blob: e465833145b0139f51ef90ede83e1b4967654485 [file] [log] [blame]
/*
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_MEMNODE_HPP
#define SHARE_VM_OPTO_MEMNODE_HPP
#include "opto/multnode.hpp"
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/type.hpp"
// Portions of code courtesy of Clifford Click
class MultiNode;
class PhaseCCP;
class PhaseTransform;
//------------------------------MemNode----------------------------------------
// Load or Store, possibly throwing a NULL pointer exception
class MemNode : public Node {
private:
bool _unaligned_access; // Unaligned access from unsafe
bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
protected:
#ifdef ASSERT
const TypePtr* _adr_type; // What kind of memory is being addressed?
#endif
virtual uint size_of() const;
public:
enum { Control, // When is it safe to do this load?
Memory, // Chunk of memory is being loaded from
Address, // Actually address, derived from base
ValueIn, // Value to store
OopStore // Preceeding oop store, only in StoreCM
};
typedef enum { unordered = 0,
acquire, // Load has to acquire or be succeeded by MemBarAcquire.
release // Store has to release or be preceded by MemBarRelease.
} MemOrd;
protected:
MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
: Node(c0,c1,c2 ), _unaligned_access(false), _mismatched_access(false) {
init_class_id(Class_Mem);
debug_only(_adr_type=at; adr_type();)
}
MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
: Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
init_class_id(Class_Mem);
debug_only(_adr_type=at; adr_type();)
}
MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
: Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
init_class_id(Class_Mem);
debug_only(_adr_type=at; adr_type();)
}
static bool check_if_adr_maybe_raw(Node* adr);
public:
// Helpers for the optimizer. Documented in memnode.cpp.
static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
Node* p2, AllocateNode* a2,
PhaseTransform* phase);
static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
// This one should probably be a phase-specific function:
static bool all_controls_dominate(Node* dom, Node* sub);
// Find any cast-away of null-ness and keep its control.
static Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
virtual const class TypePtr *adr_type() const; // returns bottom_type of address
// Shared code for Ideal methods:
Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
// Helper function for adr_type() implementations.
static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
// Raw access function, to allow copying of adr_type efficiently in
// product builds and retain the debug info for debug builds.
const TypePtr *raw_adr_type() const {
#ifdef ASSERT
return _adr_type;
#else
return 0;
#endif
}
// Map a load or store opcode to its corresponding store opcode.
// (Return -1 if unknown.)
virtual int store_Opcode() const { return -1; }
// What is the type of the value in memory? (T_VOID mean "unspecified".)
virtual BasicType memory_type() const = 0;
virtual int memory_size() const {
#ifdef ASSERT
return type2aelembytes(memory_type(), true);
#else
return type2aelembytes(memory_type());
#endif
}
// Search through memory states which precede this node (load or store).
// Look for an exact match for the address, with no intervening
// aliased stores.
Node* find_previous_store(PhaseTransform* phase);
// Can this node (load or store) accurately see a stored value in
// the given memory state? (The state may or may not be in(Memory).)
Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
void set_unaligned_access() { _unaligned_access = true; }
bool is_unaligned_access() const { return _unaligned_access; }
void set_mismatched_access() { _mismatched_access = true; }
bool is_mismatched_access() const { return _mismatched_access; }
#ifndef PRODUCT
static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
virtual void dump_spec(outputStream *st) const;
#endif
};
//------------------------------LoadNode---------------------------------------
// Load value; requires Memory and Address
class LoadNode : public MemNode {
public:
// Some loads (from unsafe) should be pinned: they don't depend only
// on the dominating test. The boolean field _depends_only_on_test
// below records whether that node depends only on the dominating
// test.
// Methods used to build LoadNodes pass an argument of type enum
// ControlDependency instead of a boolean because those methods
// typically have multiple boolean parameters with default values:
// passing the wrong boolean to one of these parameters by mistake
// goes easily unnoticed. Using an enum, the compiler can check that
// the type of a value and the type of the parameter match.
enum ControlDependency {
Pinned,
DependsOnlyOnTest
};
private:
// LoadNode::hash() doesn't take the _depends_only_on_test field
// into account: If the graph already has a non-pinned LoadNode and
// we add a pinned LoadNode with the same inputs, it's safe for GVN
// to replace the pinned LoadNode with the non-pinned LoadNode,
// otherwise it wouldn't be safe to have a non pinned LoadNode with
// those inputs in the first place. If the graph already has a
// pinned LoadNode and we add a non pinned LoadNode with the same
// inputs, it's safe (but suboptimal) for GVN to replace the
// non-pinned LoadNode by the pinned LoadNode.
bool _depends_only_on_test;
// On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
// loads that can be reordered, and such requiring acquire semantics to
// adhere to the Java specification. The required behaviour is stored in
// this field.
const MemOrd _mo;
protected:
virtual uint cmp(const Node &n) const;
virtual uint size_of() const; // Size is bigger
// Should LoadNode::Ideal() attempt to remove control edges?
virtual bool can_remove_control() const;
const Type* const _type; // What kind of value is loaded?
public:
LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
: MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
init_class_id(Class_Load);
}
inline bool is_unordered() const { return !is_acquire(); }
inline bool is_acquire() const {
assert(_mo == unordered || _mo == acquire, "unexpected");
return _mo == acquire;
}
// Polymorphic factory method:
static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
const TypePtr* at, const Type *rt, BasicType bt,
MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
virtual uint hash() const; // Check the type
// Handle algebraic identities here. If we have an identity, return the Node
// we are equivalent to. We look for Load of a Store.
virtual Node *Identity( PhaseTransform *phase );
// If the load is from Field memory and the pointer is non-null, it might be possible to
// zero out the control input.
