blob: 928ee2275c3f549cd1654e8a6ed6978d057d9b44 [file] [log] [blame]
// Water pixel shader
// Copyright (C) JMonkeyEngine 3.0
// by Remy Bouquet (nehon) for JMonkeyEngine 3.0
// original HLSL version by Wojciech Toman 2009
uniform sampler2D m_HeightMap;
uniform sampler2D m_Texture;
uniform sampler2D m_DepthTexture;
uniform sampler2D m_NormalMap;
uniform sampler2D m_FoamMap;
uniform sampler2D m_CausticsMap;
uniform sampler2D m_ReflectionMap;
uniform mat4 m_ViewProjectionMatrixInverse;
uniform mat4 m_TextureProjMatrix;
uniform vec3 m_CameraPosition;
uniform float m_WaterHeight;
uniform float m_Time;
uniform float m_WaterTransparency;
uniform float m_NormalScale;
uniform float m_R0;
uniform float m_MaxAmplitude;
uniform vec3 m_LightDir;
uniform vec4 m_LightColor;
uniform float m_ShoreHardness;
uniform float m_FoamHardness;
uniform float m_RefractionStrength;
uniform vec3 m_FoamExistence;
uniform vec3 m_ColorExtinction;
uniform float m_Shininess;
uniform vec4 m_WaterColor;
uniform vec4 m_DeepWaterColor;
uniform vec2 m_WindDirection;
uniform float m_SunScale;
uniform float m_WaveScale;
uniform float m_UnderWaterFogDistance;
uniform float m_CausticsIntensity;
vec2 scale = vec2(m_WaveScale, m_WaveScale);
float refractionScale = m_WaveScale;
// Modifies 4 sampled normals. Increase first values to have more
// smaller "waves" or last to have more bigger "waves"
const vec4 normalModifier = vec4(3.0, 2.0, 4.0, 10.0);
// Strength of displacement along normal.
// Strength of displacement along normal.
uniform float m_ReflectionDisplace;
// Water transparency along eye vector.
const float visibility = 3.0;
// foam intensity
uniform float m_FoamIntensity ;
varying vec2 texCoord;
mat3 MatrixInverse(in mat3 inMatrix){
float det = dot(cross(inMatrix[0], inMatrix[1]), inMatrix[2]);
mat3 T = transpose(inMatrix);
return mat3(cross(T[1], T[2]),
cross(T[2], T[0]),
cross(T[0], T[1])) / det;
}
mat3 computeTangentFrame(in vec3 N, in vec3 P, in vec2 UV) {
vec3 dp1 = dFdx(P);
vec3 dp2 = dFdy(P);
vec2 duv1 = dFdx(UV);
vec2 duv2 = dFdy(UV);
// solve the linear system
mat3 M = mat3(dp1, dp2, cross(dp1, dp2));
//vec3 dp1xdp2 = cross(dp1, dp2);
mat3 inverseM = MatrixInverse(M);
//mat2x3 inverseM = mat2x3(cross(dp2, dp1xdp2), cross(dp1xdp2, dp1));
vec3 T = inverseM * vec3(duv1.x, duv2.x, 0.0);
vec3 B = inverseM * vec3(duv1.y, duv2.y, 0.0);
//vec3 T = inverseM * vec2(duv1.x, duv2.x);
//vec3 B = inverseM * vec2(duv1.y, duv2.y);
// construct tangent frame
float maxLength = max(length(T), length(B));
T = T / maxLength;
B = B / maxLength;
//vec3 tangent = normalize(T);
//vec3 binormal = normalize(B);
return mat3(T, B, N);
}
float saturate(in float val){
return clamp(val,0.0,1.0);
}
vec3 saturate(in vec3 val){
return clamp(val,vec3(0.0),vec3(1.0));
}
vec3 getPosition(in float depth, in vec2 uv){
vec4 pos = vec4(uv, depth, 1.0) * 2.0 - 1.0;
pos = m_ViewProjectionMatrixInverse * pos;
return pos.xyz / pos.w;
}
// Function calculating fresnel term.
