blob: af30f3bb369806fbc03794d63d7a262888046e90 [file] [log] [blame]
package com.jme3.scene.plugins.blender.curves;
import com.jme3.material.Material;
import com.jme3.material.RenderState.FaceCullMode;
import com.jme3.math.Spline.SplineType;
import com.jme3.math.*;
import com.jme3.scene.Geometry;
import com.jme3.scene.Mesh;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.scene.plugins.blender.AbstractBlenderHelper;
import com.jme3.scene.plugins.blender.BlenderContext;
import com.jme3.scene.plugins.blender.exceptions.BlenderFileException;
import com.jme3.scene.plugins.blender.file.*;
import com.jme3.scene.plugins.blender.materials.MaterialHelper;
import com.jme3.scene.plugins.blender.meshes.MeshHelper;
import com.jme3.scene.plugins.blender.objects.Properties;
import com.jme3.scene.shape.Curve;
import com.jme3.scene.shape.Surface;
import com.jme3.util.BufferUtils;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.logging.Logger;
/**
* A class that is used in mesh calculations.
* @author Marcin Roguski
*/
public class CurvesHelper extends AbstractBlenderHelper {
private static final Logger LOGGER = Logger.getLogger(CurvesHelper.class.getName());
/** Minimum basis U function degree for NURBS curves and surfaces. */
protected int minimumBasisUFunctionDegree = 4;
/** Minimum basis V function degree for NURBS curves and surfaces. */
protected int minimumBasisVFunctionDegree = 4;
/**
* This constructor parses the given blender version and stores the result. Some functionalities may differ in
* different blender versions.
* @param blenderVersion
* the version read from the blend file
* @param fixUpAxis
* a variable that indicates if the Y asxis is the UP axis or not
*/
public CurvesHelper(String blenderVersion, boolean fixUpAxis) {
super(blenderVersion, fixUpAxis);
}
/**
* This method converts given curve structure into a list of geometries representing the curve. The list is used here because on object
* can have several separate curves.
* @param curveStructure
* the curve structure
* @param blenderContext
* the blender context
* @return a list of geometries repreenting a single curve object
* @throws BlenderFileException
*/
public List<Geometry> toCurve(Structure curveStructure, BlenderContext blenderContext) throws BlenderFileException {
String name = curveStructure.getName();
int flag = ((Number) curveStructure.getFieldValue("flag")).intValue();
boolean is3D = (flag & 0x01) != 0;
boolean isFront = (flag & 0x02) != 0 && !is3D;
boolean isBack = (flag & 0x04) != 0 && !is3D;
if (isFront) {
LOGGER.warning("No front face in curve implemented yet!");//TODO: implement front face
}
if (isBack) {
LOGGER.warning("No back face in curve implemented yet!");//TODO: implement back face
}
//reading nurbs (and sorting them by material)
List<Structure> nurbStructures = ((Structure) curveStructure.getFieldValue("nurb")).evaluateListBase(blenderContext);
Map<Number, List<Structure>> nurbs = new HashMap<Number, List<Structure>>();
for (Structure nurb : nurbStructures) {
Number matNumber = (Number) nurb.getFieldValue("mat_nr");
List<Structure> nurbList = nurbs.get(matNumber);
if (nurbList == null) {
nurbList = new ArrayList<Structure>();
nurbs.put(matNumber, nurbList);
}
nurbList.add(nurb);
}
//getting materials
MaterialHelper materialHelper = blenderContext.getHelper(MaterialHelper.class);
Material[] materials = materialHelper.getMaterials(curveStructure, blenderContext);
if (materials == null) {
materials = new Material[]{blenderContext.getDefaultMaterial().clone()};
}
for (Material material : materials) {
material.getAdditionalRenderState().setFaceCullMode(FaceCullMode.Off);
}
//getting or creating bevel object
List<Geometry> bevelObject = null;
Pointer pBevelObject = (Pointer) curveStructure.getFieldValue("bevobj");
if (pBevelObject.isNotNull()) {
Pointer pBevelStructure = (Pointer) pBevelObject.fetchData(blenderContext.getInputStream()).get(0).getFieldValue("data");