// If the offset is constant and the base is an object allocation,
// try to hook me up to the exact initializing store.
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
// Split instance field load through Phi.
Node* split_through_phi(PhaseGVN *phase);
// Recover original value from boxed values
Node *eliminate_autobox(PhaseGVN *phase);
// Compute a new Type for this node. Basically we just do the pre-check,
// then call the virtual add() to set the type.
virtual const Type *Value( PhaseTransform *phase ) const;
// Common methods for LoadKlass and LoadNKlass nodes.
const Type *klass_value_common( PhaseTransform *phase ) const;
Node *klass_identity_common( PhaseTransform *phase );
virtual uint ideal_reg() const;
virtual const Type *bottom_type() const;
// Following method is copied from TypeNode:
void set_type(const Type* t) {
assert(t != NULL, "sanity");
debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
*(const Type**)&_type = t; // cast away const-ness
// If this node is in the hash table, make sure it doesn't need a rehash.
assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
}
const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
// Do not match memory edge
virtual uint match_edge(uint idx) const;
// Map a load opcode to its corresponding store opcode.
virtual int store_Opcode() const = 0;
// Check if the load's memory input is a Phi node with the same control.
bool is_instance_field_load_with_local_phi(Node* ctrl);
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
#ifdef ASSERT
// Helper function to allow a raw load without control edge for some cases
static bool is_immutable_value(Node* adr);
#endif
protected:
const Type* load_array_final_field(const TypeKlassPtr *tkls,
ciKlass* klass) const;
// depends_only_on_test is almost always true, and needs to be almost always
// true to enable key hoisting & commoning optimizations. However, for the
// special case of RawPtr loads from TLS top & end, and other loads performed by
// GC barriers, the control edge carries the dependence preventing hoisting past
// a Safepoint instead of the memory edge. (An unfortunate consequence of having
// Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
// which produce results (new raw memory state) inside of loops preventing all
// manner of other optimizations). Basically, it's ugly but so is the alternative.
// See comment in macro.cpp, around line 125 expand_allocate_common().
virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
};
//------------------------------LoadBNode--------------------------------------
// Load a byte (8bits signed) from memory
class LoadBNode : public LoadNode {
public:
LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value(PhaseTransform *phase) const;
virtual int store_Opcode() const { return Op_StoreB; }
virtual BasicType memory_type() const { return T_BYTE; }
};
//------------------------------LoadUBNode-------------------------------------
// Load a unsigned byte (8bits unsigned) from memory
class LoadUBNode : public LoadNode {
public:
LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value(PhaseTransform *phase) const;
virtual int store_Opcode() const { return Op_StoreB; }
virtual BasicType memory_type() const { return T_BYTE; }
};
//------------------------------LoadUSNode-------------------------------------
// Load an unsigned short/char (16bits unsigned) from memory
class LoadUSNode : public LoadNode {
public:
LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value(PhaseTransform *phase) const;
virtual int store_Opcode() const { return Op_StoreC; }
virtual BasicType memory_type() const { return T_CHAR; }
};
//------------------------------LoadSNode--------------------------------------
// Load a short (16bits signed) from memory
class LoadSNode : public LoadNode {
public:
LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value(PhaseTransform *phase) const;
virtual int store_Opcode() const { return Op_StoreC; }
virtual BasicType memory_type() const { return T_SHORT; }
};
//------------------------------LoadINode--------------------------------------
// Load an integer from memory
class LoadINode : public LoadNode {
public:
LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual int store_Opcode() const { return Op_StoreI; }
virtual BasicType memory_type() const { return T_INT; }
};
//------------------------------LoadRangeNode----------------------------------
// Load an array length from the array
class LoadRangeNode : public LoadINode {
public:
LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
: LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
virtual int Opcode() const;
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};
//------------------------------LoadLNode--------------------------------------
// Load a long from memory
class LoadLNode : public LoadNode {
virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
virtual uint cmp( const Node &n ) const {
return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
&& LoadNode::cmp(n);
}
virtual uint size_of() const { return sizeof(*this); }
const bool _require_atomic_access; // is piecewise load forbidden?