// - normal - normalized normal vector
// - eyeVec - normalized eye vector
float fresnelTerm(in vec3 normal,in vec3 eyeVec){
float angle = 1.0 - saturate(dot(normal, eyeVec));
float fresnel = angle * angle;
fresnel = fresnel * fresnel;
fresnel = fresnel * angle;
return saturate(fresnel * (1.0 - saturate(m_R0)) + m_R0 - m_RefractionStrength);
}
vec2 m_FrustumNearFar=vec2(1.0,m_UnderWaterFogDistance);
const float LOG2 = 1.442695;
vec4 underWater(){
float sceneDepth = texture2D(m_DepthTexture, texCoord).r;
vec3 color2 = texture2D(m_Texture, texCoord).rgb;
vec3 position = getPosition(sceneDepth, texCoord);
float level = m_WaterHeight;
vec3 eyeVec = position - m_CameraPosition;
// Find intersection with water surface
vec3 eyeVecNorm = normalize(eyeVec);
float t = (level - m_CameraPosition.y) / eyeVecNorm.y;
vec3 surfacePoint = m_CameraPosition + eyeVecNorm * t;
vec2 texC = vec2(0.0);
float cameraDepth = length(m_CameraPosition - surfacePoint);
texC = (surfacePoint.xz + eyeVecNorm.xz) * scale + m_Time * 0.03 * m_WindDirection;
float bias = texture2D(m_HeightMap, texC).r;
level += bias * m_MaxAmplitude;
t = (level - m_CameraPosition.y) / eyeVecNorm.y;
surfacePoint = m_CameraPosition + eyeVecNorm * t;
eyeVecNorm = normalize(m_CameraPosition - surfacePoint);
// Find normal of water surface
float normal1 = texture2D(m_HeightMap, (texC + vec2(-1.0, 0.0) / 256.0)).r;
float normal2 = texture2D(m_HeightMap, (texC + vec2(1.0, 0.0) / 256.0)).r;
float normal3 = texture2D(m_HeightMap, (texC + vec2(0.0, -1.0) / 256.0)).r;
float normal4 = texture2D(m_HeightMap, (texC + vec2(0.0, 1.0) / 256.0)).r;
vec3 myNormal = normalize(vec3((normal1 - normal2) * m_MaxAmplitude,m_NormalScale,(normal3 - normal4) * m_MaxAmplitude));
vec3 normal = myNormal*-1.0;
float fresnel = fresnelTerm(normal, eyeVecNorm);
vec3 refraction = color2;
#ifdef ENABLE_REFRACTION
texC = texCoord.xy *sin (fresnel+1.0);
refraction = texture2D(m_Texture, texC).rgb;
#endif
float waterCol = saturate(length(m_LightColor.rgb) / m_SunScale);
refraction = mix(mix(refraction, m_DeepWaterColor.rgb * waterCol, m_WaterTransparency), m_WaterColor.rgb* waterCol,m_WaterTransparency);
vec3 foam = vec3(0.0);
#ifdef ENABLE_FOAM
texC = (surfacePoint.xz + eyeVecNorm.xz * 0.1) * 0.05 + m_Time * 0.05 * m_WindDirection + sin(m_Time * 0.001 + position.x) * 0.005;
vec2 texCoord2 = (surfacePoint.xz + eyeVecNorm.xz * 0.1) * 0.05 + m_Time * 0.1 * m_WindDirection + sin(m_Time * 0.001 + position.z) * 0.005;
if(m_MaxAmplitude - m_FoamExistence.z> 0.0001){
foam += ((texture2D(m_FoamMap, texC) + texture2D(m_FoamMap, texCoord2)) * m_FoamIntensity * m_FoamIntensity * 0.3 *
saturate((level - (m_WaterHeight + m_FoamExistence.z)) / (m_MaxAmplitude - m_FoamExistence.z))).rgb;
