blob: 1510cd596b4af0579e4797ddb8da628ba4437dd7 [file] [log] [blame]
/*
* Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "memory/metaspace.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/orderAccess.inline.hpp"
#include "services/lowMemoryDetector.hpp"
#include "services/management.hpp"
#include "services/memoryManager.hpp"
#include "services/memoryPool.hpp"
#include "utilities/macros.hpp"
#include "utilities/globalDefinitions.hpp"
MemoryPool::MemoryPool(const char* name,
PoolType type,
size_t init_size,
size_t max_size,
bool support_usage_threshold,
bool support_gc_threshold) {
_name = name;
_initial_size = init_size;
_max_size = max_size;
(void)const_cast<instanceOop&>(_memory_pool_obj = NULL);
_available_for_allocation = true;
_num_managers = 0;
_type = type;
// initialize the max and init size of collection usage
_after_gc_usage = MemoryUsage(_initial_size, 0, 0, _max_size);
_usage_sensor = NULL;
_gc_usage_sensor = NULL;
// usage threshold supports both high and low threshold
_usage_threshold = new ThresholdSupport(support_usage_threshold, support_usage_threshold);
// gc usage threshold supports only high threshold
_gc_usage_threshold = new ThresholdSupport(support_gc_threshold, support_gc_threshold);
}
void MemoryPool::add_manager(MemoryManager* mgr) {
assert(_num_managers < MemoryPool::max_num_managers, "_num_managers exceeds the max");
if (_num_managers < MemoryPool::max_num_managers) {
_managers[_num_managers] = mgr;
_num_managers++;
}
}
// Returns an instanceHandle of a MemoryPool object.
// It creates a MemoryPool instance when the first time
// this function is called.
instanceOop MemoryPool::get_memory_pool_instance(TRAPS) {
// Must do an acquire so as to force ordering of subsequent
// loads from anything _memory_pool_obj points to or implies.
instanceOop pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
if (pool_obj == NULL) {
// It's ok for more than one thread to execute the code up to the locked region.
// Extra pool instances will just be gc'ed.
Klass* k = Management::sun_management_ManagementFactory_klass(CHECK_NULL);
instanceKlassHandle ik(THREAD, k);
Handle pool_name = java_lang_String::create_from_str(_name, CHECK_NULL);
jlong usage_threshold_value = (_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
jlong gc_usage_threshold_value = (_gc_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
JavaValue result(T_OBJECT);
JavaCallArguments args;
args.push_oop(pool_name); // Argument 1
args.push_int((int) is_heap()); // Argument 2
Symbol* method_name = vmSymbols::createMemoryPool_name();
Symbol* signature = vmSymbols::createMemoryPool_signature();
args.push_long(usage_threshold_value); // Argument 3
args.push_long(gc_usage_threshold_value); // Argument 4
JavaCalls::call_static(&result,
ik,
method_name,
signature,
&args,
CHECK_NULL);
instanceOop p = (instanceOop) result.get_jobject();
instanceHandle pool(THREAD, p);
{
// Get lock since another thread may have create the instance
MutexLocker ml(Management_lock);
// Check if another thread has created the pool. We reload
// _memory_pool_obj here because some other thread may have
// initialized it while we were executing the code before the lock.
//
// The lock has done an acquire, so the load can't float above it,
// but we need to do a load_acquire as above.
pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
if (pool_obj != NULL) {
return pool_obj;
}
// Get the address of the object we created via call_special.
pool_obj = pool();
// Use store barrier to make sure the memory accesses associated
// with creating the pool are visible before publishing its address.
// The unlock will publish the store to _memory_pool_obj because
// it does a release first.
