blob: cba8fa89678ac65847cea8f67fc90ceea52aa9fa [file] [log] [blame]
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_NODE_HPP
#define SHARE_VM_OPTO_NODE_HPP
#include "libadt/port.hpp"
#include "libadt/vectset.hpp"
#include "opto/compile.hpp"
#include "opto/type.hpp"
// Portions of code courtesy of Clifford Click
// Optimization - Graph Style
class AbstractLockNode;
class AddNode;
class AddPNode;
class AliasInfo;
class AllocateArrayNode;
class AllocateNode;
class Block;
class BoolNode;
class BoxLockNode;
class CMoveNode;
class CallDynamicJavaNode;
class CallJavaNode;
class CallLeafNode;
class CallNode;
class CallRuntimeNode;
class CallStaticJavaNode;
class CatchNode;
class CatchProjNode;
class CheckCastPPNode;
class CastIINode;
class ClearArrayNode;
class CmpNode;
class CodeBuffer;
class ConstraintCastNode;
class ConNode;
class CountedLoopNode;
class CountedLoopEndNode;
class DecodeNarrowPtrNode;
class DecodeNNode;
class DecodeNKlassNode;
class EncodeNarrowPtrNode;
class EncodePNode;
class EncodePKlassNode;
class FastLockNode;
class FastUnlockNode;
class IfNode;
class IfFalseNode;
class IfTrueNode;
class InitializeNode;
class JVMState;
class JumpNode;
class JumpProjNode;
class LoadNode;
class LoadStoreNode;
class LockNode;
class LoopNode;
class MachBranchNode;
class MachCallDynamicJavaNode;
class MachCallJavaNode;
class MachCallLeafNode;
class MachCallNode;
class MachCallRuntimeNode;
class MachCallStaticJavaNode;
class MachConstantBaseNode;
class MachConstantNode;
class MachGotoNode;
class MachIfNode;
class MachNode;
class MachNullCheckNode;
class MachProjNode;
class MachReturnNode;
class MachSafePointNode;
class MachSpillCopyNode;
class MachTempNode;
class MachMergeNode;
class Matcher;
class MemBarNode;
class MemBarStoreStoreNode;
class MemNode;
class MergeMemNode;
class MulNode;
class MultiNode;
class MultiBranchNode;
class NeverBranchNode;
class Node;
class Node_Array;
class Node_List;
class Node_Stack;
class NullCheckNode;
class OopMap;
class ParmNode;
class PCTableNode;
class PhaseCCP;
class PhaseGVN;
class PhaseIterGVN;
class PhaseRegAlloc;
class PhaseTransform;
class PhaseValues;
class PhiNode;
class Pipeline;
class ProjNode;
class RegMask;
class RegionNode;
class RootNode;
class SafePointNode;
class SafePointScalarObjectNode;
class StartNode;
class State;
class StoreNode;
class SubNode;
class Type;
class TypeNode;
class UnlockNode;
class VectorNode;
class LoadVectorNode;
class StoreVectorNode;
class VectorSet;
typedef void (*NFunc)(Node&,void*);
extern "C" {
typedef int (*C_sort_func_t)(const void *, const void *);
}
// The type of all node counts and indexes.
// It must hold at least 16 bits, but must also be fast to load and store.
// This type, if less than 32 bits, could limit the number of possible nodes.
// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
typedef unsigned int node_idx_t;
#ifndef OPTO_DU_ITERATOR_ASSERT
#ifdef ASSERT
#define OPTO_DU_ITERATOR_ASSERT 1
#else
#define OPTO_DU_ITERATOR_ASSERT 0
#endif
#endif //OPTO_DU_ITERATOR_ASSERT
#if OPTO_DU_ITERATOR_ASSERT
class DUIterator;
class DUIterator_Fast;
class DUIterator_Last;
#else
typedef uint DUIterator;
typedef Node** DUIterator_Fast;
typedef Node** DUIterator_Last;
#endif
// Node Sentinel
#define NodeSentinel (Node*)-1
// Unknown count frequency
#define COUNT_UNKNOWN (-1.0f)
//------------------------------Node-------------------------------------------
// Nodes define actions in the program. They create values, which have types.
// They are both vertices in a directed graph and program primitives. Nodes
// are labeled; the label is the "opcode", the primitive function in the lambda
// calculus sense that gives meaning to the Node. Node inputs are ordered (so
// that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
// the Node's function. These inputs also define a Type equation for the Node.
// Solving these Type equations amounts to doing dataflow analysis.
// Control and data are uniformly represented in the graph. Finally, Nodes
// have a unique dense integer index which is used to index into side arrays
// whenever I have phase-specific information.
class Node {
friend class VMStructs;
// Lots of restrictions on cloning Nodes
Node(const Node&); // not defined; linker error to use these
Node &operator=(const Node &rhs);
public:
friend class Compile;
#if OPTO_DU_ITERATOR_ASSERT
friend class DUIterator_Common;
friend class DUIterator;
friend class DUIterator_Fast;
friend class DUIterator_Last;
#endif
// Because Nodes come and go, I define an Arena of Node structures to pull
// from. This should allow fast access to node creation & deletion. This
// field is a local cache of a value defined in some "program fragment" for
// which these Nodes are just a part of.
// New Operator that takes a Compile pointer, this will eventually
// be the "new" New operator.
inline void* operator new( size_t x, Compile* C) throw() {
Node* n = (Node*)C->node_arena()->Amalloc_D(x);
#ifdef ASSERT
n->_in = (Node**)n; // magic cookie for assertion check
#endif
n->_out = (Node**)C;
return (void*)n;
}
// Delete is a NOP
void operator delete( void *ptr ) {}
// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
void destruct();
// Create a new Node. Required is the number is of inputs required for
// semantic correctness.
Node( uint required );
// Create a new Node with given input edges.
// This version requires use of the "edge-count" new.
// E.g. new (C,3) FooNode( C, NULL, left, right );
Node( Node *n0 );
Node( Node *n0, Node *n1 );
Node( Node *n0, Node *n1, Node *n2 );
Node( Node *n0, Node *n1, Node *n2, Node *n3 );
Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
Node( Node *n0, Node *n1, Node *n2, Node *n3,
Node *n4, Node *n5, Node *n6 );
// Clone an inherited Node given only the base Node type.
Node* clone() const;
// Clone a Node, immediately supplying one or two new edges.
// The first and second arguments, if non-null, replace in(1) and in(2),
// respectively.
Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
Node* nn = clone();
if (in1 != NULL) nn->set_req(1, in1);
if (in2 != NULL) nn->set_req(2, in2);
return nn;
}
private:
// Shared setup for the above constructors.
// Handles all interactions with Compile::current.
// Puts initial values in all Node fields except _idx.
// Returns the initial value for _idx, which cannot
// be initialized by assignment.
inline int Init(int req, Compile* C);
//----------------- input edge handling
protected:
friend class PhaseCFG; // Access to address of _in array elements
Node **_in; // Array of use-def references to Nodes
Node **_out; // Array of def-use references to Nodes
// Input edges are split into two categories. Required edges are required
// for semantic correctness; order is important and NULLs are allowed.
// Precedence edges are used to help determine execution order and are
// added, e.g., for scheduling purposes. They are unordered and not
// duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1
// are required, from _cnt to _max-1 are precedence edges.
node_idx_t _cnt; // Total number of required Node inputs.
node_idx_t _max; // Actual length of input array.
// Output edges are an unordered list of def-use edges which exactly
// correspond to required input edges which point from other nodes
// to this one. Thus the count of the output edges is the number of
// users of this node.
node_idx_t _outcnt; // Total number of Node outputs.
node_idx_t _outmax; // Actual length of output array.
// Grow the actual input array to the next larger power-of-2 bigger than len.
void grow( uint len );
// Grow the output array to the next larger power-of-2 bigger than len.
void out_grow( uint len );
public:
// Each Node is assigned a unique small/dense number. This number is used
// to index into auxiliary arrays of data and bit vectors.
// The field _idx is declared constant to defend against inadvertent assignments,
// since it is used by clients as a naked field. However, the field's value can be
// changed using the set_idx() method.
//
// The PhaseRenumberLive phase renumbers nodes based on liveness information.
// Therefore, it updates the value of the _idx field. The parse-time _idx is
// preserved in _parse_idx.
const node_idx_t _idx;
DEBUG_ONLY(const node_idx_t _parse_idx;)
// Get the (read-only) number of input edges
uint req() const { return _cnt; }
uint len() const { return _max; }
// Get the (read-only) number of output edges
uint outcnt() const { return _outcnt; }
#if OPTO_DU_ITERATOR_ASSERT
// Iterate over the out-edges of this node. Deletions are illegal.
inline DUIterator outs() const;
// Use this when the out array might have changed to suppress asserts.
inline DUIterator& refresh_out_pos(DUIterator& i) const;
// Does the node have an out at this position? (Used for iteration.)
inline bool has_out(DUIterator& i) const;
inline Node* out(DUIterator& i) const;
// Iterate over the out-edges of this node. All changes are illegal.
inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
inline Node* fast_out(DUIterator_Fast& i) const;
// Iterate over the out-edges of this node, deleting one at a time.
inline DUIterator_Last last_outs(DUIterator_Last& min) const;
inline Node* last_out(DUIterator_Last& i) const;
// The inline bodies of all these methods are after the iterator definitions.
#else
// Iterate over the out-edges of this node. Deletions are illegal.
// This iteration uses integral indexes, to decouple from array reallocations.
DUIterator outs() const { return 0; }
// Use this when the out array might have changed to suppress asserts.
DUIterator refresh_out_pos(DUIterator i) const { return i; }
// Reference to the i'th output Node. Error if out of bounds.
Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
// Does the node have an out at this position? (Used for iteration.)
bool has_out(DUIterator i) const { return i < _outcnt; }
// Iterate over the out-edges of this node. All changes are illegal.
// This iteration uses a pointer internal to the out array.
DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
Node** out = _out;
// Assign a limit pointer to the reference argument:
max = out + (ptrdiff_t)_outcnt;
// Return the base pointer:
return out;
}
Node* fast_out(DUIterator_Fast i) const { return *i; }
// Iterate over the out-edges of this node, deleting one at a time.
// This iteration uses a pointer internal to the out array.
DUIterator_Last last_outs(DUIterator_Last& min) const {
Node** out = _out;
// Assign a limit pointer to the reference argument:
min = out;
// Return the pointer to the start of the iteration:
return out + (ptrdiff_t)_outcnt - 1;
}
Node* last_out(DUIterator_Last i) const { return *i; }
#endif
// Reference to the i'th input Node. Error if out of bounds.
Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
// Reference to the i'th input Node. NULL if out of bounds.
Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
// Reference to the i'th output Node. Error if out of bounds.
// Use this accessor sparingly. We are going trying to use iterators instead.
Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
// Return the unique out edge.
Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
// Delete out edge at position 'i' by moving last out edge to position 'i'
void raw_del_out(uint i) {
assert(i < _outcnt,"oob");
assert(_outcnt > 0,"oob");
#if OPTO_DU_ITERATOR_ASSERT
// Record that a change happened here.
debug_only(_last_del = _out[i]; ++_del_tick);
#endif
_out[i] = _out[--_outcnt];
// Smash the old edge so it can't be used accidentally.
debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
}
#ifdef ASSERT
bool is_dead() const;
#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
#endif
// Check whether node has become unreachable
bool is_unreachable(PhaseIterGVN &igvn) const;
// Set a required input edge, also updates corresponding output edge
void add_req( Node *n ); // Append a NEW required input
void add_req( Node *n0, Node *n1 ) {
add_req(n0); add_req(n1); }
void add_req( Node *n0, Node *n1, Node *n2 ) {
add_req(n0); add_req(n1); add_req(n2); }
void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
void del_req( uint idx ); // Delete required edge & compact
void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
void ins_req( uint i, Node *n ); // Insert a NEW required input
void set_req( uint i, Node *n ) {
assert( is_not_dead(n), "can not use dead node");
assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
assert( !VerifyHashTableKeys || _hash_lock == 0,
"remove node from hash table before modifying it");
Node** p = &_in[i]; // cache this._in, across the del_out call
if (*p != NULL) (*p)->del_out((Node *)this);
(*p) = n;
if (n != NULL) n->add_out((Node *)this);
}
// Light version of set_req() to init inputs after node creation.
void init_req( uint i, Node *n ) {
assert( i == 0 && this == n ||
is_not_dead(n), "can not use dead node");
assert( i < _cnt, "oob");
assert( !VerifyHashTableKeys || _hash_lock == 0,
"remove node from hash table before modifying it");
assert( _in[i] == NULL, "sanity");
_in[i] = n;
if (n != NULL) n->add_out((Node *)this);
}
// Find first occurrence of n among my edges:
int find_edge(Node* n);
int replace_edge(Node* old, Node* neww);
int replace_edges_in_range(Node* old, Node* neww, int start, int end);
// NULL out all inputs to eliminate incoming Def-Use edges.