}
foam *= m_LightColor.rgb;
#endif
vec3 specular = vec3(0.0);
vec3 color ;
float fogFactor;
if(position.y>level){
#ifdef ENABLE_SPECULAR
if(step(0.9999,sceneDepth)==1.0){
vec3 lightDir=normalize(m_LightDir);
vec3 mirrorEye = (2.0 * dot(eyeVecNorm, normal) * normal - eyeVecNorm);
float dotSpec = saturate(dot(mirrorEye.xyz, -lightDir) * 0.5 + 0.5);
specular = vec3((1.0 - fresnel) * saturate(-lightDir.y) * ((pow(dotSpec, 512.0)) * (m_Shininess * 1.8 + 0.2)));
specular += specular * 25.0 * saturate(m_Shininess - 0.05);
specular=specular * m_LightColor.rgb * 100.0;
}
#endif
float fogIntensity= 8.0 * m_WaterTransparency;
fogFactor = exp2( -fogIntensity * fogIntensity * cameraDepth * 0.03 * LOG2 );
fogFactor = clamp(fogFactor, 0.0, 1.0);
color =mix(m_DeepWaterColor.rgb,refraction,fogFactor);
specular=specular*fogFactor;
color = saturate(color + max(specular, foam ));
}else{
vec3 caustics = vec3(0.0);
#ifdef ENABLE_CAUSTICS
vec2 windDirection=m_WindDirection;
texC = (position.xz + eyeVecNorm.xz * 0.1) * 0.05 + m_Time * 0.05 * windDirection + sin(m_Time + position.x) * 0.01;
vec2 texCoord2 = (position.xz + eyeVecNorm.xz * 0.1) * 0.05 + m_Time * 0.05 * windDirection + sin(m_Time + position.z) * 0.01;
caustics += (texture2D(m_CausticsMap, texC)+ texture2D(m_CausticsMap, texCoord2)).rgb;
caustics=saturate(mix(m_WaterColor.rgb,caustics,m_CausticsIntensity));
color=mix(color2,caustics,m_CausticsIntensity);
#else
color=color2;
#endif
float fogDepth= (2.0 * m_FrustumNearFar.x) / (m_FrustumNearFar.y + m_FrustumNearFar.x - sceneDepth* (m_FrustumNearFar.y-m_FrustumNearFar.x));
float fogIntensity= 18 * m_WaterTransparency;
fogFactor = exp2( -fogIntensity * fogIntensity * fogDepth * fogDepth * LOG2 );
fogFactor = clamp(fogFactor, 0.0, 1.0);
color =mix(m_DeepWaterColor.rgb,color,fogFactor);
}
return vec4(color, 1.0);
}
void main(){
float sceneDepth = texture2D(m_DepthTexture, texCoord).r;
float isAtFarPlane = step(0.99998, sceneDepth);
vec3 color2 = texture2D(m_Texture, texCoord).rgb;
vec3 color = color2;
vec3 position = getPosition(sceneDepth,texCoord);
float level = m_WaterHeight;
// If we are underwater let's go to under water function
if(level >= m_CameraPosition.y){
gl_FragColor = underWater();
return ;
}
//#ifndef ENABLE_RIPPLES
// This optimization won't work on NVIDIA cards if ripples are enabled
if(position.y > level + m_MaxAmplitude + isAtFarPlane * 100.0){
gl_FragColor = vec4(color2, 1.0);
return;
}
//#endif
vec3 eyeVec = position - m_CameraPosition;
float diff = level - position.y;
float cameraDepth = m_CameraPosition.y - position.y;
// Find intersection with water surface
vec3 eyeVecNorm = normalize(eyeVec);
float t = (level - m_CameraPosition.y) / eyeVecNorm.y;
