blob: 2adaf841f2ebe7f3d74cc55a306159b0b9042a8d [file] [log] [blame]
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_RUNTIME_VFRAME_HPP
#define SHARE_VM_RUNTIME_VFRAME_HPP
#include "code/debugInfo.hpp"
#include "code/debugInfoRec.hpp"
#include "code/location.hpp"
#include "oops/oop.hpp"
#include "runtime/frame.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/stackValue.hpp"
#include "runtime/stackValueCollection.hpp"
#include "utilities/growableArray.hpp"
// vframes are virtual stack frames representing source level activations.
// A single frame may hold several source level activations in the case of
// optimized code. The debugging stored with the optimized code enables
// us to unfold a frame as a stack of vframes.
// A cVFrame represents an activation of a non-java method.
// The vframe inheritance hierarchy:
// - vframe
// - javaVFrame
// - interpretedVFrame
// - compiledVFrame ; (used for both compiled Java methods and native stubs)
// - externalVFrame
// - entryVFrame ; special frame created when calling Java from C
// - BasicLock
class vframe: public ResourceObj {
protected:
frame _fr; // Raw frame behind the virtual frame.
RegisterMap _reg_map; // Register map for the raw frame (used to handle callee-saved registers).
JavaThread* _thread; // The thread owning the raw frame.
vframe(const frame* fr, const RegisterMap* reg_map, JavaThread* thread);
vframe(const frame* fr, JavaThread* thread);
public:
// Factory method for creating vframes
static vframe* new_vframe(const frame* f, const RegisterMap *reg_map, JavaThread* thread);
// Accessors
frame fr() const { return _fr; }
CodeBlob* cb() const { return _fr.cb(); }
nmethod* nm() const {
assert( cb() != NULL && cb()->is_nmethod(), "usage");
return (nmethod*) cb();
}
// ???? Does this need to be a copy?
frame* frame_pointer() { return &_fr; }
const RegisterMap* register_map() const { return &_reg_map; }
JavaThread* thread() const { return _thread; }
// Returns the sender vframe
virtual vframe* sender() const;
// Returns the next javaVFrame on the stack (skipping all other kinds of frame)
javaVFrame *java_sender() const;
// Answers if the this is the top vframe in the frame, i.e., if the sender vframe
// is in the caller frame
virtual bool is_top() const { return true; }
// Returns top vframe within same frame (see is_top())
virtual vframe* top() const;
// Type testing operations
virtual bool is_entry_frame() const { return false; }
virtual bool is_java_frame() const { return false; }
virtual bool is_interpreted_frame() const { return false; }
virtual bool is_compiled_frame() const { return false; }
#ifndef PRODUCT
// printing operations
virtual void print_value() const;
virtual void print();
#endif
};
class javaVFrame: public vframe {
public:
// JVM state
virtual Method* method() const = 0;
virtual int bci() const = 0;
virtual StackValueCollection* locals() const = 0;
virtual StackValueCollection* expressions() const = 0;
// the order returned by monitors() is from oldest -> youngest#4418568
virtual GrowableArray<MonitorInfo*>* monitors() const = 0;
// Debugging support via JVMTI.
// NOTE that this is not guaranteed to give correct results for compiled vframes.
// Deoptimize first if necessary.