Structure bevelStructure = pBevelStructure.fetchData(blenderContext.getInputStream()).get(0);
bevelObject = this.toCurve(bevelStructure, blenderContext);
} else {
int bevResol = ((Number) curveStructure.getFieldValue("bevresol")).intValue();
float extrude = ((Number) curveStructure.getFieldValue("ext1")).floatValue();
float bevelDepth = ((Number) curveStructure.getFieldValue("ext2")).floatValue();
if (bevelDepth > 0.0f) {
float handlerLength = bevelDepth / 2.0f;
List<Vector3f> conrtolPoints = new ArrayList<Vector3f>(extrude > 0.0f ? 19 : 13);
conrtolPoints.add(new Vector3f(-bevelDepth, extrude, 0));
conrtolPoints.add(new Vector3f(-bevelDepth, handlerLength + extrude, 0));
conrtolPoints.add(new Vector3f(-handlerLength, bevelDepth + extrude, 0));
conrtolPoints.add(new Vector3f(0, bevelDepth + extrude, 0));
conrtolPoints.add(new Vector3f(handlerLength, bevelDepth + extrude, 0));
conrtolPoints.add(new Vector3f(bevelDepth, extrude + handlerLength, 0));
conrtolPoints.add(new Vector3f(bevelDepth, extrude, 0));
conrtolPoints.add(new Vector3f(bevelDepth, extrude - handlerLength, 0));
if (extrude > 0.0f) {
conrtolPoints.add(new Vector3f(bevelDepth, -extrude + handlerLength, 0));
conrtolPoints.add(new Vector3f(bevelDepth, -extrude, 0));
conrtolPoints.add(new Vector3f(bevelDepth, -extrude - handlerLength, 0));
}
conrtolPoints.add(new Vector3f(handlerLength, -bevelDepth - extrude, 0));
conrtolPoints.add(new Vector3f(0, -bevelDepth - extrude, 0));
conrtolPoints.add(new Vector3f(-handlerLength, -bevelDepth - extrude, 0));
conrtolPoints.add(new Vector3f(-bevelDepth, -handlerLength - extrude, 0));
conrtolPoints.add(new Vector3f(-bevelDepth, -extrude, 0));
if (extrude > 0.0f) {
conrtolPoints.add(new Vector3f(-bevelDepth, handlerLength - extrude, 0));
conrtolPoints.add(new Vector3f(-bevelDepth, -handlerLength + extrude, 0));
conrtolPoints.add(new Vector3f(-bevelDepth, extrude, 0));
}
Spline bevelSpline = new Spline(SplineType.Bezier, conrtolPoints, 0, false);
Curve bevelCurve = new Curve(bevelSpline, bevResol);
bevelObject = new ArrayList<Geometry>(1);
bevelObject.add(new Geometry("", bevelCurve));
} else if (extrude > 0.0f) {
Spline bevelSpline = new Spline(SplineType.Linear, new Vector3f[]{
new Vector3f(0, extrude, 0), new Vector3f(0, -extrude, 0)
}, 1, false);
Curve bevelCurve = new Curve(bevelSpline, bevResol);
bevelObject = new ArrayList<Geometry>(1);
bevelObject.add(new Geometry("", bevelCurve));
}
}
//getting taper object
Curve taperObject = null;
Pointer pTaperObject = (Pointer) curveStructure.getFieldValue("taperobj");
if (bevelObject != null && pTaperObject.isNotNull()) {
Pointer pTaperStructure = (Pointer) pTaperObject.fetchData(blenderContext.getInputStream()).get(0).getFieldValue("data");
Structure taperStructure = pTaperStructure.fetchData(blenderContext.getInputStream()).get(0);
taperObject = this.loadTaperObject(taperStructure, blenderContext);
}
Vector3f loc = this.getLoc(curveStructure);
//creating the result curves
List<Geometry> result = new ArrayList<Geometry>(nurbs.size());
for (Entry<Number, List<Structure>> nurbEntry : nurbs.entrySet()) {
for (Structure nurb : nurbEntry.getValue()) {
int type = ((Number) nurb.getFieldValue("type")).intValue();
List<Geometry> nurbGeoms = null;
if ((type & 0x01) != 0) {//Bezier curve
nurbGeoms = this.loadBezierCurve(loc, nurb, bevelObject, taperObject, blenderContext);
} else if ((type & 0x04) != 0) {//NURBS
nurbGeoms = this.loadNurb(loc, nurb, bevelObject, taperObject, blenderContext);
}
if (nurbGeoms != null) {//setting the name and assigning materials
for (Geometry nurbGeom : nurbGeoms) {
nurbGeom.setMaterial(materials[nurbEntry.getKey().intValue()]);
nurbGeom.setName(name);
result.add(nurbGeom);
}
}
}
}
//reading custom properties
Properties properties = this.loadProperties(curveStructure, blenderContext);
if(properties != null && properties.getValue() != null) {
for(Geometry geom : result) {
geom.setUserData("properties", properties);
}
}
return result;
}
/**
* This method loads the bezier curve.