vec3 surfacePoint = m_CameraPosition + eyeVecNorm * t;
vec2 texC;
int samples = 1;
#ifdef ENABLE_HQ_SHORELINE
samples = 10;
#endif
float biasFactor = 1.0/samples;
for (int i = 0; i < samples; i++){
texC = (surfacePoint.xz + eyeVecNorm.xz * biasFactor) * scale + m_Time * 0.03 * m_WindDirection;
float bias = texture2D(m_HeightMap, texC).r;
bias *= biasFactor;
level += bias * m_MaxAmplitude;
t = (level - m_CameraPosition.y) / eyeVecNorm.y;
surfacePoint = m_CameraPosition + eyeVecNorm * t;
}
float depth = length(position - surfacePoint);
float depth2 = surfacePoint.y - position.y;
// XXX: HACK ALERT: Increase water depth to infinity if at far plane
// Prevents "foam on horizon" issue
// For best results, replace the "100.0" below with the
// highest value in the m_ColorExtinction vec3
depth += isAtFarPlane * 100.0;
depth2 += isAtFarPlane * 100.0;
eyeVecNorm = normalize(m_CameraPosition - surfacePoint);
// Find normal of water surface
float normal1 = texture2D(m_HeightMap, (texC + vec2(-1.0, 0.0) / 256.0)).r;
float normal2 = texture2D(m_HeightMap, (texC + vec2(1.0, 0.0) / 256.0)).r;
float normal3 = texture2D(m_HeightMap, (texC + vec2(0.0, -1.0) / 256.0)).r;
float normal4 = texture2D(m_HeightMap, (texC + vec2(0.0, 1.0) / 256.0)).r;
vec3 myNormal = normalize(vec3((normal1 - normal2) * m_MaxAmplitude,m_NormalScale,(normal3 - normal4) * m_MaxAmplitude));
vec3 normal = vec3(0.0);
#ifdef ENABLE_RIPPLES
texC = surfacePoint.xz * 0.8 + m_WindDirection * m_Time* 1.6;
mat3 tangentFrame = computeTangentFrame(myNormal, eyeVecNorm, texC);
vec3 normal0a = normalize(tangentFrame*(2.0 * texture2D(m_NormalMap, texC).xyz - 1.0));
texC = surfacePoint.xz * 0.4 + m_WindDirection * m_Time* 0.8;
tangentFrame = computeTangentFrame(myNormal, eyeVecNorm, texC);
vec3 normal1a = normalize(tangentFrame*(2.0 * texture2D(m_NormalMap, texC).xyz - 1.0));
texC = surfacePoint.xz * 0.2 + m_WindDirection * m_Time * 0.4;
tangentFrame = computeTangentFrame(myNormal, eyeVecNorm, texC);
vec3 normal2a = normalize(tangentFrame*(2.0 * texture2D(m_NormalMap, texC).xyz - 1.0));
texC = surfacePoint.xz * 0.1 + m_WindDirection * m_Time * 0.2;
tangentFrame = computeTangentFrame(myNormal, eyeVecNorm, texC);
vec3 normal3a = normalize(tangentFrame*(2.0 * texture2D(m_NormalMap, texC).xyz - 1.0));
normal = normalize(normal0a * normalModifier.x + normal1a * normalModifier.y +normal2a * normalModifier.z + normal3a * normalModifier.w);
// XXX: Here's another way to fix the terrain edge issue,
// But it requires GLSL 1.3 and still looks kinda incorrect
// around edges
// To make the shader 1.2 compatible we use a trick :
// we clamp the x value of the normal and compare it to it's former value instead of using isnan.
