blob: 8090de8b9487a7093393518f747c933aac742260 [file] [log] [blame]
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "services/mallocSiteTable.hpp"
/*
* Early os::malloc() calls come from initializations of static variables, long before entering any
* VM code. Upon the arrival of the first os::malloc() call, malloc site hashtable has to be
* initialized, along with the allocation site for the hashtable entries.
* To ensure that malloc site hashtable can be initialized without triggering any additional os::malloc()
* call, the hashtable bucket array and hashtable entry allocation site have to be static.
* It is not a problem for hashtable bucket, since it is an array of pointer type, C runtime just
* allocates a block memory and zero the memory for it.
* But for hashtable entry allocation site object, things get tricky. C runtime not only allocates
* memory for it, but also calls its constructor at some later time. If we initialize the allocation site
* at the first os::malloc() call, the object will be reinitialized when its constructor is called
* by C runtime.
* To workaround above issue, we declare a static size_t array with the size of the CallsiteHashtableEntry,
* the memory is used to instantiate CallsiteHashtableEntry for the hashtable entry allocation site.
* Given it is a primitive type array, C runtime will do nothing other than assign the memory block for the variable,
* which is exactly what we want.
* The same trick is also applied to create NativeCallStack object for CallsiteHashtableEntry memory allocation.
*
* Note: C++ object usually aligns to particular alignment, depends on compiler implementation, we declare
* the memory as size_t arrays, to ensure the memory is aligned to native machine word alignment.
*/
// Reserve enough memory for NativeCallStack and MallocSiteHashtableEntry objects
size_t MallocSiteTable::_hash_entry_allocation_stack[CALC_OBJ_SIZE_IN_TYPE(NativeCallStack, size_t)];
size_t MallocSiteTable::_hash_entry_allocation_site[CALC_OBJ_SIZE_IN_TYPE(MallocSiteHashtableEntry, size_t)];
// Malloc site hashtable buckets
MallocSiteHashtableEntry* MallocSiteTable::_table[MallocSiteTable::table_size];
// concurrent access counter
volatile int MallocSiteTable::_access_count = 0;
// Tracking hashtable contention
NOT_PRODUCT(int MallocSiteTable::_peak_count = 0;)
/*
* Initialize malloc site table.
* Hashtable entry is malloc'd, so it can cause infinite recursion.
* To avoid above problem, we pre-initialize a hash entry for
* this allocation site.
* The method is called during C runtime static variable initialization
* time, it is in single-threaded mode from JVM perspective.
*/
bool MallocSiteTable::initialize() {
assert(sizeof(_hash_entry_allocation_stack) >= sizeof(NativeCallStack), "Sanity Check");
assert(sizeof(_hash_entry_allocation_site) >= sizeof(MallocSiteHashtableEntry),
"Sanity Check");
assert((size_t)table_size <= MAX_MALLOCSITE_TABLE_SIZE, "Hashtable overflow");
// Fake the call stack for hashtable entry allocation
assert(NMT_TrackingStackDepth > 1, "At least one tracking stack");
// Create pseudo call stack for hashtable entry allocation
address pc[3];
if (NMT_TrackingStackDepth >= 3) {
pc[2] = (address)MallocSiteTable::allocation_at;
}
if (NMT_TrackingStackDepth >= 2) {
pc[1] = (address)MallocSiteTable::lookup_or_add;
}
pc[0] = (address)MallocSiteTable::new_entry;
// Instantiate NativeCallStack object, have to use placement new operator. (see comments above)
NativeCallStack* stack = ::new ((void*)_hash_entry_allocation_stack)
NativeCallStack(pc, MIN2(((int)(sizeof(pc) / sizeof(address))), ((int)NMT_TrackingStackDepth)));
// Instantiate hash entry for hashtable entry allocation callsite
MallocSiteHashtableEntry* entry = ::new ((void*)_hash_entry_allocation_site)
MallocSiteHashtableEntry(*stack);
// Add the allocation site to hashtable.
int index = hash_to_index(stack->hash());
_table[index] = entry;
return true;
}
// Walks entries in the hashtable.
// It stops walk if the walker returns false.
bool MallocSiteTable::walk(MallocSiteWalker* walker) {
MallocSiteHashtableEntry* head;
for (int index = 0; index < table_size; index ++) {
head = _table[index];
while (head != NULL) {
if (!walker->do_malloc_site(head->peek())) {
return false;
}
head = (MallocSiteHashtableEntry*)head->next();
}
}
return true;
}
/*
* The hashtable does not have deletion policy on individual entry,
* and each linked list node is inserted via compare-and-swap,
* so each linked list is stable, the contention only happens
* at the end of linked list.