* @param loc
* the translation of the curve
* @param nurb
* the nurb structure
* @param bevelObject
* the bevel object
* @param taperObject
* the taper object
* @param blenderContext
* the blender context
* @return a list of geometries representing the curves
* @throws BlenderFileException
* an exception is thrown when there are problems with the blender file
*/
protected List<Geometry> loadBezierCurve(Vector3f loc, Structure nurb, List<Geometry> bevelObject, Curve taperObject,
BlenderContext blenderContext) throws BlenderFileException {
Pointer pBezierTriple = (Pointer) nurb.getFieldValue("bezt");
List<Geometry> result = new ArrayList<Geometry>();
if (pBezierTriple.isNotNull()) {
boolean smooth = (((Number) nurb.getFlatFieldValue("flag")).intValue() & 0x01) != 0;
int resolution = ((Number) nurb.getFieldValue("resolu")).intValue();
boolean cyclic = (((Number) nurb.getFieldValue("flagu")).intValue() & 0x01) != 0;
//creating the curve object
BezierCurve bezierCurve = new BezierCurve(0, pBezierTriple.fetchData(blenderContext.getInputStream()), 3);
List<Vector3f> controlPoints = bezierCurve.getControlPoints();
if (cyclic) {
//copy the first three points at the end
for (int i = 0; i < 3; ++i) {
controlPoints.add(controlPoints.get(i));
}
}
//removing the first and last handles
controlPoints.remove(0);
controlPoints.remove(controlPoints.size() - 1);
//creating curve
Spline spline = new Spline(SplineType.Bezier, controlPoints, 0, false);
Curve curve = new Curve(spline, resolution);
if (bevelObject == null) {//creating a normal curve
Geometry curveGeometry = new Geometry(null, curve);
result.add(curveGeometry);
//TODO: use front and back flags; surface excluding algorithm for bezier circles should be added
} else {//creating curve with bevel and taper shape
result = this.applyBevelAndTaper(curve, bevelObject, taperObject, smooth, blenderContext);
}
}
return result;
}
/**
* This method loads the NURBS curve or surface.
* @param loc
* object's location
* @param nurb
* the NURBS data structure
* @param bevelObject
* the bevel object to be applied
* @param taperObject
* the taper object to be applied
* @param blenderContext
* the blender context
* @return a list of geometries that represents the loaded NURBS curve or surface
* @throws BlenderFileException
* an exception is throw when problems with blender loaded data occurs
*/
@SuppressWarnings("unchecked")
protected List<Geometry> loadNurb(Vector3f loc, Structure nurb, List<Geometry> bevelObject, Curve taperObject,
BlenderContext blenderContext) throws BlenderFileException {
//loading the knots
List<Float>[] knots = new List[2];
Pointer[] pKnots = new Pointer[]{(Pointer) nurb.getFieldValue("knotsu"), (Pointer) nurb.getFieldValue("knotsv")};
for (int i = 0; i < knots.length; ++i) {
if (pKnots[i].isNotNull()) {
FileBlockHeader fileBlockHeader = blenderContext.getFileBlock(pKnots[i].getOldMemoryAddress());
BlenderInputStream blenderInputStream = blenderContext.getInputStream();
blenderInputStream.setPosition(fileBlockHeader.getBlockPosition());
int knotsAmount = fileBlockHeader.getCount() * fileBlockHeader.getSize() / 4;
knots[i] = new ArrayList<Float>(knotsAmount);
for (int j = 0; j < knotsAmount; ++j) {
knots[i].add(Float.valueOf(blenderInputStream.readFloat()));
}
}
}
//loading the flags and orders (basis functions degrees)
int flagU = ((Number) nurb.getFieldValue("flagu")).intValue();