public:
LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
: LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegL; }
virtual int store_Opcode() const { return Op_StoreL; }
virtual BasicType memory_type() const { return T_LONG; }
bool require_atomic_access() const { return _require_atomic_access; }
static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const {
LoadNode::dump_spec(st);
if (_require_atomic_access) st->print(" Atomic!");
}
#endif
};
//------------------------------LoadL_unalignedNode----------------------------
// Load a long from unaligned memory
class LoadL_unalignedNode : public LoadLNode {
public:
LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
virtual int Opcode() const;
};
//------------------------------LoadFNode--------------------------------------
// Load a float (64 bits) from memory
class LoadFNode : public LoadNode {
public:
LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegF; }
virtual int store_Opcode() const { return Op_StoreF; }
virtual BasicType memory_type() const { return T_FLOAT; }
};
//------------------------------LoadDNode--------------------------------------
// Load a double (64 bits) from memory
class LoadDNode : public LoadNode {
virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
virtual uint cmp( const Node &n ) const {
return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
&& LoadNode::cmp(n);
}
virtual uint size_of() const { return sizeof(*this); }
const bool _require_atomic_access; // is piecewise load forbidden?
public:
LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
: LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegD; }
virtual int store_Opcode() const { return Op_StoreD; }
virtual BasicType memory_type() const { return T_DOUBLE; }
bool require_atomic_access() const { return _require_atomic_access; }
static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const {
LoadNode::dump_spec(st);
if (_require_atomic_access) st->print(" Atomic!");
}
#endif
};
//------------------------------LoadD_unalignedNode----------------------------
// Load a double from unaligned memory
class LoadD_unalignedNode : public LoadDNode {
public:
LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
virtual int Opcode() const;
};
//------------------------------LoadPNode--------------------------------------
// Load a pointer from memory (either object or array)
class LoadPNode : public LoadNode {
public:
LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegP; }
virtual int store_Opcode() const { return Op_StoreP; }
virtual BasicType memory_type() const { return T_ADDRESS; }
};
//------------------------------LoadNNode--------------------------------------
// Load a narrow oop from memory (either object or array)
class LoadNNode : public LoadNode {
public:
LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
: LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegN; }
virtual int store_Opcode() const { return Op_StoreN; }
virtual BasicType memory_type() const { return T_NARROWOOP; }
};
//------------------------------LoadKlassNode----------------------------------
// Load a Klass from an object
class LoadKlassNode : public LoadPNode {
protected:
// In most cases, LoadKlassNode does not have the control input set. If the control
// input is set, it must not be removed (by LoadNode::Ideal()).
virtual bool can_remove_control() const;
public:
LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
: LoadPNode(c, mem, adr, at, tk, mo) {}
virtual int Opcode() const;
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual bool depends_only_on_test() const { return true; }
// Polymorphic factory method:
static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
};
//------------------------------LoadNKlassNode---------------------------------
// Load a narrow Klass from an object.
class LoadNKlassNode : public LoadNNode {
public:
LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
: LoadNNode(c, mem, adr, at, tk, mo) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegN; }
virtual int store_Opcode() const { return Op_StoreNKlass; }
virtual BasicType memory_type() const { return T_NARROWKLASS; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual bool depends_only_on_test() const { return true; }
};
//------------------------------StoreNode--------------------------------------
// Store value; requires Store, Address and Value
class StoreNode : public MemNode {
private:
// On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
// stores that can be reordered, and such requiring release semantics to
// adhere to the Java specification. The required behaviour is stored in
// this field.
const MemOrd _mo;
// Needed for proper cloning.
virtual uint size_of() const { return sizeof(*this); }
protected:
virtual uint cmp( const Node &n ) const;
virtual bool depends_only_on_test() const { return false; }
Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
public:
// We must ensure that stores of object references will be visible
// only after the object's initialization. So the callers of this
// procedure must indicate that the store requires `release'
// semantics, if the stored value is an object reference that might
// point to a new object and may become externally visible.
StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
: MemNode(c, mem, adr, at, val), _mo(mo) {
init_class_id(Class_Store);
}
StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
: MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
init_class_id(Class_Store);
}
inline bool is_unordered() const { return !is_release(); }
inline bool is_release() const {
assert((_mo == unordered || _mo == release), "unexpected");
return _mo == release;
}
// Conservatively release stores of object references in order to
// ensure visibility of object initialization.
static inline MemOrd release_if_reference(const BasicType t) {
const MemOrd mo = (t == T_ARRAY ||
t == T_ADDRESS || // Might be the address of an object reference (`boxing').
t == T_OBJECT) ? release : unordered;
return mo;
}
// Polymorphic factory method
//
// We must ensure that stores of object references will be visible
// only after the object's initialization. So the callers of this
// procedure must indicate that the store requires `release'
// semantics, if the stored value is an object reference that might
// point to a new object and may become externally visible.
static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
virtual uint hash() const; // Check the type
// If the store is to Field memory and the pointer is non-null, we can
// zero out the control input.