normal = clamp(normal.x,0.0,1.0)!=normal.x ? myNormal : normal;
//if (position.y > level){
// gl_FragColor = vec4(color2 + normal*0.0001, 1.0);
// return;
//}
#else
normal = myNormal;
#endif
vec3 refraction = color2;
#ifdef ENABLE_REFRACTION
texC = texCoord.xy;
texC += sin(m_Time*1.8 + 3.0 * abs(position.y)) * (refractionScale * min(depth2, 1.0));
refraction = texture2D(m_Texture, texC).rgb;
#endif
vec3 waterPosition = surfacePoint.xyz;
waterPosition.y -= (level - m_WaterHeight);
vec4 texCoordProj = m_TextureProjMatrix * vec4(waterPosition, 1.0);
texCoordProj.x = texCoordProj.x + m_ReflectionDisplace * normal.x;
texCoordProj.z = texCoordProj.z + m_ReflectionDisplace * normal.z;
texCoordProj /= texCoordProj.w;
texCoordProj.y = 1.0 - texCoordProj.y;
vec3 reflection = texture2D(m_ReflectionMap, texCoordProj.xy).rgb;
float fresnel = fresnelTerm(normal, eyeVecNorm);
float depthN = depth * m_WaterTransparency;
float waterCol = saturate(length(m_LightColor.rgb) / m_SunScale);
refraction = mix(mix(refraction, m_WaterColor.rgb * waterCol, saturate(depthN / visibility)),
m_DeepWaterColor.rgb * waterCol, saturate(depth2 / m_ColorExtinction));
vec3 foam = vec3(0.0);
#ifdef ENABLE_FOAM
texC = (surfacePoint.xz + eyeVecNorm.xz * 0.1) * 0.05 + m_Time * 0.05 * m_WindDirection + sin(m_Time * 0.001 + position.x) * 0.005;
vec2 texCoord2 = (surfacePoint.xz + eyeVecNorm.xz * 0.1) * 0.05 + m_Time * 0.1 * m_WindDirection + sin(m_Time * 0.001 + position.z) * 0.005;
if(depth2 < m_FoamExistence.x){
foam = (texture2D(m_FoamMap, texC).r + texture2D(m_FoamMap, texCoord2)).rgb * m_FoamIntensity;
}else if(depth2 < m_FoamExistence.y){
foam = mix((texture2D(m_FoamMap, texC) + texture2D(m_FoamMap, texCoord2)) * m_FoamIntensity, vec4(0.0),
(depth2 - m_FoamExistence.x) / (m_FoamExistence.y - m_FoamExistence.x)).rgb;
}
if(m_MaxAmplitude - m_FoamExistence.z > 0.0001){
foam += ((texture2D(m_FoamMap, texC) + texture2D(m_FoamMap, texCoord2)) * m_FoamIntensity * m_FoamIntensity * 0.3 *
saturate((level - (m_WaterHeight + m_FoamExistence.z)) / (m_MaxAmplitude - m_FoamExistence.z))).rgb;
}
foam *= m_LightColor.rgb;
#endif
vec3 specular =vec3(0.0);
#ifdef ENABLE_SPECULAR
vec3 lightDir=normalize(m_LightDir);
vec3 mirrorEye = (2.0 * dot(eyeVecNorm, normal) * normal - eyeVecNorm);
float dotSpec = saturate(dot(mirrorEye.xyz, -lightDir) * 0.5 + 0.5);
specular = vec3((1.0 - fresnel) * saturate(-lightDir.y) * ((pow(dotSpec, 512.0)) * (m_Shininess * 1.8 + 0.2)));
specular += specular * 25.0 * saturate(m_Shininess - 0.05);
//foam does not shine
specular=specular * m_LightColor.rgb - (5.0 * foam);
#endif
color = mix(refraction, reflection, fresnel);
color = mix(refraction, color, saturate(depth * m_ShoreHardness));
color = saturate(color + max(specular, foam ));
color = mix(refraction, color, saturate(depth* m_FoamHardness));
// XXX: HACK ALERT:
// We trick the GeForces to think they have
// to calculate the derivatives for all these pixels by using step()!
// That way we won't get pixels around the edges of the terrain,
// Where the derivatives are undefined
if(position.y > level){
color = color2;
}
gl_FragColor = vec4(color,1.0);
}