int flagV = ((Number) nurb.getFieldValue("flagv")).intValue();
int orderU = ((Number) nurb.getFieldValue("orderu")).intValue();
int orderV = ((Number) nurb.getFieldValue("orderv")).intValue();
//loading control points and their weights
int pntsU = ((Number) nurb.getFieldValue("pntsu")).intValue();
int pntsV = ((Number) nurb.getFieldValue("pntsv")).intValue();
List<Structure> bPoints = ((Pointer) nurb.getFieldValue("bp")).fetchData(blenderContext.getInputStream());
List<List<Vector4f>> controlPoints = new ArrayList<List<Vector4f>>(pntsV);
for (int i = 0; i < pntsV; ++i) {
List<Vector4f> uControlPoints = new ArrayList<Vector4f>(pntsU);
for (int j = 0; j < pntsU; ++j) {
DynamicArray<Float> vec = (DynamicArray<Float>) bPoints.get(j + i * pntsU).getFieldValue("vec");
if (fixUpAxis) {
uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(2).floatValue(), -vec.get(1).floatValue(), vec.get(3).floatValue()));
} else {
uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(1).floatValue(), vec.get(2).floatValue(), vec.get(3).floatValue()));
}
}
if ((flagU & 0x01) != 0) {
for (int k = 0; k < orderU - 1; ++k) {
uControlPoints.add(uControlPoints.get(k));
}
}
controlPoints.add(uControlPoints);
}
if ((flagV & 0x01) != 0) {
for (int k = 0; k < orderV - 1; ++k) {
controlPoints.add(controlPoints.get(k));
}
}
int resolu = ((Number) nurb.getFieldValue("resolu")).intValue() + 1;
List<Geometry> result;
if (knots[1] == null) {//creating the curve
Spline nurbSpline = new Spline(controlPoints.get(0), knots[0]);
Curve nurbCurve = new Curve(nurbSpline, resolu);
if (bevelObject != null) {
result = this.applyBevelAndTaper(nurbCurve, bevelObject, taperObject, true, blenderContext);//TODO: smooth
} else {
result = new ArrayList<Geometry>(1);
Geometry nurbGeometry = new Geometry("", nurbCurve);
result.add(nurbGeometry);
}
} else {//creating the nurb surface
int resolv = ((Number) nurb.getFieldValue("resolv")).intValue() + 1;
Surface nurbSurface = Surface.createNurbsSurface(controlPoints, knots, resolu, resolv, orderU, orderV);
Geometry nurbGeometry = new Geometry("", nurbSurface);
result = new ArrayList<Geometry>(1);
result.add(nurbGeometry);
}
return result;
}
/**
* This method returns the taper scale that should be applied to the object.
* @param taperPoints
* the taper points
* @param taperLength
* the taper curve length
* @param percent
* the percent of way along the whole taper curve
* @param store
* the vector where the result will be stored
*/
protected float getTaperScale(float[] taperPoints, float taperLength, float percent) {
float length = taperLength * percent;
float currentLength = 0;
Vector3f p = new Vector3f();
int i;
for (i = 0; i < taperPoints.length - 6 && currentLength < length; i += 3) {
p.set(taperPoints[i], taperPoints[i + 1], taperPoints[i + 2]);
p.subtractLocal(taperPoints[i + 3], taperPoints[i + 4], taperPoints[i + 5]);
currentLength += p.length();
}
currentLength -= p.length();
float leftLength = length - currentLength;
float percentOnSegment = p.length() == 0 ? 0 : leftLength / p.length();
Vector3f store = FastMath.interpolateLinear(percentOnSegment,
new Vector3f(taperPoints[i], taperPoints[i + 1], taperPoints[i + 2]),
new Vector3f(taperPoints[i + 3], taperPoints[i + 4], taperPoints[i + 5]));
return store.y;
}
/**
* This method applies bevel and taper objects to the curve.