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
// Compute a new Type for this node. Basically we just do the pre-check,
// then call the virtual add() to set the type.
virtual const Type *Value( PhaseTransform *phase ) const;
// Check for identity function on memory (Load then Store at same address)
virtual Node *Identity( PhaseTransform *phase );
// Do not match memory edge
virtual uint match_edge(uint idx) const;
virtual const Type *bottom_type() const; // returns Type::MEMORY
// Map a store opcode to its corresponding own opcode, trivially.
virtual int store_Opcode() const { return Opcode(); }
// have all possible loads of the value stored been optimized away?
bool value_never_loaded(PhaseTransform *phase) const;
};
//------------------------------StoreBNode-------------------------------------
// Store byte to memory
class StoreBNode : public StoreNode {
public:
StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
: StoreNode(c, mem, adr, at, val, mo) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual BasicType memory_type() const { return T_BYTE; }
};
//------------------------------StoreCNode-------------------------------------
// Store char/short to memory
class StoreCNode : public StoreNode {
public:
StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
: StoreNode(c, mem, adr, at, val, mo) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual BasicType memory_type() const { return T_CHAR; }
};
//------------------------------StoreINode-------------------------------------
// Store int to memory
class StoreINode : public StoreNode {
public:
StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
: StoreNode(c, mem, adr, at, val, mo) {}
virtual int Opcode() const;
virtual BasicType memory_type() const { return T_INT; }
};
//------------------------------StoreLNode-------------------------------------
// Store long to memory
class StoreLNode : public StoreNode {
virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
virtual uint cmp( const Node &n ) const {
return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
&& StoreNode::cmp(n);
}
virtual uint size_of() const { return sizeof(*this); }
const bool _require_atomic_access; // is piecewise store forbidden?
public:
StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
: StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
virtual int Opcode() const;
virtual BasicType memory_type() const { return T_LONG; }
bool require_atomic_access() const { return _require_atomic_access; }
static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const {
StoreNode::dump_spec(st);
if (_require_atomic_access) st->print(" Atomic!");
}
#endif
};
//------------------------------StoreFNode-------------------------------------
// Store float to memory
class StoreFNode : public StoreNode {
public:
StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
: StoreNode(c, mem, adr, at, val, mo) {}
virtual int Opcode() const;
virtual BasicType memory_type() const { return T_FLOAT; }
};
//------------------------------StoreDNode-------------------------------------
// Store double to memory
class StoreDNode : public StoreNode {
virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
virtual uint cmp( const Node &n ) const {
return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
&& StoreNode::cmp(n);
}
virtual uint size_of() const { return sizeof(*this); }
const bool _require_atomic_access; // is piecewise store forbidden?
public:
StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
MemOrd mo, bool require_atomic_access = false)
: StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
virtual int Opcode() const;
virtual BasicType memory_type() const { return T_DOUBLE; }
bool require_atomic_access() const { return _require_atomic_access; }
static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const {
StoreNode::dump_spec(st);
if (_require_atomic_access) st->print(" Atomic!");
}
#endif
};
//------------------------------StorePNode-------------------------------------
// Store pointer to memory
class StorePNode : public StoreNode {
public:
StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
: StoreNode(c, mem, adr, at, val, mo) {}
virtual int Opcode() const;
virtual BasicType memory_type() const { return T_ADDRESS; }
};
//------------------------------StoreNNode-------------------------------------
// Store narrow oop to memory
class StoreNNode : public StoreNode {
public:
StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
: StoreNode(c, mem, adr, at, val, mo) {}
virtual int Opcode() const;
virtual BasicType memory_type() const { return T_NARROWOOP; }
};
//------------------------------StoreNKlassNode--------------------------------------
// Store narrow klass to memory
class StoreNKlassNode : public StoreNNode {
public:
StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
: StoreNNode(c, mem, adr, at, val, mo) {}
virtual int Opcode() const;
virtual BasicType memory_type() const { return T_NARROWKLASS; }
};
//------------------------------StoreCMNode-----------------------------------
// Store card-mark byte to memory for CM
// The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
// Preceeding equivalent StoreCMs may be eliminated.
class StoreCMNode : public StoreNode {
private:
virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
virtual uint cmp( const Node &n ) const {
return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
&& StoreNode::cmp(n);
}
virtual uint size_of() const { return sizeof(*this); }
int _oop_alias_idx; // The alias_idx of OopStore
public:
StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
_oop_alias_idx(oop_alias_idx) {
assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
_oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
"bad oop alias idx");
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
virtual BasicType memory_type() const { return T_VOID; } // unspecific
int oop_alias_idx() const { return _oop_alias_idx; }
};
//------------------------------LoadPLockedNode---------------------------------
// Load-locked a pointer from memory (either object or array).
// On Sparc & Intel this is implemented as a normal pointer load.
// On PowerPC and friends it's a real load-locked.
class LoadPLockedNode : public LoadPNode {
public:
LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
: LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
virtual int Opcode() const;
virtual int store_Opcode() const { return Op_StorePConditional; }
virtual bool depends_only_on_test() const { return true; }
};
//------------------------------SCMemProjNode---------------------------------------
// This class defines a projection of the memory state of a store conditional node.
