blob: 53fd439cbf41782a482d1bc1ffce8bcf5634d148 [file] [log] [blame]
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/**
* @test
* @bug 6959129
* @summary COMPARISON WITH INTEGER.MAX_INT DOES NOT WORK CORRECTLY IN THE CLIENT VM.
*
* @run main/othervm -ea Test6959129
*/
public class Test6959129 {
public static void main(String[] args) {
long start = System.currentTimeMillis();
int min = Integer.MAX_VALUE-30000;
int max = Integer.MAX_VALUE;
long maxmoves = 0;
try {
maxmoves = maxMoves(min, max);
} catch (AssertionError e) {
System.out.println("Passed");
System.exit(95);
}
System.out.println("maxMove:" + maxmoves);
System.out.println("FAILED");
System.exit(97);
}
/**
* Imperative implementation that returns the length hailstone moves
* for a given number.
*/
public static long hailstoneLengthImp(long n) {
long moves = 0;
while (n != 1) {
assert n > 1;
if (isEven(n)) {
n = n / 2;
} else {
n = 3 * n + 1;
}
++moves;
}
return moves;
}
private static boolean isEven(long n) {
return n % 2 == 0;
}
/**
* Returns the maximum length of the hailstone sequence for numbers
* between min to max.
*
* For rec1 - Assume that min is bigger than max.
*/
public static long maxMoves(int min, int max) {
long maxmoves = 0;
for (int n = min; n <= max; n++) {
if ((n & 1023) == 0) System.out.println(n);
long moves = hailstoneLengthImp(n);
if (moves > maxmoves) {
maxmoves = moves;
}
}
return maxmoves;
}
}