virtual void set_locals(StackValueCollection* values) const = 0;
// Test operation
bool is_java_frame() const { return true; }
protected:
javaVFrame(const frame* fr, const RegisterMap* reg_map, JavaThread* thread) : vframe(fr, reg_map, thread) {}
javaVFrame(const frame* fr, JavaThread* thread) : vframe(fr, thread) {}
public:
// casting
static javaVFrame* cast(vframe* vf) {
assert(vf == NULL || vf->is_java_frame(), "must be java frame");
return (javaVFrame*) vf;
}
// Return an array of monitors locked by this frame in the youngest to oldest order
GrowableArray<MonitorInfo*>* locked_monitors();
// printing used during stack dumps
void print_lock_info_on(outputStream* st, int frame_count);
void print_lock_info(int frame_count) { print_lock_info_on(tty, frame_count); }
#ifndef PRODUCT
public:
// printing operations
void print();
void print_value() const;
void print_activation(int index) const;
// verify operations
virtual void verify() const;
// Structural compare
bool structural_compare(javaVFrame* other);
#endif
friend class vframe;
};
class interpretedVFrame: public javaVFrame {
public:
// JVM state
Method* method() const;
int bci() const;
StackValueCollection* locals() const;
StackValueCollection* expressions() const;
GrowableArray<MonitorInfo*>* monitors() const;
void set_locals(StackValueCollection* values) const;
// Test operation
bool is_interpreted_frame() const { return true; }
protected:
interpretedVFrame(const frame* fr, const RegisterMap* reg_map, JavaThread* thread) : javaVFrame(fr, reg_map, thread) {};
public:
// Accessors for Byte Code Pointer
u_char* bcp() const;
void set_bcp(u_char* bcp);
// casting
static interpretedVFrame* cast(vframe* vf) {
assert(vf == NULL || vf->is_interpreted_frame(), "must be interpreted frame");
return (interpretedVFrame*) vf;
}
private:
static const int bcp_offset;
intptr_t* locals_addr_at(int offset) const;
StackValueCollection* stack_data(bool expressions) const;
// returns where the parameters starts relative to the frame pointer
int start_of_parameters() const;
#ifndef PRODUCT
public:
// verify operations
void verify() const;
#endif
friend class vframe;
};
class externalVFrame: public vframe {
protected:
externalVFrame(const frame* fr, const RegisterMap* reg_map, JavaThread* thread) : vframe(fr, reg_map, thread) {}
#ifndef PRODUCT
public:
// printing operations
void print_value() const;
void print();
#endif
friend class vframe;
};
class entryVFrame: public externalVFrame {
public:
bool is_entry_frame() const { return true; }
protected:
entryVFrame(const frame* fr, const RegisterMap* reg_map, JavaThread* thread);
public:
// casting
static entryVFrame* cast(vframe* vf) {
assert(vf == NULL || vf->is_entry_frame(), "must be entry frame");
return (entryVFrame*) vf;
}
#ifndef PRODUCT
public:
// printing
void print_value() const;
void print();
#endif
friend class vframe;
};
// A MonitorInfo is a ResourceObject that describes a the pair:
// 1) the owner of the monitor
// 2) the monitor lock
class MonitorInfo : public ResourceObj {
private:
oop _owner; // the object owning the monitor
BasicLock* _lock;
oop _owner_klass; // klass (mirror) if owner was scalar replaced
bool _eliminated;
bool _owner_is_scalar_replaced;
public:
// Constructor
MonitorInfo(oop owner, BasicLock* lock, bool eliminated, bool owner_is_scalar_replaced) {
if (!owner_is_scalar_replaced) {
_owner = owner;
_owner_klass = NULL;
} else {
assert(eliminated, "monitor should be eliminated for scalar replaced object");
_owner = NULL;
_owner_klass = owner;
}
_lock = lock;
_eliminated = eliminated;
_owner_is_scalar_replaced = owner_is_scalar_replaced;
}
// Accessors
oop owner() const {
assert(!_owner_is_scalar_replaced, "should not be called for scalar replaced object");