// These nodes return a value, but also update memory.
class SCMemProjNode : public ProjNode {
public:
enum {SCMEMPROJCON = (uint)-2};
SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
virtual int Opcode() const;
virtual bool is_CFG() const { return false; }
virtual const Type *bottom_type() const {return Type::MEMORY;}
virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
virtual const Type *Value( PhaseTransform *phase ) const;
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const {};
#endif
};
//------------------------------LoadStoreNode---------------------------
// Note: is_Mem() method returns 'true' for this class.
class LoadStoreNode : public Node {
private:
const Type* const _type; // What kind of value is loaded?
const TypePtr* _adr_type; // What kind of memory is being addressed?
virtual uint size_of() const; // Size is bigger
public:
LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
virtual bool depends_only_on_test() const { return false; }
virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
virtual const Type *bottom_type() const { return _type; }
virtual uint ideal_reg() const;
virtual const class TypePtr *adr_type() const { return _adr_type; } // returns bottom_type of address
bool result_not_used() const;
};
class LoadStoreConditionalNode : public LoadStoreNode {
public:
enum {
ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
};
LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
};
//------------------------------StorePConditionalNode---------------------------
// Conditionally store pointer to memory, if no change since prior
// load-locked. Sets flags for success or failure of the store.
class StorePConditionalNode : public LoadStoreConditionalNode {
public:
StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
virtual int Opcode() const;
// Produces flags
virtual uint ideal_reg() const { return Op_RegFlags; }
};
//------------------------------StoreIConditionalNode---------------------------
// Conditionally store int to memory, if no change since prior
// load-locked. Sets flags for success or failure of the store.
class StoreIConditionalNode : public LoadStoreConditionalNode {
public:
StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
virtual int Opcode() const;
// Produces flags
virtual uint ideal_reg() const { return Op_RegFlags; }
};
//------------------------------StoreLConditionalNode---------------------------
// Conditionally store long to memory, if no change since prior
// load-locked. Sets flags for success or failure of the store.
class StoreLConditionalNode : public LoadStoreConditionalNode {
public:
StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
virtual int Opcode() const;
// Produces flags
virtual uint ideal_reg() const { return Op_RegFlags; }
};
//------------------------------CompareAndSwapLNode---------------------------
class CompareAndSwapLNode : public LoadStoreConditionalNode {
public:
CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
virtual int Opcode() const;
};
//------------------------------CompareAndSwapINode---------------------------
class CompareAndSwapINode : public LoadStoreConditionalNode {
public:
CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
virtual int Opcode() const;
};
//------------------------------CompareAndSwapPNode---------------------------
class CompareAndSwapPNode : public LoadStoreConditionalNode {
public:
CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
virtual int Opcode() const;
};
//------------------------------CompareAndSwapNNode---------------------------
class CompareAndSwapNNode : public LoadStoreConditionalNode {
public:
CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
virtual int Opcode() const;
};
//------------------------------GetAndAddINode---------------------------
class GetAndAddINode : public LoadStoreNode {
public:
GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
virtual int Opcode() const;
};
//------------------------------GetAndAddLNode---------------------------
class GetAndAddLNode : public LoadStoreNode {
public:
GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
virtual int Opcode() const;
};
//------------------------------GetAndSetINode---------------------------
class GetAndSetINode : public LoadStoreNode {
public:
GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
virtual int Opcode() const;
};
//------------------------------GetAndSetINode---------------------------
class GetAndSetLNode : public LoadStoreNode {
public:
GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
virtual int Opcode() const;
};
//------------------------------GetAndSetPNode---------------------------
class GetAndSetPNode : public LoadStoreNode {
public:
GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
virtual int Opcode() const;
};
//------------------------------GetAndSetNNode---------------------------
class GetAndSetNNode : public LoadStoreNode {
public:
GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
virtual int Opcode() const;
};
//------------------------------ClearArray-------------------------------------
class ClearArrayNode: public Node {
public:
ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
: Node(ctrl,arymem,word_cnt,base) {
init_class_id(Class_ClearArray);
}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::MEMORY; }
// ClearArray modifies array elements, and so affects only the
// array memory addressed by the bottom_type of its base address.
virtual const class TypePtr *adr_type() const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual uint match_edge(uint idx) const;
// Clear the given area of an object or array.
// The start offset must always be aligned mod BytesPerInt.
// The end offset must always be aligned mod BytesPerLong.
// Return the new memory.
static Node* clear_memory(Node* control, Node* mem, Node* dest,
intptr_t start_offset,
intptr_t end_offset,
PhaseGVN* phase);
static Node* clear_memory(Node* control, Node* mem, Node* dest,
intptr_t start_offset,
Node* end_offset,
PhaseGVN* phase);
static Node* clear_memory(Node* control, Node* mem, Node* dest,
Node* start_offset,
Node* end_offset,
PhaseGVN* phase);
// Return allocation input memory edge if it is different instance
// or itself if it is the one we are looking for.
static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
};
//------------------------------StrIntrinsic-------------------------------
// Base class for Ideal nodes used in String instrinsic code.