OrderAccess::release_store_ptr(&_memory_pool_obj, pool_obj);
}
}
return pool_obj;
}
inline static size_t get_max_value(size_t val1, size_t val2) {
return (val1 > val2 ? val1 : val2);
}
void MemoryPool::record_peak_memory_usage() {
// Caller in JDK is responsible for synchronization -
// acquire the lock for this memory pool before calling VM
MemoryUsage usage = get_memory_usage();
size_t peak_used = get_max_value(usage.used(), _peak_usage.used());
size_t peak_committed = get_max_value(usage.committed(), _peak_usage.committed());
size_t peak_max_size = get_max_value(usage.max_size(), _peak_usage.max_size());
_peak_usage = MemoryUsage(initial_size(), peak_used, peak_committed, peak_max_size);
}
static void set_sensor_obj_at(SensorInfo** sensor_ptr, instanceHandle sh) {
assert(*sensor_ptr == NULL, "Should be called only once");
SensorInfo* sensor = new SensorInfo();
sensor->set_sensor(sh());
*sensor_ptr = sensor;
}
void MemoryPool::set_usage_sensor_obj(instanceHandle sh) {
set_sensor_obj_at(&_usage_sensor, sh);
}
void MemoryPool::set_gc_usage_sensor_obj(instanceHandle sh) {
set_sensor_obj_at(&_gc_usage_sensor, sh);
}
void MemoryPool::oops_do(OopClosure* f) {
f->do_oop((oop*) &_memory_pool_obj);
if (_usage_sensor != NULL) {
_usage_sensor->oops_do(f);
}
if (_gc_usage_sensor != NULL) {
_gc_usage_sensor->oops_do(f);
}
}
ContiguousSpacePool::ContiguousSpacePool(ContiguousSpace* space,
const char* name,
PoolType type,
size_t max_size,
bool support_usage_threshold) :
CollectedMemoryPool(name, type, space->capacity(), max_size,
support_usage_threshold), _space(space) {
}
MemoryUsage ContiguousSpacePool::get_memory_usage() {
size_t maxSize = (available_for_allocation() ? max_size() : 0);
size_t used = used_in_bytes();
size_t committed = _space->capacity();
return MemoryUsage(initial_size(), used, committed, maxSize);
}
SurvivorContiguousSpacePool::SurvivorContiguousSpacePool(DefNewGeneration* gen,
const char* name,
PoolType type,
size_t max_size,
bool support_usage_threshold) :
CollectedMemoryPool(name, type, gen->from()->capacity(), max_size,
support_usage_threshold), _gen(gen) {
}
MemoryUsage SurvivorContiguousSpacePool::get_memory_usage() {
size_t maxSize = (available_for_allocation() ? max_size() : 0);
size_t used = used_in_bytes();
size_t committed = committed_in_bytes();
return MemoryUsage(initial_size(), used, committed, maxSize);
}
#if INCLUDE_ALL_GCS
CompactibleFreeListSpacePool::CompactibleFreeListSpacePool(CompactibleFreeListSpace* space,
const char* name,
PoolType type,
size_t max_size,
bool support_usage_threshold) :
CollectedMemoryPool(name, type, space->capacity(), max_size,
support_usage_threshold), _space(space) {
}
MemoryUsage CompactibleFreeListSpacePool::get_memory_usage() {
size_t maxSize = (available_for_allocation() ? max_size() : 0);
size_t used = used_in_bytes();
size_t committed = _space->capacity();
return MemoryUsage(initial_size(), used, committed, maxSize);
}
#endif // INCLUDE_ALL_GCS
GenerationPool::GenerationPool(Generation* gen,
const char* name,
PoolType type,
bool support_usage_threshold) :
CollectedMemoryPool(name, type, gen->capacity(), gen->max_capacity(),
support_usage_threshold), _gen(gen) {
}
MemoryUsage GenerationPool::get_memory_usage() {
size_t used = used_in_bytes();
size_t committed = _gen->capacity();
size_t maxSize = (available_for_allocation() ? max_size() : 0);
return MemoryUsage(initial_size(), used, committed, maxSize);
}
CodeHeapPool::CodeHeapPool(CodeHeap* codeHeap, const char* name, bool support_usage_threshold) :
MemoryPool(name, NonHeap, codeHeap->capacity(), codeHeap->max_capacity(),
support_usage_threshold, false), _codeHeap(codeHeap) {
}
MemoryUsage CodeHeapPool::get_memory_usage() {
size_t used = used_in_bytes();
size_t committed = _codeHeap->capacity();
size_t maxSize = (available_for_allocation() ? max_size() : 0);
return MemoryUsage(initial_size(), used, committed, maxSize);
}
MetaspacePool::MetaspacePool() :
MemoryPool("Metaspace", NonHeap, 0, calculate_max_size(), true, false) { }
MemoryUsage MetaspacePool::get_memory_usage() {
size_t committed = MetaspaceAux::committed_bytes();
return MemoryUsage(initial_size(), used_in_bytes(), committed, max_size());
}
size_t MetaspacePool::used_in_bytes() {
return MetaspaceAux::used_bytes();
}
size_t MetaspacePool::calculate_max_size() const {
return FLAG_IS_CMDLINE(MaxMetaspaceSize) ? MaxMetaspaceSize :
MemoryUsage::undefined_size();
}
CompressedKlassSpacePool::CompressedKlassSpacePool() :
MemoryPool("Compressed Class Space", NonHeap, 0, CompressedClassSpaceSize, true, false) { }
size_t CompressedKlassSpacePool::used_in_bytes() {
return MetaspaceAux::used_bytes(Metaspace::ClassType);
}
MemoryUsage CompressedKlassSpacePool::get_memory_usage() {
size_t committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
return MemoryUsage(initial_size(), used_in_bytes(), committed, max_size());
}