// Return the number of edges between 'n' and 'this'
int disconnect_inputs(Node *n, Compile *c);
// Quickly, return true if and only if I am Compile::current()->top().
bool is_top() const {
assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
return (_out == NULL);
}
// Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
void setup_is_top();
// Strip away casting. (It is depth-limited.)
Node* uncast() const;
// Return whether two Nodes are equivalent, after stripping casting.
bool eqv_uncast(const Node* n) const {
return (this->uncast() == n->uncast());
}
private:
static Node* uncast_helper(const Node* n);
// Add an output edge to the end of the list
void add_out( Node *n ) {
if (is_top()) return;
if( _outcnt == _outmax ) out_grow(_outcnt);
_out[_outcnt++] = n;
}
// Delete an output edge
void del_out( Node *n ) {
if (is_top()) return;
Node** outp = &_out[_outcnt];
// Find and remove n
do {
assert(outp > _out, "Missing Def-Use edge");
} while (*--outp != n);
*outp = _out[--_outcnt];
// Smash the old edge so it can't be used accidentally.
debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
// Record that a change happened here.
#if OPTO_DU_ITERATOR_ASSERT
debug_only(_last_del = n; ++_del_tick);
#endif
}
public:
// Globally replace this node by a given new node, updating all uses.
void replace_by(Node* new_node);
// Globally replace this node by a given new node, updating all uses
// and cutting input edges of old node.
void subsume_by(Node* new_node, Compile* c) {
replace_by(new_node);
disconnect_inputs(NULL, c);
}
void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
// Find the one non-null required input. RegionNode only
Node *nonnull_req() const;
// Add or remove precedence edges
void add_prec( Node *n );
void rm_prec( uint i );
void set_prec( uint i, Node *n ) {
assert( is_not_dead(n), "can not use dead node");
assert( i >= _cnt, "not a precedence edge");
if (_in[i] != NULL) _in[i]->del_out((Node *)this);
_in[i] = n;
if (n != NULL) n->add_out((Node *)this);
}
// Set this node's index, used by cisc_version to replace current node
void set_idx(uint new_idx) {
const node_idx_t* ref = &_idx;
*(node_idx_t*)ref = new_idx;
}
// Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
void swap_edges(uint i1, uint i2) {
debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
// Def-Use info is unchanged
Node* n1 = in(i1);
Node* n2 = in(i2);
_in[i1] = n2;
_in[i2] = n1;
// If this node is in the hash table, make sure it doesn't need a rehash.
assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
}
// Iterators over input Nodes for a Node X are written as:
// for( i = 0; i < X.req(); i++ ) ... X[i] ...
// NOTE: Required edges can contain embedded NULL pointers.
//----------------- Other Node Properties
// Generate class id for some ideal nodes to avoid virtual query
// methods is_<Node>().
// Class id is the set of bits corresponded to the node class and all its
// super classes so that queries for super classes are also valid.
// Subclasses of the same super class have different assigned bit
// (the third parameter in the macro DEFINE_CLASS_ID).
// Classes with deeper hierarchy are declared first.
// Classes with the same hierarchy depth are sorted by usage frequency.
//
// The query method masks the bits to cut off bits of subclasses
// and then compare the result with the class id
// (see the macro DEFINE_CLASS_QUERY below).
//
// Class_MachCall=30, ClassMask_MachCall=31
// 12 8 4 0
// 0 0 0 0 0 0 0 0 1 1 1 1 0
// | | | |
// | | | Bit_Mach=2
// | | Bit_MachReturn=4
// | Bit_MachSafePoint=8
// Bit_MachCall=16
//
// Class_CountedLoop=56, ClassMask_CountedLoop=63
// 12 8 4 0
// 0 0 0 0 0 0 0 1 1 1 0 0 0
// | | |
// | | Bit_Region=8
// | Bit_Loop=16
// Bit_CountedLoop=32
#define DEFINE_CLASS_ID(cl, supcl, subn) \
Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
Class_##cl = Class_##supcl + Bit_##cl , \
ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
// This enum is used only for C2 ideal and mach nodes with is_<node>() methods
// so that it's values fits into 16 bits.
enum NodeClasses {
Bit_Node = 0x0000,
Class_Node = 0x0000,
ClassMask_Node = 0xFFFF,
DEFINE_CLASS_ID(Multi, Node, 0)
DEFINE_CLASS_ID(SafePoint, Multi, 0)
DEFINE_CLASS_ID(Call, SafePoint, 0)
DEFINE_CLASS_ID(CallJava, Call, 0)
DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
DEFINE_CLASS_ID(CallRuntime, Call, 1)
DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
DEFINE_CLASS_ID(Allocate, Call, 2)
DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
DEFINE_CLASS_ID(AbstractLock, Call, 3)
DEFINE_CLASS_ID(Lock, AbstractLock, 0)
DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
DEFINE_CLASS_ID(MultiBranch, Multi, 1)
DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
DEFINE_CLASS_ID(Catch, PCTable, 0)
DEFINE_CLASS_ID(Jump, PCTable, 1)
DEFINE_CLASS_ID(If, MultiBranch, 1)
DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
DEFINE_CLASS_ID(Start, Multi, 2)
DEFINE_CLASS_ID(MemBar, Multi, 3)
DEFINE_CLASS_ID(Initialize, MemBar, 0)
DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
DEFINE_CLASS_ID(Mach, Node, 1)
DEFINE_CLASS_ID(MachReturn, Mach, 0)
DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
DEFINE_CLASS_ID(MachBranch, Mach, 1)
DEFINE_CLASS_ID(MachIf, MachBranch, 0)
DEFINE_CLASS_ID(MachGoto, MachBranch, 1)
DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2)