* @param curve
* the curve we apply the objects to
* @param bevelObject
* the bevel object
* @param taperObject
* the taper object
* @param smooth
* the smooth flag
* @param blenderContext
* the blender context
* @return a list of geometries representing the beveled and/or tapered curve
*/
protected List<Geometry> applyBevelAndTaper(Curve curve, List<Geometry> bevelObject, Curve taperObject,
boolean smooth, BlenderContext blenderContext) {
float[] curvePoints = BufferUtils.getFloatArray(curve.getFloatBuffer(Type.Position));
MeshHelper meshHelper = blenderContext.getHelper(MeshHelper.class);
float curveLength = curve.getLength();
//TODO: use the smooth var
//taper data
float[] taperPoints = null;
float taperLength = 0;
if (taperObject != null) {
taperPoints = BufferUtils.getFloatArray(taperObject.getFloatBuffer(Type.Position));
taperLength = taperObject.getLength();
}
//several objects can be allocated only once
Vector3f p = new Vector3f();
Vector3f z = new Vector3f(0, 0, 1);
Vector3f negativeY = new Vector3f(0, -1, 0);
Matrix4f m = new Matrix4f();
float lengthAlongCurve = 0, taperScale = 1.0f;
Quaternion planeRotation = new Quaternion();
Quaternion zRotation = new Quaternion();
float[] temp = new float[]{0, 0, 0, 1};
Map<Vector3f, Vector3f> normalMap = new HashMap<Vector3f, Vector3f>();//normalMap merges normals of faces that will be rendered smooth
FloatBuffer[] vertexBuffers = new FloatBuffer[bevelObject.size()];
FloatBuffer[] normalBuffers = new FloatBuffer[bevelObject.size()];
IntBuffer[] indexBuffers = new IntBuffer[bevelObject.size()];
for (int geomIndex = 0; geomIndex < bevelObject.size(); ++geomIndex) {
Mesh mesh = bevelObject.get(geomIndex).getMesh();
FloatBuffer positions = mesh.getFloatBuffer(Type.Position);
float[] vertices = BufferUtils.getFloatArray(positions);
for (int i = 0; i < curvePoints.length; i += 3) {
p.set(curvePoints[i], curvePoints[i + 1], curvePoints[i + 2]);
Vector3f v;
if (i == 0) {
v = new Vector3f(curvePoints[3] - p.x, curvePoints[4] - p.y, curvePoints[5] - p.z);
} else if (i + 3 >= curvePoints.length) {
v = new Vector3f(p.x - curvePoints[i - 3], p.y - curvePoints[i - 2], p.z - curvePoints[i - 1]);
lengthAlongCurve += v.length();
} else {
v = new Vector3f(curvePoints[i + 3] - curvePoints[i - 3],
curvePoints[i + 4] - curvePoints[i - 2],
curvePoints[i + 5] - curvePoints[i - 1]);
lengthAlongCurve += new Vector3f(curvePoints[i + 3] - p.x, curvePoints[i + 4] - p.y, curvePoints[i + 5] - p.z).length();
}
v.normalizeLocal();
float angle = FastMath.acos(v.dot(z));
v.crossLocal(z).normalizeLocal();//v is the rotation axis now
planeRotation.fromAngleAxis(angle, v);
Vector3f zAxisRotationVector = negativeY.cross(v).normalizeLocal();
float zAxisRotationAngle = FastMath.acos(negativeY.dot(v));
zRotation.fromAngleAxis(zAxisRotationAngle, zAxisRotationVector);
//point transformation matrix
if (taperPoints != null) {
taperScale = this.getTaperScale(taperPoints, taperLength, lengthAlongCurve / curveLength);
}
m.set(Matrix4f.IDENTITY);
m.setRotationQuaternion(planeRotation.multLocal(zRotation));
m.setTranslation(p);
//these vertices need to be thrown on XY plane
//and moved to the origin of [p1.x, p1.y] on the plane
Vector3f[] verts = new Vector3f[vertices.length / 3];
for (int j = 0; j < verts.length; ++j) {
temp[0] = vertices[j * 3] * taperScale;
temp[1] = vertices[j * 3 + 1] * taperScale;
temp[2] = 0;
m.mult(temp);//the result is stored in the array
if (fixUpAxis) {//TODO: not the other way ???
