blob: 52a0c36ebd72c676c5a6a7b70df75688e9fdf206 [file] [log] [blame]
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_SUBNODE_HPP
#define SHARE_VM_OPTO_SUBNODE_HPP
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/type.hpp"
// Portions of code courtesy of Clifford Click
//------------------------------SUBNode----------------------------------------
// Class SUBTRACTION functionality. This covers all the usual 'subtract'
// behaviors. Subtract-integer, -float, -double, binary xor, compare-integer,
// -float, and -double are all inherited from this class. The compare
// functions behave like subtract functions, except that all negative answers
// are compressed into -1, and all positive answers compressed to 1.
class SubNode : public Node {
public:
SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
init_class_id(Class_Sub);
}
// Handle algebraic identities here. If we have an identity, return the Node
// we are equivalent to. We look for "add of zero" as an identity.
virtual Node *Identity( PhaseTransform *phase );
// Compute a new Type for this node. Basically we just do the pre-check,
// then call the virtual add() to set the type.
virtual const Type *Value( PhaseTransform *phase ) const;
const Type* Value_common( PhaseTransform *phase ) const;
// Supplied function returns the subtractend of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
virtual const Type *sub( const Type *, const Type * ) const = 0;
// Supplied function to return the additive identity type.
// This is returned whenever the subtracts inputs are the same.
virtual const Type *add_id() const = 0;
};
// NOTE: SubINode should be taken away and replaced by add and negate
//------------------------------SubINode---------------------------------------
// Subtract 2 integers
class SubINode : public SubNode {
public:
SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *sub( const Type *, const Type * ) const;
const Type *add_id() const { return TypeInt::ZERO; }
const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------SubLNode---------------------------------------
// Subtract 2 integers
class SubLNode : public SubNode {
public:
SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *sub( const Type *, const Type * ) const;
const Type *add_id() const { return TypeLong::ZERO; }
const Type *bottom_type() const { return TypeLong::LONG; }
virtual uint ideal_reg() const { return Op_RegL; }
};
// NOTE: SubFPNode should be taken away and replaced by add and negate
//------------------------------SubFPNode--------------------------------------
// Subtract 2 floats or doubles
class SubFPNode : public SubNode {
protected:
SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
public:
const Type *Value( PhaseTransform *phase ) const;
};
// NOTE: SubFNode should be taken away and replaced by add and negate
//------------------------------SubFNode---------------------------------------
// Subtract 2 doubles
class SubFNode : public SubFPNode {
public:
SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *sub( const Type *, const Type * ) const;
const Type *add_id() const { return TypeF::ZERO; }
const Type *bottom_type() const { return Type::FLOAT; }
virtual uint ideal_reg() const { return Op_RegF; }
};
// NOTE: SubDNode should be taken away and replaced by add and negate
//------------------------------SubDNode---------------------------------------
// Subtract 2 doubles
class SubDNode : public SubFPNode {
public:
SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *sub( const Type *, const Type * ) const;
const Type *add_id() const { return TypeD::ZERO; }
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------CmpNode---------------------------------------
// Compare 2 values, returning condition codes (-1, 0 or 1).
class CmpNode : public SubNode {
public:
CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
init_class_id(Class_Cmp);
}
virtual Node *Identity( PhaseTransform *phase );
const Type *add_id() const { return TypeInt::ZERO; }
const Type *bottom_type() const { return TypeInt::CC; }
virtual uint ideal_reg() const { return Op_RegFlags; }
};
//------------------------------CmpINode---------------------------------------
// Compare 2 signed values, returning condition codes (-1, 0 or 1).
class CmpINode : public CmpNode {
public:
CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *sub( const Type *, const Type * ) const;
};
//------------------------------CmpUNode---------------------------------------
// Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
class CmpUNode : public CmpNode {
public:
CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *sub( const Type *, const Type * ) const;
const Type *Value( PhaseTransform *phase ) const;
bool is_index_range_check() const;
};
//------------------------------CmpPNode---------------------------------------
// Compare 2 pointer values, returning condition codes (-1, 0 or 1).
class CmpPNode : public CmpNode {
public:
CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *sub( const Type *, const Type * ) const;
};
//------------------------------CmpNNode--------------------------------------
// Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
class CmpNNode : public CmpNode {
public:
CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *sub( const Type *, const Type * ) const;
};
//------------------------------CmpLNode---------------------------------------
// Compare 2 long values, returning condition codes (-1, 0 or 1).
