blob: 0d45c7a50ab2774a7e45980bf2ca610d9d482f37 [file] [log] [blame]
/*
* Copyright (c) 2006, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_OPTOREG_HPP
#define SHARE_VM_OPTO_OPTOREG_HPP
//------------------------------OptoReg----------------------------------------
// We eventually need Registers for the Real World. Registers are essentially
// non-SSA names. A Register is represented as a number. Non-regular values
// (e.g., Control, Memory, I/O) use the Special register. The actual machine
// registers (as described in the ADL file for a machine) start at zero.
// Stack-slots (spill locations) start at the nest Chunk past the last machine
// register.
//
// Note that stack spill-slots are treated as a very large register set.
// They have all the correct properties for a Register: not aliased (unique
// named). There is some simple mapping from a stack-slot register number
// to the actual location on the stack; this mapping depends on the calling
// conventions and is described in the ADL.
//
// Note that Name is not enum. C++ standard defines that the range of enum
// is the range of smallest bit-field that can represent all enumerators
// declared in the enum. The result of assigning a value to enum is undefined
// if the value is outside the enumeration's valid range. OptoReg::Name is
// typedef'ed as int, because it needs to be able to represent spill-slots.
//
class OptoReg VALUE_OBJ_CLASS_SPEC {
friend class C2Compiler;
public:
typedef int Name;
enum {
// Chunk 0
Physical = AdlcVMDeps::Physical, // Start of physical regs
// A few oddballs at the edge of the world
Special = -2, // All special (not allocated) values
Bad = -1 // Not a register
};
private:
static const VMReg opto2vm[REG_COUNT];
static Name vm2opto[ConcreteRegisterImpl::number_of_registers];
public:
// Stack pointer register
static OptoReg::Name c_frame_pointer;
// Increment a register number. As in:
// "for ( OptoReg::Name i; i=Control; i = add(i,1) ) ..."
static Name add( Name x, int y ) { return Name(x+y); }
// (We would like to have an operator+ for RegName, but it is not
// a class, so this would be illegal in C++.)
static void dump(int, outputStream *st = tty);
// Get the stack slot number of an OptoReg::Name
static unsigned int reg2stack( OptoReg::Name r) {
assert( r >= stack0(), " must be");
return r - stack0();
}
// convert a stack slot number into an OptoReg::Name
static OptoReg::Name stack2reg( int idx) {
return Name(stack0() + idx);
}
static bool is_stack(Name n) {
return n >= stack0();
}
static bool is_valid(Name n) {
return (n != Bad);
}
static bool is_reg(Name n) {
return is_valid(n) && !is_stack(n);
}
static VMReg as_VMReg(OptoReg::Name n) {
if (is_reg(n)) {
// Must use table, it'd be nice if Bad was indexable...
return opto2vm[n];
} else {
assert(!is_stack(n), "must un warp");
return VMRegImpl::Bad();
}
}
// Can un-warp a stack slot or convert a register or Bad
static VMReg as_VMReg(OptoReg::Name n, int frame_size, int arg_count) {
if (is_reg(n)) {
// Must use table, it'd be nice if Bad was indexable...
return opto2vm[n];
} else if (is_stack(n)) {
int stack_slot = reg2stack(n);
if (stack_slot < arg_count) {
return VMRegImpl::stack2reg(stack_slot + frame_size);
}
return VMRegImpl::stack2reg(stack_slot - arg_count);
// return return VMRegImpl::stack2reg(reg2stack(OptoReg::add(n, -arg_count)));
} else {
return VMRegImpl::Bad();
}
}
static OptoReg::Name as_OptoReg(VMReg r) {
if (r->is_stack()) {
assert(false, "must warp");
return stack2reg(r->reg2stack());
} else if (r->is_valid()) {
// Must use table, it'd be nice if Bad was indexable...
return vm2opto[r->value()];
} else {
return Bad;
}
}
static OptoReg::Name stack0() {
return VMRegImpl::stack0->value();
}
static const char* regname(OptoReg::Name n) {
return as_VMReg(n)->name();
}
};
//---------------------------OptoRegPair-------------------------------------------
// Pairs of 32-bit registers for the allocator.
// This is a very similar class to VMRegPair. C2 only interfaces with VMRegPair
// via the calling convention code which is shared between the compilers.
// Since C2 uses OptoRegs for register allocation it is more efficient to use
// VMRegPair internally for nodes that can contain a pair of OptoRegs rather
// than use VMRegPair and continually be converting back and forth. So normally
// C2 will take in a VMRegPair from the calling convention code and immediately
// convert them to an OptoRegPair and stay in the OptoReg world. The only over
// conversion between OptoRegs and VMRegs is for debug info and oopMaps. This
// is not a high bandwidth spot and so it is not an issue.
// Note that onde other consequence of staying in the OptoReg world with OptoRegPairs
// is that there are "physical" OptoRegs that are not representable in the VMReg
// world, notably flags. [ But by design there is "space" in the VMReg world
// for such registers they just may not be concrete ]. So if we were to use VMRegPair
// then the VMReg world would have to have a representation for these registers
// so that a OptoReg->VMReg->OptoReg would reproduce ther original OptoReg. As it
// stands if you convert a flag (condition code) to a VMReg you will get VMRegImpl::Bad
// and converting that will return OptoReg::Bad losing the identity of the OptoReg.
class OptoRegPair {
friend class VMStructs;
private:
short _second;
short _first;
public:
void set_bad ( ) { _second = OptoReg::Bad; _first = OptoReg::Bad; }
void set1 ( OptoReg::Name n ) { _second = OptoReg::Bad; _first = n; }
void set2 ( OptoReg::Name n ) { _second = n + 1; _first = n; }
void set_pair( OptoReg::Name second, OptoReg::Name first ) { _second= second; _first= first; }
void set_ptr ( OptoReg::Name ptr ) {
#ifdef _LP64
_second = ptr+1;
#else
_second = OptoReg::Bad;
#endif
_first = ptr;
}
OptoReg::Name second() const { return _second; }
OptoReg::Name first() const { return _first; }
OptoRegPair(OptoReg::Name second, OptoReg::Name first) { _second = second; _first = first; }
OptoRegPair(OptoReg::Name f) { _second = OptoReg::Bad; _first = f; }
OptoRegPair() { _second = OptoReg::Bad; _first = OptoReg::Bad; }
};
#endif // SHARE_VM_OPTO_OPTOREG_HPP