class StrIntrinsicNode: public Node {
public:
StrIntrinsicNode(Node* control, Node* char_array_mem,
Node* s1, Node* c1, Node* s2, Node* c2):
Node(control, char_array_mem, s1, c1, s2, c2) {
}
StrIntrinsicNode(Node* control, Node* char_array_mem,
Node* s1, Node* s2, Node* c):
Node(control, char_array_mem, s1, s2, c) {
}
StrIntrinsicNode(Node* control, Node* char_array_mem,
Node* s1, Node* s2):
Node(control, char_array_mem, s1, s2) {
}
virtual bool depends_only_on_test() const { return false; }
virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
virtual uint match_edge(uint idx) const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value(PhaseTransform *phase) const;
};
//------------------------------StrComp-------------------------------------
class StrCompNode: public StrIntrinsicNode {
public:
StrCompNode(Node* control, Node* char_array_mem,
Node* s1, Node* c1, Node* s2, Node* c2):
StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
virtual int Opcode() const;
virtual const Type* bottom_type() const { return TypeInt::INT; }
};
//------------------------------StrEquals-------------------------------------
class StrEqualsNode: public StrIntrinsicNode {
public:
StrEqualsNode(Node* control, Node* char_array_mem,
Node* s1, Node* s2, Node* c):
StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
virtual int Opcode() const;
virtual const Type* bottom_type() const { return TypeInt::BOOL; }
};
//------------------------------StrIndexOf-------------------------------------
class StrIndexOfNode: public StrIntrinsicNode {
public:
StrIndexOfNode(Node* control, Node* char_array_mem,
Node* s1, Node* c1, Node* s2, Node* c2):
StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
virtual int Opcode() const;
virtual const Type* bottom_type() const { return TypeInt::INT; }
};
//------------------------------AryEq---------------------------------------
class AryEqNode: public StrIntrinsicNode {
public:
AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
StrIntrinsicNode(control, char_array_mem, s1, s2) {};
virtual int Opcode() const;
virtual const Type* bottom_type() const { return TypeInt::BOOL; }
};
//------------------------------EncodeISOArray--------------------------------
// encode char[] to byte[] in ISO_8859_1
class EncodeISOArrayNode: public Node {
public:
EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
virtual int Opcode() const;
virtual bool depends_only_on_test() const { return false; }
virtual const Type* bottom_type() const { return TypeInt::INT; }
virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
virtual uint match_edge(uint idx) const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value(PhaseTransform *phase) const;
};
//------------------------------MemBar-----------------------------------------
// There are different flavors of Memory Barriers to match the Java Memory
// Model. Monitor-enter and volatile-load act as Aquires: no following ref
// can be moved to before them. We insert a MemBar-Acquire after a FastLock or
// volatile-load. Monitor-exit and volatile-store act as Release: no
// preceding ref can be moved to after them. We insert a MemBar-Release
// before a FastUnlock or volatile-store. All volatiles need to be
// serialized, so we follow all volatile-stores with a MemBar-Volatile to
// separate it from any following volatile-load.
class MemBarNode: public MultiNode {
virtual uint hash() const ; // { return NO_HASH; }
virtual uint cmp( const Node &n ) const ; // Always fail, except on self
virtual uint size_of() const { return sizeof(*this); }
// Memory type this node is serializing. Usually either rawptr or bottom.
const TypePtr* _adr_type;
public:
enum {
Precedent = TypeFunc::Parms // optional edge to force precedence
};
MemBarNode(Compile* C, int alias_idx, Node* precedent);
virtual int Opcode() const = 0;
virtual const class TypePtr *adr_type() const { return _adr_type; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual uint match_edge(uint idx) const { return 0; }
virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
virtual Node *match( const ProjNode *proj, const Matcher *m );
// Factory method. Builds a wide or narrow membar.
// Optional 'precedent' becomes an extra edge if not null.
static MemBarNode* make(Compile* C, int opcode,
int alias_idx = Compile::AliasIdxBot,
Node* precedent = NULL);
};
// "Acquire" - no following ref can move before (but earlier refs can
// follow, like an early Load stalled in cache). Requires multi-cpu
// visibility. Inserted after a volatile load.
class MemBarAcquireNode: public MemBarNode {
public:
MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
: MemBarNode(C, alias_idx, precedent) {}
virtual int Opcode() const;
};
// "Acquire" - no following ref can move before (but earlier refs can
// follow, like an early Load stalled in cache). Requires multi-cpu
// visibility. Inserted independ of any load, as required
// for intrinsic sun.misc.Unsafe.loadFence().
class LoadFenceNode: public MemBarNode {
public:
LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
: MemBarNode(C, alias_idx, precedent) {}
virtual int Opcode() const;
};
// "Release" - no earlier ref can move after (but later refs can move
// up, like a speculative pipelined cache-hitting Load). Requires
// multi-cpu visibility. Inserted before a volatile store.
class MemBarReleaseNode: public MemBarNode {
public:
MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
: MemBarNode(C, alias_idx, precedent) {}
virtual int Opcode() const;
};
// "Release" - no earlier ref can move after (but later refs can move
// up, like a speculative pipelined cache-hitting Load). Requires
// multi-cpu visibility. Inserted independent of any store, as required
// for intrinsic sun.misc.Unsafe.storeFence().
class StoreFenceNode: public MemBarNode {
public:
StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
: MemBarNode(C, alias_idx, precedent) {}
virtual int Opcode() const;
};
// "Acquire" - no following ref can move before (but earlier refs can
// follow, like an early Load stalled in cache). Requires multi-cpu
// visibility. Inserted after a FastLock.
class MemBarAcquireLockNode: public MemBarNode {
public:
MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
: MemBarNode(C, alias_idx, precedent) {}
virtual int Opcode() const;
};
// "Release" - no earlier ref can move after (but later refs can move
// up, like a speculative pipelined cache-hitting Load). Requires
// multi-cpu visibility. Inserted before a FastUnLock.
class MemBarReleaseLockNode: public MemBarNode {
public:
MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
: MemBarNode(C, alias_idx, precedent) {}
virtual int Opcode() const;
};
class MemBarStoreStoreNode: public MemBarNode {
public:
MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
: MemBarNode(C, alias_idx, precedent) {
init_class_id(Class_MemBarStoreStore);
}
virtual int Opcode() const;
};
// Ordering between a volatile store and a following volatile load.