class CmpLNode : public CmpNode {
public:
CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *sub( const Type *, const Type * ) const;
};
//------------------------------CmpULNode---------------------------------------
// Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
class CmpULNode : public CmpNode {
public:
CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
virtual int Opcode() const;
virtual const Type* sub(const Type*, const Type*) const;
};
//------------------------------CmpL3Node--------------------------------------
// Compare 2 long values, returning integer value (-1, 0 or 1).
class CmpL3Node : public CmpLNode {
public:
CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
// Since it is not consumed by Bools, it is not really a Cmp.
init_class_id(Class_Sub);
}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------CmpFNode---------------------------------------
// Compare 2 float values, returning condition codes (-1, 0 or 1).
// This implements the Java bytecode fcmpl, so unordered returns -1.
// Operands may not commute.
class CmpFNode : public CmpNode {
public:
CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------CmpF3Node--------------------------------------
// Compare 2 float values, returning integer value (-1, 0 or 1).
// This implements the Java bytecode fcmpl, so unordered returns -1.
// Operands may not commute.
class CmpF3Node : public CmpFNode {
public:
CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
// Since it is not consumed by Bools, it is not really a Cmp.
init_class_id(Class_Sub);
}
virtual int Opcode() const;
// Since it is not consumed by Bools, it is not really a Cmp.
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------CmpDNode---------------------------------------
// Compare 2 double values, returning condition codes (-1, 0 or 1).
// This implements the Java bytecode dcmpl, so unordered returns -1.
// Operands may not commute.
class CmpDNode : public CmpNode {
public:
CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};
//------------------------------CmpD3Node--------------------------------------
// Compare 2 double values, returning integer value (-1, 0 or 1).
// This implements the Java bytecode dcmpl, so unordered returns -1.
// Operands may not commute.
class CmpD3Node : public CmpDNode {
public:
CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
// Since it is not consumed by Bools, it is not really a Cmp.
init_class_id(Class_Sub);
}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------BoolTest---------------------------------------
// Convert condition codes to a boolean test value (0 or -1).
// We pick the values as 3 bits; the low order 2 bits we compare against the
// condition codes, the high bit flips the sense of the result.
struct BoolTest VALUE_OBJ_CLASS_SPEC {
enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, illegal = 8 };
mask _test;
BoolTest( mask btm ) : _test(btm) {}
const Type *cc2logical( const Type *CC ) const;
// Commute the test. I use a small table lookup. The table is created as
// a simple char array where each element is the ASCII version of a 'mask'
// enum from above.
mask commute( ) const { return mask("032147658"[_test]-'0'); }
mask negate( ) const { return mask(_test^4); }
bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
void dump_on(outputStream *st) const;
};
//------------------------------BoolNode---------------------------------------
// A Node to convert a Condition Codes to a Logical result.
class BoolNode : public Node {
virtual uint hash() const;
virtual uint cmp( const Node &n ) const;
virtual uint size_of() const;
public:
const BoolTest _test;
BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
init_class_id(Class_Bool);
}
// Convert an arbitrary int value to a Bool or other suitable predicate.
static Node* make_predicate(Node* test_value, PhaseGVN* phase);
// Convert self back to an integer value.
Node* as_int_value(PhaseGVN* phase);
// Invert sense of self, returning new Bool.
BoolNode* negate(PhaseGVN* phase);
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
virtual const Type *bottom_type() const { return TypeInt::BOOL; }
uint match_edge(uint idx) const { return 0; }
virtual uint ideal_reg() const { return Op_RegI; }
bool is_counted_loop_exit_test();
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
//------------------------------AbsNode----------------------------------------
// Abstract class for absolute value. Mostly used to get a handy wrapper
// for finding this pattern in the graph.
class AbsNode : public Node {
public:
AbsNode( Node *value ) : Node(0,value) {}
};
//------------------------------AbsINode---------------------------------------
// Absolute value an integer. Since a naive graph involves control flow, we
// "match" it in the ideal world (so the control flow can be removed).
class AbsINode : public AbsNode {
public:
AbsINode( Node *in1 ) : AbsNode(in1) {}
virtual int Opcode() const;
const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------AbsFNode---------------------------------------
// Absolute value a float, a common float-point idiom with a cheap hardware
// implemention on most chips. Since a naive graph involves control flow, we
// "match" it in the ideal world (so the control flow can be removed).