DEFINE_CLASS_ID(MachSpillCopy, Mach, 2)
DEFINE_CLASS_ID(MachTemp, Mach, 3)
DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
DEFINE_CLASS_ID(MachConstant, Mach, 5)
DEFINE_CLASS_ID(MachMerge, Mach, 6)
DEFINE_CLASS_ID(Type, Node, 2)
DEFINE_CLASS_ID(Phi, Type, 0)
DEFINE_CLASS_ID(ConstraintCast, Type, 1)
DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
DEFINE_CLASS_ID(CheckCastPP, Type, 2)
DEFINE_CLASS_ID(CMove, Type, 3)
DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
DEFINE_CLASS_ID(Proj, Node, 3)
DEFINE_CLASS_ID(CatchProj, Proj, 0)
DEFINE_CLASS_ID(JumpProj, Proj, 1)
DEFINE_CLASS_ID(IfTrue, Proj, 2)
DEFINE_CLASS_ID(IfFalse, Proj, 3)
DEFINE_CLASS_ID(Parm, Proj, 4)
DEFINE_CLASS_ID(MachProj, Proj, 5)
DEFINE_CLASS_ID(Mem, Node, 4)
DEFINE_CLASS_ID(Load, Mem, 0)
DEFINE_CLASS_ID(LoadVector, Load, 0)
DEFINE_CLASS_ID(Store, Mem, 1)
DEFINE_CLASS_ID(StoreVector, Store, 0)
DEFINE_CLASS_ID(LoadStore, Mem, 2)
DEFINE_CLASS_ID(Region, Node, 5)
DEFINE_CLASS_ID(Loop, Region, 0)
DEFINE_CLASS_ID(Root, Loop, 0)
DEFINE_CLASS_ID(CountedLoop, Loop, 1)
DEFINE_CLASS_ID(Sub, Node, 6)
DEFINE_CLASS_ID(Cmp, Sub, 0)
DEFINE_CLASS_ID(FastLock, Cmp, 0)
DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
DEFINE_CLASS_ID(MergeMem, Node, 7)
DEFINE_CLASS_ID(Bool, Node, 8)
DEFINE_CLASS_ID(AddP, Node, 9)
DEFINE_CLASS_ID(BoxLock, Node, 10)
DEFINE_CLASS_ID(Add, Node, 11)
DEFINE_CLASS_ID(Mul, Node, 12)
DEFINE_CLASS_ID(Vector, Node, 13)
DEFINE_CLASS_ID(ClearArray, Node, 14)
_max_classes = ClassMask_ClearArray
};
#undef DEFINE_CLASS_ID
// Flags are sorted by usage frequency.
enum NodeFlags {
Flag_is_Copy = 0x01, // should be first bit to avoid shift
Flag_rematerialize = Flag_is_Copy << 1,
Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
Flag_is_macro = Flag_needs_anti_dependence_check << 1,
Flag_is_Con = Flag_is_macro << 1,
Flag_is_cisc_alternate = Flag_is_Con << 1,
Flag_is_dead_loop_safe = Flag_is_cisc_alternate << 1,
Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
Flag_avoid_back_to_back_before = Flag_may_be_short_branch << 1,
Flag_avoid_back_to_back_after = Flag_avoid_back_to_back_before << 1,
Flag_has_call = Flag_avoid_back_to_back_after << 1,
Flag_is_expensive = Flag_has_call << 1,
_max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
};
private:
jushort _class_id;
jushort _flags;
protected:
// These methods should be called from constructors only.
void init_class_id(jushort c) {
assert(c <= _max_classes, "invalid node class");
_class_id = c; // cast out const
}
void init_flags(jushort fl) {
assert(fl <= _max_flags, "invalid node flag");
_flags |= fl;
}
void clear_flag(jushort fl) {
assert(fl <= _max_flags, "invalid node flag");
_flags &= ~fl;
}
public:
const jushort class_id() const { return _class_id; }
const jushort flags() const { return _flags; }
// Return a dense integer opcode number
virtual int Opcode() const;
// Virtual inherited Node size
virtual uint size_of() const;
// Other interesting Node properties
#define DEFINE_CLASS_QUERY(type) \
bool is_##type() const { \
return ((_class_id & ClassMask_##type) == Class_##type); \
} \
type##Node *as_##type() const { \
assert(is_##type(), "invalid node class"); \
return (type##Node*)this; \
} \
type##Node* isa_##type() const { \
return (is_##type()) ? as_##type() : NULL; \
}
DEFINE_CLASS_QUERY(AbstractLock)
DEFINE_CLASS_QUERY(Add)
DEFINE_CLASS_QUERY(AddP)
DEFINE_CLASS_QUERY(Allocate)
DEFINE_CLASS_QUERY(AllocateArray)
DEFINE_CLASS_QUERY(Bool)
DEFINE_CLASS_QUERY(BoxLock)
DEFINE_CLASS_QUERY(Call)
DEFINE_CLASS_QUERY(CallDynamicJava)
DEFINE_CLASS_QUERY(CallJava)
DEFINE_CLASS_QUERY(CallLeaf)
DEFINE_CLASS_QUERY(CallRuntime)
DEFINE_CLASS_QUERY(CallStaticJava)
DEFINE_CLASS_QUERY(Catch)
DEFINE_CLASS_QUERY(CatchProj)
DEFINE_CLASS_QUERY(CheckCastPP)
DEFINE_CLASS_QUERY(CastII)
DEFINE_CLASS_QUERY(ConstraintCast)
DEFINE_CLASS_QUERY(ClearArray)
DEFINE_CLASS_QUERY(CMove)
DEFINE_CLASS_QUERY(Cmp)
DEFINE_CLASS_QUERY(CountedLoop)
DEFINE_CLASS_QUERY(CountedLoopEnd)
DEFINE_CLASS_QUERY(DecodeNarrowPtr)
DEFINE_CLASS_QUERY(DecodeN)
DEFINE_CLASS_QUERY(DecodeNKlass)
DEFINE_CLASS_QUERY(EncodeNarrowPtr)
DEFINE_CLASS_QUERY(EncodeP)
DEFINE_CLASS_QUERY(EncodePKlass)
DEFINE_CLASS_QUERY(FastLock)
DEFINE_CLASS_QUERY(FastUnlock)
DEFINE_CLASS_QUERY(If)
DEFINE_CLASS_QUERY(IfFalse)
DEFINE_CLASS_QUERY(IfTrue)
DEFINE_CLASS_QUERY(Initialize)
DEFINE_CLASS_QUERY(Jump)
DEFINE_CLASS_QUERY(JumpProj)
DEFINE_CLASS_QUERY(Load)
DEFINE_CLASS_QUERY(LoadStore)
DEFINE_CLASS_QUERY(Lock)
DEFINE_CLASS_QUERY(Loop)
DEFINE_CLASS_QUERY(Mach)
DEFINE_CLASS_QUERY(MachBranch)
DEFINE_CLASS_QUERY(MachCall)
DEFINE_CLASS_QUERY(MachCallDynamicJava)
DEFINE_CLASS_QUERY(MachCallJava)
DEFINE_CLASS_QUERY(MachCallLeaf)
DEFINE_CLASS_QUERY(MachCallRuntime)
DEFINE_CLASS_QUERY(MachCallStaticJava)
DEFINE_CLASS_QUERY(MachConstantBase)
DEFINE_CLASS_QUERY(MachConstant)
DEFINE_CLASS_QUERY(MachGoto)
DEFINE_CLASS_QUERY(MachIf)
DEFINE_CLASS_QUERY(MachNullCheck)
DEFINE_CLASS_QUERY(MachProj)
DEFINE_CLASS_QUERY(MachReturn)
DEFINE_CLASS_QUERY(MachSafePoint)
DEFINE_CLASS_QUERY(MachSpillCopy)
DEFINE_CLASS_QUERY(MachTemp)
DEFINE_CLASS_QUERY(MachMerge)
DEFINE_CLASS_QUERY(Mem)
DEFINE_CLASS_QUERY(MemBar)
DEFINE_CLASS_QUERY(MemBarStoreStore)
DEFINE_CLASS_QUERY(MergeMem)
DEFINE_CLASS_QUERY(Mul)
DEFINE_CLASS_QUERY(Multi)
DEFINE_CLASS_QUERY(MultiBranch)
DEFINE_CLASS_QUERY(Parm)
DEFINE_CLASS_QUERY(PCTable)
DEFINE_CLASS_QUERY(Phi)
DEFINE_CLASS_QUERY(Proj)