verts[j] = new Vector3f(temp[0], temp[1], temp[2]);
} else {
verts[j] = new Vector3f(temp[0], temp[2], -temp[1]);
}
}
if (vertexBuffers[geomIndex] == null) {
vertexBuffers[geomIndex] = BufferUtils.createFloatBuffer(verts.length * curvePoints.length);
}
FloatBuffer buffer = BufferUtils.createFloatBuffer(verts);
vertexBuffers[geomIndex].put(buffer);
//adding indexes
IntBuffer indexBuffer = indexBuffers[geomIndex];
if (indexBuffer == null) {
//the amount of faces in the final mesh is the amount of edges in the bevel curve
//(which is less by 1 than its number of vertices)
//multiplied by 2 (because each edge has two faces assigned on both sides)
//and multiplied by the amount of bevel curve repeats which is equal to the amount of vertices on the target curve
//finally we need to subtract the bevel edges amount 2 times because the border edges have only one face attached
//and at last multiply everything by 3 because each face needs 3 indexes to be described
int bevelCurveEdgesAmount = verts.length - 1;
indexBuffer = BufferUtils.createIntBuffer(((bevelCurveEdgesAmount << 1) * curvePoints.length - bevelCurveEdgesAmount << 1) * 3);
indexBuffers[geomIndex] = indexBuffer;
}
int pointOffset = i / 3 * verts.length;
if (i + 3 < curvePoints.length) {
for (int index = 0; index < verts.length - 1; ++index) {
indexBuffer.put(index + pointOffset);
indexBuffer.put(index + pointOffset + 1);
indexBuffer.put(verts.length + index + pointOffset);
indexBuffer.put(verts.length + index + pointOffset);
indexBuffer.put(index + pointOffset + 1);
indexBuffer.put(verts.length + index + pointOffset + 1);
}
}
}
}
//calculating the normals
for (int geomIndex = 0; geomIndex < bevelObject.size(); ++geomIndex) {
Vector3f[] allVerts = BufferUtils.getVector3Array(vertexBuffers[geomIndex]);
int[] allIndices = BufferUtils.getIntArray(indexBuffers[geomIndex]);
for (int i = 0; i < allIndices.length - 3; i += 3) {
Vector3f n = FastMath.computeNormal(allVerts[allIndices[i]], allVerts[allIndices[i + 1]], allVerts[allIndices[i + 2]]);
meshHelper.addNormal(n, normalMap, smooth, allVerts[allIndices[i]], allVerts[allIndices[i + 1]], allVerts[allIndices[i + 2]]);
}
if (normalBuffers[geomIndex] == null) {
normalBuffers[geomIndex] = BufferUtils.createFloatBuffer(allVerts.length * 3);
}
for (Vector3f v : allVerts) {
Vector3f n = normalMap.get(v);
normalBuffers[geomIndex].put(n.x);
normalBuffers[geomIndex].put(n.y);
normalBuffers[geomIndex].put(n.z);
}
}
List<Geometry> result = new ArrayList<Geometry>(vertexBuffers.length);
Float oneReferenceToCurveLength = new Float(curveLength);//its important for array modifier to use one reference here
for (int i = 0; i < vertexBuffers.length; ++i) {
Mesh mesh = new Mesh();
mesh.setBuffer(Type.Position, 3, vertexBuffers[i]);
mesh.setBuffer(Type.Index, 3, indexBuffers[i]);
mesh.setBuffer(Type.Normal, 3, normalBuffers[i]);
Geometry g = new Geometry("g" + i, mesh);
g.setUserData("curveLength", oneReferenceToCurveLength);
g.updateModelBound();
result.add(g);
}
return result;
}
/**
* This method loads the taper object.
* @param taperStructure
* the taper structure
* @param blenderContext
* the blender context
* @return the taper object
* @throws BlenderFileException
*/
protected Curve loadTaperObject(Structure taperStructure, BlenderContext blenderContext) throws BlenderFileException {
//reading nurbs
List<Structure> nurbStructures = ((Structure) taperStructure.getFieldValue("nurb")).evaluateListBase(blenderContext);
for (Structure nurb : nurbStructures) {
Pointer pBezierTriple = (Pointer) nurb.getFieldValue("bezt");
if (pBezierTriple.isNotNull()) {
//creating the curve object
BezierCurve bezierCurve = new BezierCurve(0, pBezierTriple.fetchData(blenderContext.getInputStream()), 3);
List<Vector3f> controlPoints = bezierCurve.getControlPoints();
//removing the first and last handles
controlPoints.remove(0);
controlPoints.remove(controlPoints.size() - 1);
//return the first taper curve that has more than 3 control points
if (controlPoints.size() > 3) {
Spline spline = new Spline(SplineType.Bezier, controlPoints, 0, false);
int resolution = ((Number) taperStructure.getFieldValue("resolu")).intValue();
return new Curve(spline, resolution);
}
}
}
return null;
}
/**
* This method returns the translation of the curve. The UP axis is taken into account here.
* @param curveStructure
* the curve structure
* @return curve translation
*/
@SuppressWarnings("unchecked")
protected Vector3f getLoc(Structure curveStructure) {
DynamicArray<Number> locArray = (DynamicArray<Number>) curveStructure.getFieldValue("loc");
if (fixUpAxis) {
return new Vector3f(locArray.get(0).floatValue(), locArray.get(1).floatValue(), -locArray.get(2).floatValue());
} else {
return new Vector3f(locArray.get(0).floatValue(), locArray.get(2).floatValue(), locArray.get(1).floatValue());
}
}
@Override
public boolean shouldBeLoaded(Structure structure, BlenderContext blenderContext) {
return true;
}
}