return _owner;
}
oop owner_klass() const {
assert(_owner_is_scalar_replaced, "should not be called for not scalar replaced object");
return _owner_klass;
}
BasicLock* lock() const { return _lock; }
bool eliminated() const { return _eliminated; }
bool owner_is_scalar_replaced() const { return _owner_is_scalar_replaced; }
};
class vframeStreamCommon : StackObj {
protected:
// common
frame _frame;
JavaThread* _thread;
RegisterMap _reg_map;
enum { interpreted_mode, compiled_mode, at_end_mode } _mode;
int _sender_decode_offset;
// Cached information
Method* _method;
int _bci;
// Should VM activations be ignored or not
bool _stop_at_java_call_stub;
bool fill_in_compiled_inlined_sender();
void fill_from_compiled_frame(int decode_offset);
void fill_from_compiled_native_frame();
void found_bad_method_frame();
void fill_from_interpreter_frame();
bool fill_from_frame();
// Helper routine for security_get_caller_frame
void skip_prefixed_method_and_wrappers();
public:
// Constructor
vframeStreamCommon(JavaThread* thread) : _reg_map(thread, false) {
_thread = thread;
}
// Accessors
Method* method() const { return _method; }
int bci() const { return _bci; }
intptr_t* frame_id() const { return _frame.id(); }
address frame_pc() const { return _frame.pc(); }
CodeBlob* cb() const { return _frame.cb(); }
nmethod* nm() const {
assert( cb() != NULL && cb()->is_nmethod(), "usage");
return (nmethod*) cb();
}
// Frame type
bool is_interpreted_frame() const { return _frame.is_interpreted_frame(); }
bool is_entry_frame() const { return _frame.is_entry_frame(); }
// Iteration
void next() {
// handle frames with inlining
if (_mode == compiled_mode && fill_in_compiled_inlined_sender()) return;
// handle general case
do {
_frame = _frame.sender(&_reg_map);
} while (!fill_from_frame());
}
void security_next();
bool at_end() const { return _mode == at_end_mode; }
// Implements security traversal. Skips depth no. of frame including
// special security frames and prefixed native methods
void security_get_caller_frame(int depth);
// Helper routine for JVM_LatestUserDefinedLoader -- needed for 1.4
// reflection implementation
void skip_reflection_related_frames();
};
class vframeStream : public vframeStreamCommon {
public:
// Constructors
vframeStream(JavaThread* thread, bool stop_at_java_call_stub = false)
: vframeStreamCommon(thread) {
_stop_at_java_call_stub = stop_at_java_call_stub;
if (!thread->has_last_Java_frame()) {
_mode = at_end_mode;
return;
}
_frame = _thread->last_frame();
while (!fill_from_frame()) {
_frame = _frame.sender(&_reg_map);
}
}
// top_frame may not be at safepoint, start with sender
vframeStream(JavaThread* thread, frame top_frame, bool stop_at_java_call_stub = false);
};
inline bool vframeStreamCommon::fill_in_compiled_inlined_sender() {
if (_sender_decode_offset == DebugInformationRecorder::serialized_null) {
return false;
}
fill_from_compiled_frame(_sender_decode_offset);
return true;
}
inline void vframeStreamCommon::fill_from_compiled_frame(int decode_offset) {
_mode = compiled_mode;
// Range check to detect ridiculous offsets.
if (decode_offset == DebugInformationRecorder::serialized_null ||
decode_offset < 0 ||
decode_offset >= nm()->scopes_data_size()) {
// 6379830 AsyncGetCallTrace sometimes feeds us wild frames.
// If we read nmethod::scopes_data at serialized_null (== 0)
// or if read some at other invalid offset, invalid values will be decoded.
// Based on these values, invalid heap locations could be referenced
// that could lead to crashes in product mode.
// Therefore, do not use the decode offset if invalid, but fill the frame
// as it were a native compiled frame (no Java-level assumptions).