DEFINE_CLASS_QUERY(Region)
DEFINE_CLASS_QUERY(Root)
DEFINE_CLASS_QUERY(SafePoint)
DEFINE_CLASS_QUERY(SafePointScalarObject)
DEFINE_CLASS_QUERY(Start)
DEFINE_CLASS_QUERY(Store)
DEFINE_CLASS_QUERY(Sub)
DEFINE_CLASS_QUERY(Type)
DEFINE_CLASS_QUERY(Vector)
DEFINE_CLASS_QUERY(LoadVector)
DEFINE_CLASS_QUERY(StoreVector)
DEFINE_CLASS_QUERY(Unlock)
#undef DEFINE_CLASS_QUERY
// duplicate of is_MachSpillCopy()
bool is_SpillCopy () const {
return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
}
bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
// The data node which is safe to leave in dead loop during IGVN optimization.
bool is_dead_loop_safe() const {
return is_Phi() || (is_Proj() && in(0) == NULL) ||
((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
(!is_Proj() || !in(0)->is_Allocate()));
}
// is_Copy() returns copied edge index (0 or 1)
uint is_Copy() const { return (_flags & Flag_is_Copy); }
virtual bool is_CFG() const { return false; }
// If this node is control-dependent on a test, can it be
// rerouted to a dominating equivalent test? This is usually
// true of non-CFG nodes, but can be false for operations which
// depend for their correct sequencing on more than one test.
// (In that case, hoisting to a dominating test may silently
// skip some other important test.)
virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
// When building basic blocks, I need to have a notion of block beginning
// Nodes, next block selector Nodes (block enders), and next block
// projections. These calls need to work on their machine equivalents. The
// Ideal beginning Nodes are RootNode, RegionNode and StartNode.
bool is_block_start() const {
if ( is_Region() )
return this == (const Node*)in(0);
else
return is_Start();
}
// The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
// Goto and Return. This call also returns the block ending Node.
virtual const Node *is_block_proj() const;
// The node is a "macro" node which needs to be expanded before matching
bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
// The node is expensive: the best control is set during loop opts
bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
//----------------- Optimization
// Get the worst-case Type output for this Node.
virtual const class Type *bottom_type() const;
// If we find a better type for a node, try to record it permanently.
// Return true if this node actually changed.
// Be sure to do the hash_delete game in the "rehash" variant.
void raise_bottom_type(const Type* new_type);
// Get the address type with which this node uses and/or defs memory,
// or NULL if none. The address type is conservatively wide.
// Returns non-null for calls, membars, loads, stores, etc.
// Returns TypePtr::BOTTOM if the node touches memory "broadly".
virtual const class TypePtr *adr_type() const { return NULL; }
// Return an existing node which computes the same function as this node.
// The optimistic combined algorithm requires this to return a Node which
// is a small number of steps away (e.g., one of my inputs).
virtual Node *Identity( PhaseTransform *phase );
// Return the set of values this Node can take on at runtime.
virtual const Type *Value( PhaseTransform *phase ) const;
// Return a node which is more "ideal" than the current node.
// The invariants on this call are subtle. If in doubt, read the
// treatise in node.cpp above the default implemention AND TEST WITH
// +VerifyIterativeGVN!
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
// Some nodes have specific Ideal subgraph transformations only if they are
// unique users of specific nodes. Such nodes should be put on IGVN worklist
// for the transformations to happen.
bool has_special_unique_user() const;
// Skip Proj and CatchProj nodes chains. Check for Null and Top.
Node* find_exact_control(Node* ctrl);
// Check if 'this' node dominates or equal to 'sub'.
bool dominates(Node* sub, Node_List &nlist);
protected:
bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
public:
// Idealize graph, using DU info. Done after constant propagation
virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
// See if there is valid pipeline info
static const Pipeline *pipeline_class();
virtual const Pipeline *pipeline() const;
// Compute the latency from the def to this instruction of the ith input node
uint latency(uint i);
// Hash & compare functions, for pessimistic value numbering
// If the hash function returns the special sentinel value NO_HASH,
// the node is guaranteed never to compare equal to any other node.
// If we accidentally generate a hash with value NO_HASH the node
// won't go into the table and we'll lose a little optimization.
enum { NO_HASH = 0 };
virtual uint hash() const;
virtual uint cmp( const Node &n ) const;
// Operation appears to be iteratively computed (such as an induction variable)
// It is possible for this operation to return false for a loop-varying
// value, if it appears (by local graph inspection) to be computed by a simple conditional.
bool is_iteratively_computed();
// Determine if a node is Counted loop induction variable.
// The method is defined in loopnode.cpp.
const Node* is_loop_iv() const;
// Return a node with opcode "opc" and same inputs as "this" if one can
// be found; Otherwise return NULL;
Node* find_similar(int opc);
// Return the unique control out if only one. Null if none or more than one.