// Requires multi-CPU visibility?
class MemBarVolatileNode: public MemBarNode {
public:
MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
: MemBarNode(C, alias_idx, precedent) {}
virtual int Opcode() const;
};
// Ordering within the same CPU. Used to order unsafe memory references
// inside the compiler when we lack alias info. Not needed "outside" the
// compiler because the CPU does all the ordering for us.
class MemBarCPUOrderNode: public MemBarNode {
public:
MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
: MemBarNode(C, alias_idx, precedent) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return 0; } // not matched in the AD file
};
// Isolation of object setup after an AllocateNode and before next safepoint.
// (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
class InitializeNode: public MemBarNode {
friend class AllocateNode;
enum {
Incomplete = 0,
Complete = 1,
WithArraycopy = 2
};
int _is_complete;
bool _does_not_escape;
public:
enum {
Control = TypeFunc::Control,
Memory = TypeFunc::Memory, // MergeMem for states affected by this op
RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
};
InitializeNode(Compile* C, int adr_type, Node* rawoop);
virtual int Opcode() const;
virtual uint size_of() const { return sizeof(*this); }
virtual uint ideal_reg() const { return 0; } // not matched in the AD file
virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
// Manage incoming memory edges via a MergeMem on in(Memory):
Node* memory(uint alias_idx);
// The raw memory edge coming directly from the Allocation.
// The contents of this memory are *always* all-zero-bits.
Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
// Return the corresponding allocation for this initialization (or null if none).
// (Note: Both InitializeNode::allocation and AllocateNode::initialization
// are defined in graphKit.cpp, which sets up the bidirectional relation.)
AllocateNode* allocation();
// Anything other than zeroing in this init?
bool is_non_zero();
// An InitializeNode must completed before macro expansion is done.
// Completion requires that the AllocateNode must be followed by
// initialization of the new memory to zero, then to any initializers.
bool is_complete() { return _is_complete != Incomplete; }
bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
// Mark complete. (Must not yet be complete.)
void set_complete(PhaseGVN* phase);
void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
bool does_not_escape() { return _does_not_escape; }
void set_does_not_escape() { _does_not_escape = true; }
#ifdef ASSERT
// ensure all non-degenerate stores are ordered and non-overlapping
bool stores_are_sane(PhaseTransform* phase);
#endif //ASSERT
// See if this store can be captured; return offset where it initializes.
// Return 0 if the store cannot be moved (any sort of problem).
intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
// Capture another store; reformat it to write my internal raw memory.
// Return the captured copy, else NULL if there is some sort of problem.
Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
// Find captured store which corresponds to the range [start..start+size).
// Return my own memory projection (meaning the initial zero bits)
// if there is no such store. Return NULL if there is a problem.
Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
// Called when the associated AllocateNode is expanded into CFG.
Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
intptr_t header_size, Node* size_in_bytes,
PhaseGVN* phase);
private:
void remove_extra_zeroes();
// Find out where a captured store should be placed (or already is placed).
int captured_store_insertion_point(intptr_t start, int size_in_bytes,
PhaseTransform* phase);
static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
bool detect_init_independence(Node* n, int& count);
void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
PhaseGVN* phase);
intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
};
//------------------------------MergeMem---------------------------------------
// (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
class MergeMemNode: public Node {
virtual uint hash() const ; // { return NO_HASH; }
virtual uint cmp( const Node &n ) const ; // Always fail, except on self
friend class MergeMemStream;
MergeMemNode(Node* def); // clients use MergeMemNode::make
public:
// If the input is a whole memory state, clone it with all its slices intact.
// Otherwise, make a new memory state with just that base memory input.
// In either case, the result is a newly created MergeMem.
static MergeMemNode* make(Compile* C, Node* base_memory);
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual uint ideal_reg() const { return NotAMachineReg; }
virtual uint match_edge(uint idx) const { return 0; }
virtual const RegMask &out_RegMask() const;
virtual const Type *bottom_type() const { return Type::MEMORY; }
virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
// sparse accessors
// Fetch the previously stored "set_memory_at", or else the base memory.
// (Caller should clone it if it is a phi-nest.)
