blob: c23c8721af35d721ee6cd5d1f1f415dab12be492 [file] [log] [blame]
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test TestShrinkDefragmentedHeap
* @bug 8038423
* @summary Verify that heap shrinks after GC in the presence of fragmentation due to humongous objects
* 1. allocate small objects mixed with humongous ones
* "ssssHssssHssssHssssHssssHssssHssssH"
* 2. release all allocated object except the last humongous one
* "..................................H"
* 3. invoke gc and check that memory returned to the system (amount of committed memory got down)
*
* @library /testlibrary
*/
import java.lang.management.ManagementFactory;
import java.lang.management.MemoryUsage;
import java.util.ArrayList;
import java.util.List;
import sun.management.ManagementFactoryHelper;
import static com.oracle.java.testlibrary.Asserts.*;
import com.oracle.java.testlibrary.ProcessTools;
import com.oracle.java.testlibrary.OutputAnalyzer;
public class TestShrinkDefragmentedHeap {
// Since we store all the small objects, they become old and old regions are also allocated at the bottom of the heap
// together with humongous regions. So if there are a lot of old regions in the lower part of the heap,
// the humongous regions will be allocated in the upper part of the heap anyway.
// To avoid this the Eden needs to be big enough to fit all the small objects.
private static final int INITIAL_HEAP_SIZE = 200 * 1024 * 1024;
private static final int MINIMAL_YOUNG_SIZE = 190 * 1024 * 1024;
private static final int REGION_SIZE = 1 * 1024 * 1024;
public static void main(String[] args) throws Exception, Throwable {
ProcessBuilder pb = ProcessTools.createJavaProcessBuilder(
"-XX:InitialHeapSize=" + INITIAL_HEAP_SIZE,
"-Xmn" + MINIMAL_YOUNG_SIZE,
"-XX:MinHeapFreeRatio=10",
"-XX:MaxHeapFreeRatio=11",
"-XX:+UseG1GC",
"-XX:G1HeapRegionSize=" + REGION_SIZE,
"-XX:-ExplicitGCInvokesConcurrent",
"-verbose:gc",
GCTest.class.getName()
);
OutputAnalyzer output = ProcessTools.executeProcess(pb);
output.shouldHaveExitValue(0);
}
static class GCTest {
private static final String MIN_FREE_RATIO_FLAG_NAME = "MinHeapFreeRatio";
private static final String MAX_FREE_RATIO_FLAG_NAME = "MaxHeapFreeRatio";
private static final String NEW_SIZE_FLAG_NAME = "NewSize";
private static final ArrayList<ArrayList<byte[]>> garbage = new ArrayList<>();
private static final int SMALL_OBJS_SIZE = 10 * 1024; // 10kB
private static final int SMALL_OBJS_COUNT = MINIMAL_YOUNG_SIZE / (SMALL_OBJS_SIZE-1);
private static final int ALLOCATE_COUNT = 3;
// try to put all humongous object into gap between min young size and initial heap size
// to avoid implicit GCs
private static final int HUMONG_OBJS_SIZE = (int) Math.max(
(INITIAL_HEAP_SIZE - MINIMAL_YOUNG_SIZE) / ALLOCATE_COUNT / 4,
REGION_SIZE * 1.1
);
private static final long initialHeapSize = getHeapMemoryUsage().getUsed();
public static void main(String[] args) throws InterruptedException {
new GCTest().test();
}
private void test() throws InterruptedException {
MemoryUsagePrinter.printMemoryUsage("init");
allocate();
System.gc();
MemoryUsage muFull = getHeapMemoryUsage();
MemoryUsagePrinter.printMemoryUsage("allocated");
free();
//Thread.sleep(1000); // sleep before measures due lags in JMX
MemoryUsage muFree = getHeapMemoryUsage();
MemoryUsagePrinter.printMemoryUsage("free");
assertLessThan(muFree.getCommitted(), muFull.getCommitted(), prepareMessageCommittedIsNotLess() );
}
private void allocate() {
System.out.format("Will allocate objects of small size = %s and humongous size = %s",
MemoryUsagePrinter.humanReadableByteCount(SMALL_OBJS_SIZE, false),
MemoryUsagePrinter.humanReadableByteCount(HUMONG_OBJS_SIZE, false)
);
for (int i = 0; i < ALLOCATE_COUNT; i++) {
ArrayList<byte[]> stuff = new ArrayList<>();
allocateList(stuff, SMALL_OBJS_COUNT / ALLOCATE_COUNT, SMALL_OBJS_SIZE);
garbage.add(stuff);
ArrayList<byte[]> humongousStuff = new ArrayList<>();
allocateList(humongousStuff, 4, HUMONG_OBJS_SIZE);
garbage.add(humongousStuff);
}
}
private void free() {
// do not free last one list
garbage.subList(0, garbage.size() - 1).clear();
// do not free last one element from last list
ArrayList stuff = garbage.get(garbage.size() - 1);
if (stuff.size() > 1) {
stuff.subList(0, stuff.size() - 1).clear();
}
System.gc();
}
private String prepareMessageCommittedIsNotLess() {
return String.format(
"committed free heap size is not less than committed full heap size, heap hasn't been shrunk?%n"
+ "%s = %s%n%s = %s",
MIN_FREE_RATIO_FLAG_NAME,
ManagementFactoryHelper.getDiagnosticMXBean().getVMOption(MIN_FREE_RATIO_FLAG_NAME).getValue(),
MAX_FREE_RATIO_FLAG_NAME,
ManagementFactoryHelper.getDiagnosticMXBean().getVMOption(MAX_FREE_RATIO_FLAG_NAME).getValue()
);
}
private static void allocateList(List garbage, int count, int size) {
for (int i = 0; i < count; i++) {
garbage.add(new byte[size]);
}
}
}
static MemoryUsage getHeapMemoryUsage() {
return ManagementFactory.getMemoryMXBean().getHeapMemoryUsage();
}
/**
* Prints memory usage to standard output
*/
static class MemoryUsagePrinter {
public static String humanReadableByteCount(long bytes, boolean si) {
int unit = si ? 1000 : 1024;
if (bytes < unit) {
return bytes + " B";
}
int exp = (int) (Math.log(bytes) / Math.log(unit));
String pre = (si ? "kMGTPE" : "KMGTPE").charAt(exp - 1) + (si ? "" : "i");
return String.format("%.1f %sB", bytes / Math.pow(unit, exp), pre);
}
public static void printMemoryUsage(String label) {
MemoryUsage memusage = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage();
float freeratio = 1f - (float) memusage.getUsed() / memusage.getCommitted();
System.out.format("[%-24s] init: %-7s, used: %-7s, comm: %-7s, freeRatio ~= %.1f%%%n",
label,
humanReadableByteCount(memusage.getInit(), false),
humanReadableByteCount(memusage.getUsed(), false),
humanReadableByteCount(memusage.getCommitted(), false),
freeratio * 100
);
}
}
}