Node* unique_ctrl_out();
//----------------- Code Generation
// Ideal register class for Matching. Zero means unmatched instruction
// (these are cloned instead of converted to machine nodes).
virtual uint ideal_reg() const;
static const uint NotAMachineReg; // must be > max. machine register
// Do we Match on this edge index or not? Generally false for Control
// and true for everything else. Weird for calls & returns.
virtual uint match_edge(uint idx) const;
// Register class output is returned in
virtual const RegMask &out_RegMask() const;
// Register class input is expected in
virtual const RegMask &in_RegMask(uint) const;
// Should we clone rather than spill this instruction?
bool rematerialize() const;
// Return JVM State Object if this Node carries debug info, or NULL otherwise
virtual JVMState* jvms() const;
// Print as assembly
virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
// Emit bytes starting at parameter 'ptr'
// Bump 'ptr' by the number of output bytes
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
// Size of instruction in bytes
virtual uint size(PhaseRegAlloc *ra_) const;
// Convenience function to extract an integer constant from a node.
// If it is not an integer constant (either Con, CastII, or Mach),
// return value_if_unknown.
jint find_int_con(jint value_if_unknown) const {
const TypeInt* t = find_int_type();
return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
}
// Return the constant, knowing it is an integer constant already
jint get_int() const {
const TypeInt* t = find_int_type();
guarantee(t != NULL, "must be con");
return t->get_con();
}
// Here's where the work is done. Can produce non-constant int types too.
const TypeInt* find_int_type() const;
// Same thing for long (and intptr_t, via type.hpp):
jlong get_long() const {
const TypeLong* t = find_long_type();
guarantee(t != NULL, "must be con");
return t->get_con();
}
jlong find_long_con(jint value_if_unknown) const {
const TypeLong* t = find_long_type();
return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
}
const TypeLong* find_long_type() const;
const TypePtr* get_ptr_type() const;
// These guys are called by code generated by ADLC:
intptr_t get_ptr() const;
intptr_t get_narrowcon() const;
jdouble getd() const;
jfloat getf() const;
// Nodes which are pinned into basic blocks
virtual bool pinned() const { return false; }
// Nodes which use memory without consuming it, hence need antidependences
// More specifically, needs_anti_dependence_check returns true iff the node
// (a) does a load, and (b) does not perform a store (except perhaps to a
// stack slot or some other unaliased location).
bool needs_anti_dependence_check() const;
// Return which operand this instruction may cisc-spill. In other words,
// return operand position that can convert from reg to memory access
virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
//----------------- Graph walking
public:
// Walk and apply member functions recursively.
// Supplied (this) pointer is root.
void walk(NFunc pre, NFunc post, void *env);
static void nop(Node &, void*); // Dummy empty function
static void packregion( Node &n, void* );
private:
void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
//----------------- Printing, etc
public:
#ifndef PRODUCT
Node* find(int idx) const; // Search the graph for the given idx.
Node* find_ctrl(int idx) const; // Search control ancestors for the given idx.
void dump() const { dump("\n"); } // Print this node.
void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
void dump(int depth) const; // Print this node, recursively to depth d
void dump_ctrl(int depth) const; // Print control nodes, to depth d
virtual void dump_req(outputStream *st = tty) const; // Print required-edge info
virtual void dump_prec(outputStream *st = tty) const; // Print precedence-edge info
virtual void dump_out(outputStream *st = tty) const; // Print the output edge info
virtual void dump_spec(outputStream *st) const {}; // Print per-node info
void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
void verify() const; // Check Def-Use info for my subgraph
static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
// This call defines a class-unique string used to identify class instances
virtual const char *Name() const;
void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
// RegMask Print Functions
void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
void dump_out_regmask() { out_RegMask().dump(); }
static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
void fast_dump() const {
tty->print("%4d: %-17s", _idx, Name());
for (uint i = 0; i < len(); i++)
if (in(i))
tty->print(" %4d", in(i)->_idx);
else
tty->print(" NULL");
tty->print("\n");
}
#endif
#ifdef ASSERT
void verify_construction();
bool verify_jvms(const JVMState* jvms) const;
int _debug_idx; // Unique value assigned to every node.
int debug_idx() const { return _debug_idx; }
void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
Node* _debug_orig; // Original version of this, if any.
Node* debug_orig() const { return _debug_orig; }
void set_debug_orig(Node* orig); // _debug_orig = orig
int _hash_lock; // Barrier to modifications of nodes in the hash table
void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
static void init_NodeProperty();
#if OPTO_DU_ITERATOR_ASSERT
const Node* _last_del; // The last deleted node.
uint _del_tick; // Bumped when a deletion happens..
#endif
#endif
};
//-----------------------------------------------------------------------------
// Iterators over DU info, and associated Node functions.
#if OPTO_DU_ITERATOR_ASSERT
// Common code for assertion checking on DU iterators.
class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
#ifdef ASSERT
protected:
bool _vdui; // cached value of VerifyDUIterators
const Node* _node; // the node containing the _out array
uint _outcnt; // cached node->_outcnt
uint _del_tick; // cached node->_del_tick
Node* _last; // last value produced by the iterator
void sample(const Node* node); // used by c'tor to set up for verifies
void verify(const Node* node, bool at_end_ok = false);
void verify_resync();
void reset(const DUIterator_Common& that);
// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
#define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
#else
#define I_VDUI_ONLY(i,x) { }
#endif //ASSERT
};
#define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
// Default DU iterator. Allows appends onto the out array.
// Allows deletion from the out array only at the current point.
// Usage:
// for (DUIterator i = x->outs(); x->has_out(i); i++) {
// Node* y = x->out(i);
// ...
// }
// Compiles in product mode to a unsigned integer index, which indexes
// onto a repeatedly reloaded base pointer of x->_out. The loop predicate
// also reloads x->_outcnt. If you delete, you must perform "--i" just
// before continuing the loop. You must delete only the last-produced
// edge. You must delete only a single copy of the last-produced edge,
// or else you must delete all copies at once (the first time the edge
// is produced by the iterator).
class DUIterator : public DUIterator_Common {
friend class Node;
// This is the index which provides the product-mode behavior.
// Whatever the product-mode version of the system does to the
// DUI index is done to this index. All other fields in
// this class are used only for assertion checking.
uint _idx;
#ifdef ASSERT
uint _refresh_tick; // Records the refresh activity.
void sample(const Node* node); // Initialize _refresh_tick etc.
void verify(const Node* node, bool at_end_ok = false);
void verify_increment(); // Verify an increment operation.
void verify_resync(); // Verify that we can back up over a deletion.
void verify_finish(); // Verify that the loop terminated properly.
void refresh(); // Resample verification info.
void reset(const DUIterator& that); // Resample after assignment.
