex = BufferUtils.createFloatBuffer(vertexBuffer.capacity() * 4);
FloatBuffer lineColor = BufferUtils.createFloatBuffer(vertexBuffer.capacity() / 3 * 4 * 4);
boolean hasParity = mesh.getBuffer(Type.Tangent).getNumComponents() == 4;
float tangentW = 1;
for (int i = 0; i < vertexBuffer.capacity() / 3; i++) {
populateFromBuffer(origin, vertexBuffer, i);
populateFromBuffer(normal, normalBuffer, i);
if (hasParity) {
tangent.x = tangentBuffer.get(i * 4);
tangent.y = tangentBuffer.get(i * 4 + 1);
tangent.z = tangentBuffer.get(i * 4 + 2);
tangentW = tangentBuffer.get(i * 4 + 3);
} else {
populateFromBuffer(tangent, tangentBuffer, i);
}
int index = i * 4;
int id = i * 6;
lineIndex.put(id, index);
lineIndex.put(id + 1, index + 1);
lineIndex.put(id + 2, index);
lineIndex.put(id + 3, index + 2);
lineIndex.put(id + 4, index);
lineIndex.put(id + 5, index + 3);
setInBuffer(origin, lineVertex, index);
setInBuffer(originColor, lineColor, index);
point.set(tangent);
point.multLocal(scale);
point.addLocal(origin);
setInBuffer(point, lineVertex, index + 1);
setInBuffer(tangentColor, lineColor, index + 1);
// wvBinormal = cross(wvNormal, wvTangent) * -inTangent.w
if (binormalBuffer == null) {
normal.cross(tangent, point);
point.multLocal(-tangentW);
point.normalizeLocal();
} else {
populateFromBuffer(point, binormalBuffer, i);
}
point.multLocal(scale);
point.addLocal(origin);
setInBuffer(point, lineVertex, index + 2);
setInBuffer(binormalColor, lineColor, index + 2);
point.set(normal);
point.multLocal(scale);
point.addLocal(origin);
setInBuffer(point, lineVertex, index + 3);
setInBuffer(normalColor, lineColor, index + 3);
}
lineMesh.setBuffer(Type.Index, 1, lineIndex);
lineMesh.setBuffer(Type.Position, 3, lineVertex);
lineMesh.setBuffer(Type.Color, 4, lineColor);
lineMesh.setStatic();
//lineMesh.setInterleaved();
return lineMesh;
}
}