#ifdef ASSERT
if (WizardMode) {
tty->print_cr("Error in fill_from_frame: pc_desc for "
INTPTR_FORMAT " not found or invalid at %d",
p2i(_frame.pc()), decode_offset);
nm()->print();
nm()->method()->print_codes();
nm()->print_code();
nm()->print_pcs();
}
#endif
// Provide a cheap fallback in product mode. (See comment above.)
found_bad_method_frame();
fill_from_compiled_native_frame();
return;
}
// Decode first part of scopeDesc
DebugInfoReadStream buffer(nm(), decode_offset);
_sender_decode_offset = buffer.read_int();
_method = buffer.read_method();
_bci = buffer.read_bci();
assert(_method->is_method(), "checking type of decoded method");
}
// The native frames are handled specially. We do not rely on ScopeDesc info
// since the pc might not be exact due to the _last_native_pc trick.
inline void vframeStreamCommon::fill_from_compiled_native_frame() {
_mode = compiled_mode;
_sender_decode_offset = DebugInformationRecorder::serialized_null;
_method = nm()->method();
_bci = 0;
}
inline bool vframeStreamCommon::fill_from_frame() {
// Interpreted frame
if (_frame.is_interpreted_frame()) {
fill_from_interpreter_frame();
return true;
}
// Compiled frame
if (cb() != NULL && cb()->is_nmethod()) {
if (nm()->is_native_method()) {
// Do not rely on scopeDesc since the pc might be unprecise due to the _last_native_pc trick.
fill_from_compiled_native_frame();
} else {
PcDesc* pc_desc = nm()->pc_desc_at(_frame.pc());
int decode_offset;
if (pc_desc == NULL) {
// Should not happen, but let fill_from_compiled_frame handle it.
// If we are trying to walk the stack of a thread that is not
// at a safepoint (like AsyncGetCallTrace would do) then this is an
// acceptable result. [ This is assuming that safe_for_sender
// is so bullet proof that we can trust the frames it produced. ]
//
// So if we see that the thread is not safepoint safe
// then simply produce the method and a bci of zero
// and skip the possibility of decoding any inlining that
// may be present. That is far better than simply stopping (or
// asserting. If however the thread is safepoint safe this
// is the sign of a compiler bug and we'll let
// fill_from_compiled_frame handle it.
JavaThreadState state = _thread->thread_state();
// in_Java should be good enough to test safepoint safety
// if state were say in_Java_trans then we'd expect that
// the pc would have already been slightly adjusted to
// one that would produce a pcDesc since the trans state
// would be one that might in fact anticipate a safepoint
if (state == _thread_in_Java ) {
// This will get a method a zero bci and no inlining.
// Might be nice to have a unique bci to signify this
// particular case but for now zero will do.
fill_from_compiled_native_frame();
// There is something to be said for setting the mode to
// at_end_mode to prevent trying to walk further up the
// stack. There is evidence that if we walk any further
// that we could produce a bad stack chain. However until
// we see evidence that allowing this causes us to find
// frames bad enough to cause segv's or assertion failures
// we don't do it as while we may get a bad call chain the
// probability is much higher (several magnitudes) that we
// get good data.
return true;
}
decode_offset = DebugInformationRecorder::serialized_null;
} else {
decode_offset = pc_desc->scope_decode_offset();
}
fill_from_compiled_frame(decode_offset);
}
return true;
}
// End of stack?
if (_frame.is_first_frame() || (_stop_at_java_call_stub && _frame.is_entry_frame())) {
_mode = at_end_mode;
return true;
}
return false;
}
inline void vframeStreamCommon::fill_from_interpreter_frame() {
Method* method = _frame.interpreter_frame_method();
intptr_t bcx = _frame.interpreter_frame_bcx();
int bci = method->validate_bci_from_bcx(bcx);
// 6379830 AsyncGetCallTrace sometimes feeds us wild frames.
// AsyncGetCallTrace interrupts the VM asynchronously. As a result
// it is possible to access an interpreter frame for which
// no Java-level information is yet available (e.g., becasue
// the frame was being created when the VM interrupted it).
// In this scenario, pretend that the interpreter is at the point
// of entering the method.
if (bci < 0) {
found_bad_method_frame();
bci = 0;
}
_mode = interpreted_mode;
_method = method;
_bci = bci;
}
#endif // SHARE_VM_RUNTIME_VFRAME_HPP