#endif
DUIterator(const Node* node, int dummy_to_avoid_conversion)
{ _idx = 0; debug_only(sample(node)); }
public:
// initialize to garbage; clear _vdui to disable asserts
DUIterator()
{ /*initialize to garbage*/ debug_only(_vdui = false); }
void operator++(int dummy_to_specify_postfix_op)
{ _idx++; VDUI_ONLY(verify_increment()); }
void operator--()
{ VDUI_ONLY(verify_resync()); --_idx; }
~DUIterator()
{ VDUI_ONLY(verify_finish()); }
void operator=(const DUIterator& that)
{ _idx = that._idx; debug_only(reset(that)); }
};
DUIterator Node::outs() const
{ return DUIterator(this, 0); }
DUIterator& Node::refresh_out_pos(DUIterator& i) const
{ I_VDUI_ONLY(i, i.refresh()); return i; }
bool Node::has_out(DUIterator& i) const
{ I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
Node* Node::out(DUIterator& i) const
{ I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; }
// Faster DU iterator. Disallows insertions into the out array.
// Allows deletion from the out array only at the current point.
// Usage:
// for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
// Node* y = x->fast_out(i);
// ...
// }
// Compiles in product mode to raw Node** pointer arithmetic, with
// no reloading of pointers from the original node x. If you delete,
// you must perform "--i; --imax" just before continuing the loop.
// If you delete multiple copies of the same edge, you must decrement
// imax, but not i, multiple times: "--i, imax -= num_edges".
class DUIterator_Fast : public DUIterator_Common {
friend class Node;
friend class DUIterator_Last;
// This is the pointer which provides the product-mode behavior.
// Whatever the product-mode version of the system does to the
// DUI pointer is done to this pointer. All other fields in
// this class are used only for assertion checking.
Node** _outp;
#ifdef ASSERT
void verify(const Node* node, bool at_end_ok = false);
void verify_limit();
void verify_resync();
void verify_relimit(uint n);
void reset(const DUIterator_Fast& that);
#endif
// Note: offset must be signed, since -1 is sometimes passed
DUIterator_Fast(const Node* node, ptrdiff_t offset)
{ _outp = node->_out + offset; debug_only(sample(node)); }
public:
// initialize to garbage; clear _vdui to disable asserts
DUIterator_Fast()
{ /*initialize to garbage*/ debug_only(_vdui = false); }
void operator++(int dummy_to_specify_postfix_op)
{ _outp++; VDUI_ONLY(verify(_node, true)); }
void operator--()
{ VDUI_ONLY(verify_resync()); --_outp; }
void operator-=(uint n) // applied to the limit only
{ _outp -= n; VDUI_ONLY(verify_relimit(n)); }
bool operator<(DUIterator_Fast& limit) {
I_VDUI_ONLY(*this, this->verify(_node, true));
I_VDUI_ONLY(limit, limit.verify_limit());
return _outp < limit._outp;
}
void operator=(const DUIterator_Fast& that)
{ _outp = that._outp; debug_only(reset(that)); }
};
DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
// Assign a limit pointer to the reference argument:
imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
// Return the base pointer:
return DUIterator_Fast(this, 0);
}
Node* Node::fast_out(DUIterator_Fast& i) const {
I_VDUI_ONLY(i, i.verify(this));
return debug_only(i._last=) *i._outp;
}
// Faster DU iterator. Requires each successive edge to be removed.
// Does not allow insertion of any edges.
// Usage:
// for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
// Node* y = x->last_out(i);
// ...
// }
// Compiles in product mode to raw Node** pointer arithmetic, with
// no reloading of pointers from the original node x.
class DUIterator_Last : private DUIterator_Fast {
friend class Node;
#ifdef ASSERT
void verify(const Node* node, bool at_end_ok = false);
void verify_limit();
void verify_step(uint num_edges);
#endif
// Note: offset must be signed, since -1 is sometimes passed
DUIterator_Last(const Node* node, ptrdiff_t offset)
: DUIterator_Fast(node, offset) { }
void operator++(int dummy_to_specify_postfix_op) {} // do not use
void operator<(int) {} // do not use
public:
DUIterator_Last() { }
// initialize to garbage
void operator--()
{ _outp--; VDUI_ONLY(verify_step(1)); }
void operator-=(uint n)
{ _outp -= n; VDUI_ONLY(verify_step(n)); }
bool operator>=(DUIterator_Last& limit) {
I_VDUI_ONLY(*this, this->verify(_node, true));
I_VDUI_ONLY(limit, limit.verify_limit());
return _outp >= limit._outp;
}
void operator=(const DUIterator_Last& that)
{ DUIterator_Fast::operator=(that); }
};
DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
// Assign a limit pointer to the reference argument:
imin = DUIterator_Last(this, 0);
// Return the initial pointer:
return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
}
Node* Node::last_out(DUIterator_Last& i) const {
I_VDUI_ONLY(i, i.verify(this));
return debug_only(i._last=) *i._outp;
}
#endif //OPTO_DU_ITERATOR_ASSERT
#undef I_VDUI_ONLY
#undef VDUI_ONLY
// An Iterator that truly follows the iterator pattern. Doesn't
// support deletion but could be made to.
//
// for (SimpleDUIterator i(n); i.has_next(); i.next()) {
// Node* m = i.get();
//
class SimpleDUIterator : public StackObj {
private:
Node* node;
DUIterator_Fast i;
DUIterator_Fast imax;
public:
SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
bool has_next() { return i < imax; }
void next() { i++; }
Node* get() { return node->fast_out(i); }
};
//-----------------------------------------------------------------------------
// Map dense integer indices to Nodes. Uses classic doubling-array trick.
// Abstractly provides an infinite array of Node*'s, initialized to NULL.