* This method should not return NULL under normal circumstance.
* If NULL is returned, it indicates:
* 1. Out of memory, it cannot allocate new hash entry.
* 2. Overflow hash bucket.
* Under any of above circumstances, caller should handle the situation.
*/
MallocSite* MallocSiteTable::lookup_or_add(const NativeCallStack& key, size_t* bucket_idx,
size_t* pos_idx) {
int index = hash_to_index(key.hash());
assert(index >= 0, "Negative index");
*bucket_idx = (size_t)index;
*pos_idx = 0;
// First entry for this hash bucket
if (_table[index] == NULL) {
MallocSiteHashtableEntry* entry = new_entry(key);
// OOM check
if (entry == NULL) return NULL;
// swap in the head
if (Atomic::cmpxchg_ptr((void*)entry, (volatile void *)&_table[index], NULL) == NULL) {
return entry->data();
}
delete entry;
}
MallocSiteHashtableEntry* head = _table[index];
while (head != NULL && (*pos_idx) <= MAX_BUCKET_LENGTH) {
MallocSite* site = head->data();
if (site->equals(key)) {
// found matched entry
return head->data();
}
if (head->next() == NULL && (*pos_idx) < MAX_BUCKET_LENGTH) {
MallocSiteHashtableEntry* entry = new_entry(key);
// OOM check
if (entry == NULL) return NULL;
if (head->atomic_insert(entry)) {
(*pos_idx) ++;
return entry->data();
}
// contended, other thread won
delete entry;
}
head = (MallocSiteHashtableEntry*)head->next();
(*pos_idx) ++;
}
return NULL;
}
// Access malloc site
MallocSite* MallocSiteTable::malloc_site(size_t bucket_idx, size_t pos_idx) {
assert(bucket_idx < table_size, "Invalid bucket index");
MallocSiteHashtableEntry* head = _table[bucket_idx];
for (size_t index = 0; index < pos_idx && head != NULL;
index ++, head = (MallocSiteHashtableEntry*)head->next());
assert(head != NULL, "Invalid position index");
return head->data();
}
// Allocates MallocSiteHashtableEntry object. Special call stack
// (pre-installed allocation site) has to be used to avoid infinite
// recursion.
MallocSiteHashtableEntry* MallocSiteTable::new_entry(const NativeCallStack& key) {
void* p = AllocateHeap(sizeof(MallocSiteHashtableEntry), mtNMT,
*hash_entry_allocation_stack(), AllocFailStrategy::RETURN_NULL);
return ::new (p) MallocSiteHashtableEntry(key);
}
void MallocSiteTable::reset() {
for (int index = 0; index < table_size; index ++) {
MallocSiteHashtableEntry* head = _table[index];
_table[index] = NULL;
delete_linked_list(head);
}
}
void MallocSiteTable::delete_linked_list(MallocSiteHashtableEntry* head) {
MallocSiteHashtableEntry* p;
while (head != NULL) {
p = head;
head = (MallocSiteHashtableEntry*)head->next();
if (p != (MallocSiteHashtableEntry*)_hash_entry_allocation_site) {
delete p;
}
}
}
void MallocSiteTable::shutdown() {
AccessLock locker(&_access_count);
locker.exclusiveLock();
reset();
}
bool MallocSiteTable::walk_malloc_site(MallocSiteWalker* walker) {
assert(walker != NULL, "NuLL walker");
AccessLock locker(&_access_count);
if (locker.sharedLock()) {
NOT_PRODUCT(_peak_count = MAX2(_peak_count, _access_count);)
return walk(walker);
}
return false;
}
void MallocSiteTable::AccessLock::exclusiveLock() {
jint target;
jint val;
assert(_lock_state != ExclusiveLock, "Can only call once");
assert(*_lock >= 0, "Can not content exclusive lock");
// make counter negative to block out shared locks
do {
val = *_lock;
target = _MAGIC_ + *_lock;
} while (Atomic::cmpxchg(target, _lock, val) != val);
// wait for all readers to exit
while (*_lock != _MAGIC_) {
#ifdef _WINDOWS
os::naked_short_sleep(1);
#else
os::NakedYield();
#endif
}
_lock_state = ExclusiveLock;
}