class AbsFNode : public AbsNode {
public:
AbsFNode( Node *in1 ) : AbsNode(in1) {}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::FLOAT; }
virtual uint ideal_reg() const { return Op_RegF; }
};
//------------------------------AbsDNode---------------------------------------
// Absolute value a double, a common float-point idiom with a cheap hardware
// implemention on most chips. Since a naive graph involves control flow, we
// "match" it in the ideal world (so the control flow can be removed).
class AbsDNode : public AbsNode {
public:
AbsDNode( Node *in1 ) : AbsNode(in1) {}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------CmpLTMaskNode----------------------------------
// If p < q, return -1 else return 0. Nice for flow-free idioms.
class CmpLTMaskNode : public Node {
public:
CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
virtual int Opcode() const;
const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------NegNode----------------------------------------
class NegNode : public Node {
public:
NegNode( Node *in1 ) : Node(0,in1) {}
};
//------------------------------NegFNode---------------------------------------
// Negate value a float. Negating 0.0 returns -0.0, but subtracting from
// zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction
// cannot be used to replace negation we have to implement negation as ideal
// node; note that negation and addition can replace subtraction.
class NegFNode : public NegNode {
public:
NegFNode( Node *in1 ) : NegNode(in1) {}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::FLOAT; }
virtual uint ideal_reg() const { return Op_RegF; }
};
//------------------------------NegDNode---------------------------------------
// Negate value a double. Negating 0.0 returns -0.0, but subtracting from
// zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction
// cannot be used to replace negation we have to implement negation as ideal
// node; note that negation and addition can replace subtraction.
class NegDNode : public NegNode {
public:
NegDNode( Node *in1 ) : NegNode(in1) {}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------CosDNode---------------------------------------
// Cosinus of a double
class CosDNode : public Node {
public:
CosDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
init_flags(Flag_is_expensive);
C->add_expensive_node(this);
}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------CosDNode---------------------------------------
// Sinus of a double
class SinDNode : public Node {
public:
SinDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
init_flags(Flag_is_expensive);
C->add_expensive_node(this);
}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------TanDNode---------------------------------------
// tangens of a double
class TanDNode : public Node {
public:
TanDNode(Compile* C, Node *c,Node *in1) : Node(c, in1) {
init_flags(Flag_is_expensive);
C->add_expensive_node(this);
}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------AtanDNode--------------------------------------
// arcus tangens of a double
class AtanDNode : public Node {
public:
AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------SqrtDNode--------------------------------------
// square root a double
class SqrtDNode : public Node {
public:
SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
init_flags(Flag_is_expensive);
C->add_expensive_node(this);
}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------ExpDNode---------------------------------------
// Exponentiate a double
class ExpDNode : public Node {
public:
ExpDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
init_flags(Flag_is_expensive);
C->add_expensive_node(this);
}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------LogDNode---------------------------------------
// Log_e of a double
class LogDNode : public Node {
public:
LogDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
init_flags(Flag_is_expensive);
C->add_expensive_node(this);
}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------Log10DNode---------------------------------------
// Log_10 of a double
class Log10DNode : public Node {
public:
Log10DNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
init_flags(Flag_is_expensive);
C->add_expensive_node(this);
}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------PowDNode---------------------------------------
// Raise a double to a double power
class PowDNode : public Node {
public:
PowDNode(Compile* C, Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {
init_flags(Flag_is_expensive);
C->add_expensive_node(this);
}
virtual int Opcode() const;
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual const Type *Value( PhaseTransform *phase ) const;
};
//-------------------------------ReverseBytesINode--------------------------------
// reverse bytes of an integer
class ReverseBytesINode : public Node {
public:
ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
virtual int Opcode() const;
const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//-------------------------------ReverseBytesLNode--------------------------------
// reverse bytes of a long
class ReverseBytesLNode : public Node {
public:
ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
virtual int Opcode() const;
const Type *bottom_type() const { return TypeLong::LONG; }
virtual uint ideal_reg() const { return Op_RegL; }
};
//-------------------------------ReverseBytesUSNode--------------------------------
// reverse bytes of an unsigned short / char
class ReverseBytesUSNode : public Node {
public:
ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
virtual int Opcode() const;
const Type *bottom_type() const { return TypeInt::CHAR; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//-------------------------------ReverseBytesSNode--------------------------------
// reverse bytes of a short
class ReverseBytesSNode : public Node {
public:
ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
virtual int Opcode() const;
const Type *bottom_type() const { return TypeInt::SHORT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
#endif // SHARE_VM_OPTO_SUBNODE_HPP