// Note that the constructor just zeros things, and since I use Arena
// allocation I do not need a destructor to reclaim storage.
class Node_Array : public ResourceObj {
friend class VMStructs;
protected:
Arena *_a; // Arena to allocate in
uint _max;
Node **_nodes;
void grow( uint i ); // Grow array node to fit
public:
Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
_nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
for( int i = 0; i < OptoNodeListSize; i++ ) {
_nodes[i] = NULL;
}
}
Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
{ return (i<_max) ? _nodes[i] : (Node*)NULL; }
Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
Node **adr() { return _nodes; }
// Extend the mapping: index i maps to Node *n.
void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
void insert( uint i, Node *n );
void remove( uint i ); // Remove, preserving order
void sort( C_sort_func_t func);
void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage
void clear(); // Set all entries to NULL, keep storage
uint Size() const { return _max; }
void dump() const;
};
class Node_List : public Node_Array {
friend class VMStructs;
uint _cnt;
public:
Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
bool contains(const Node* n) const {
for (uint e = 0; e < size(); e++) {
if (at(e) == n) return true;
}
return false;
}
void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
void remove( uint i ) { Node_Array::remove(i); _cnt--; }
void push( Node *b ) { map(_cnt++,b); }
void yank( Node *n ); // Find and remove
Node *pop() { return _nodes[--_cnt]; }
Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
uint size() const { return _cnt; }
void dump() const;
void dump_simple() const;
};
//------------------------------Unique_Node_List-------------------------------
class Unique_Node_List : public Node_List {
friend class VMStructs;
VectorSet _in_worklist;
uint _clock_index; // Index in list where to pop from next
public:
Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
void remove( Node *n );
bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
VectorSet &member_set(){ return _in_worklist; }
void push( Node *b ) {
if( !_in_worklist.test_set(b->_idx) )
Node_List::push(b);
}
Node *pop() {
if( _clock_index >= size() ) _clock_index = 0;
Node *b = at(_clock_index);
map( _clock_index, Node_List::pop());
if (size() != 0) _clock_index++; // Always start from 0
_in_worklist >>= b->_idx;
return b;
}
Node *remove( uint i ) {
Node *b = Node_List::at(i);
_in_worklist >>= b->_idx;
map(i,Node_List::pop());
return b;
}
void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
void clear() {
_in_worklist.Clear(); // Discards storage but grows automatically
Node_List::clear();
_clock_index = 0;
}
// Used after parsing to remove useless nodes before Iterative GVN
void remove_useless_nodes(VectorSet &useful);
#ifndef PRODUCT
void print_set() const { _in_worklist.print(); }
#endif
};
// Inline definition of Compile::record_for_igvn must be deferred to this point.
inline void Compile::record_for_igvn(Node* n) {
_for_igvn->push(n);
}
//------------------------------Node_Stack-------------------------------------
class Node_Stack {
friend class VMStructs;
protected:
struct INode {
Node *node; // Processed node
uint indx; // Index of next node's child
};
INode *_inode_top; // tos, stack grows up
INode *_inode_max; // End of _inodes == _inodes + _max
INode *_inodes; // Array storage for the stack
Arena *_a; // Arena to allocate in
void grow();
public:
Node_Stack(int size) {
size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
_a = Thread::current()->resource_area();
_inodes = NEW_ARENA_ARRAY( _a, INode, max );
_inode_max = _inodes + max;
_inode_top = _inodes - 1; // stack is empty
}
Node_Stack(Arena *a, int size) : _a(a) {
size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
_inodes = NEW_ARENA_ARRAY( _a, INode, max );
_inode_max = _inodes + max;
_inode_top = _inodes - 1; // stack is empty
}
void pop() {
assert(_inode_top >= _inodes, "node stack underflow");
--_inode_top;
}
void push(Node *n, uint i) {
++_inode_top;
if (_inode_top >= _inode_max) grow();
INode *top = _inode_top; // optimization
top->node = n;
top->indx = i;
}
Node *node() const {
return _inode_top->node;
}
Node* node_at(uint i) const {
assert(_inodes + i <= _inode_top, "in range");
return _inodes[i].node;
}
uint index() const {
return _inode_top->indx;
}
uint index_at(uint i) const {
assert(_inodes + i <= _inode_top, "in range");
return _inodes[i].indx;
}
void set_node(Node *n) {
_inode_top->node = n;
}
void set_index(uint i) {
_inode_top->indx = i;
}
uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
bool is_nonempty() const { return (_inode_top >= _inodes); }
bool is_empty() const { return (_inode_top < _inodes); }
void clear() { _inode_top = _inodes - 1; } // retain storage
// Node_Stack is used to map nodes.
Node* find(uint idx) const;
};
//-----------------------------Node_Notes--------------------------------------
// Debugging or profiling annotations loosely and sparsely associated
// with some nodes. See Compile::node_notes_at for the accessor.
class Node_Notes VALUE_OBJ_CLASS_SPEC {
friend class VMStructs;
JVMState* _jvms;
public:
Node_Notes(JVMState* jvms = NULL) {
_jvms = jvms;
}
JVMState* jvms() { return _jvms; }
void set_jvms(JVMState* x) { _jvms = x; }
// True if there is nothing here.
bool is_clear() {
return (_jvms == NULL);
}
// Make there be nothing here.
void clear() {
_jvms = NULL;
}
// Make a new, clean node notes.
static Node_Notes* make(Compile* C) {
Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
nn->clear();
return nn;
}
Node_Notes* clone(Compile* C) {
Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
(*nn) = (*this);
return nn;
}
// Absorb any information from source.
bool update_from(Node_Notes* source) {
bool changed = false;
if (source != NULL) {
if (source->jvms() != NULL) {
set_jvms(source->jvms());
changed = true;
}
}
return changed;
}
};
// Inlined accessors for Compile::node_nodes that require the preceding class:
inline Node_Notes*
Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
int idx, bool can_grow) {
assert(idx >= 0, "oob");
int block_idx = (idx >> _log2_node_notes_block_size);
int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
if (grow_by >= 0) {
if (!can_grow) return NULL;
grow_node_notes(arr, grow_by + 1);
}
// (Every element of arr is a sub-array of length _node_notes_block_size.)
return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
}
inline bool
Compile::set_node_notes_at(int idx, Node_Notes* value) {
if (value == NULL || value->is_clear())
return false; // nothing to write => write nothing
Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
assert(loc != NULL, "");
return loc->update_from(value);
}
//------------------------------TypeNode---------------------------------------
// Node with a Type constant.
class TypeNode : public Node {
protected:
virtual uint hash() const; // Check the type
virtual uint cmp( const Node &n ) const;
virtual uint size_of() const; // Size is bigger
const Type* const _type;
public:
void set_type(const Type* t) {
assert(t != NULL, "sanity");
debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
*(const Type**)&_type = t; // cast away const-ness
// If this node is in the hash table, make sure it doesn't need a rehash.
assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
}
const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
init_class_id(Class_Type);
}
virtual const Type *Value( PhaseTransform *phase ) const;
virtual const Type *bottom_type() const;
virtual uint ideal_reg() const;
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
#endif // SHARE_VM_OPTO_NODE_HPP