Node* memory_at(uint alias_idx) const;
// set the memory, regardless of its previous value
void set_memory_at(uint alias_idx, Node* n);
// the "base" is the memory that provides the non-finite support
Node* base_memory() const { return in(Compile::AliasIdxBot); }
// warning: setting the base can implicitly set any of the other slices too
void set_base_memory(Node* def);
// sentinel value which denotes a copy of the base memory:
Node* empty_memory() const { return in(Compile::AliasIdxTop); }
static Node* make_empty_memory(); // where the sentinel comes from
bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
// hook for the iterator, to perform any necessary setup
void iteration_setup(const MergeMemNode* other = NULL);
// push sentinels until I am at least as long as the other (semantic no-op)
void grow_to_match(const MergeMemNode* other);
bool verify_sparse() const PRODUCT_RETURN0;
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
class MergeMemStream : public StackObj {
private:
MergeMemNode* _mm;
const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
Node* _mm_base; // loop-invariant base memory of _mm
int _idx;
int _cnt;
Node* _mem;
Node* _mem2;
int _cnt2;
void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
// subsume_node will break sparseness at times, whenever a memory slice
// folds down to a copy of the base ("fat") memory. In such a case,
// the raw edge will update to base, although it should be top.
// This iterator will recognize either top or base_memory as an
// "empty" slice. See is_empty, is_empty2, and next below.
//
// The sparseness property is repaired in MergeMemNode::Ideal.
// As long as access to a MergeMem goes through this iterator
// or the memory_at accessor, flaws in the sparseness will
// never be observed.
//
// Also, iteration_setup repairs sparseness.
assert(mm->verify_sparse(), "please, no dups of base");
assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
_mm = mm;
_mm_base = mm->base_memory();
_mm2 = mm2;
_cnt = mm->req();
_idx = Compile::AliasIdxBot-1; // start at the base memory
_mem = NULL;
_mem2 = NULL;
}
#ifdef ASSERT
Node* check_memory() const {
if (at_base_memory())
return _mm->base_memory();
else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
return _mm->memory_at(_idx);
else
return _mm_base;
}
Node* check_memory2() const {
return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
}
#endif
static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
void assert_synch() const {
assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
"no side-effects except through the stream");
}
public:
// expected usages:
// for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
// for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
// iterate over one merge
MergeMemStream(MergeMemNode* mm) {
mm->iteration_setup();
init(mm);
debug_only(_cnt2 = 999);
}
// iterate in parallel over two merges
// only iterates through non-empty elements of mm2
MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
assert(mm2, "second argument must be a MergeMem also");
((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
mm->iteration_setup(mm2);
init(mm, mm2);
_cnt2 = mm2->req();
}
#ifdef ASSERT
~MergeMemStream() {
assert_synch();
}
#endif
MergeMemNode* all_memory() const {
return _mm;
}
Node* base_memory() const {
assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
return _mm_base;
}
const MergeMemNode* all_memory2() const {
assert(_mm2 != NULL, "");
return _mm2;
}
bool at_base_memory() const {
return _idx == Compile::AliasIdxBot;
}
int alias_idx() const {
assert(_mem, "must call next 1st");
return _idx;
}
const TypePtr* adr_type() const {
return Compile::current()->get_adr_type(alias_idx());
}
const TypePtr* adr_type(Compile* C) const {
return C->get_adr_type(alias_idx());
}
bool is_empty() const {
assert(_mem, "must call next 1st");
assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
return _mem->is_top();
}
bool is_empty2() const {
assert(_mem2, "must call next 1st");
assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
return _mem2->is_top();
}
Node* memory() const {
assert(!is_empty(), "must not be empty");
assert_synch();
return _mem;
}
// get the current memory, regardless of empty or non-empty status
Node* force_memory() const {
assert(!is_empty() || !at_base_memory(), "");
// Use _mm_base to defend against updates to _mem->base_memory().
Node *mem = _mem->is_top() ? _mm_base : _mem;
assert(mem == check_memory(), "");
return mem;
}
Node* memory2() const {
assert(_mem2 == check_memory2(), "");
return _mem2;
}
void set_memory(Node* mem) {
if (at_base_memory()) {
// Note that this does not change the invariant _mm_base.
_mm->set_base_memory(mem);
} else {
_mm->set_memory_at(_idx, mem);
}
_mem = mem;
assert_synch();
}
// Recover from a side effect to the MergeMemNode.
void set_memory() {
_mem = _mm->in(_idx);
}
bool next() { return next(false); }
bool next2() { return next(true); }
bool next_non_empty() { return next_non_empty(false); }
bool next_non_empty2() { return next_non_empty(true); }
// next_non_empty2 can yield states where is_empty() is true
private:
// find the next item, which might be empty
bool next(bool have_mm2) {
assert((_mm2 != NULL) == have_mm2, "use other next");
assert_synch();
if (++_idx < _cnt) {
// Note: This iterator allows _mm to be non-sparse.
// It behaves the same whether _mem is top or base_memory.
_mem = _mm->in(_idx);
if (have_mm2)
_mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
return true;
}
return false;
}
// find the next non-empty item
bool next_non_empty(bool have_mm2) {
while (next(have_mm2)) {
if (!is_empty()) {
// make sure _mem2 is filled in sensibly
if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
return true;
} else if (have_mm2 && !is_empty2()) {
return true; // is_empty() == true
}
}
return false;
}
};
//------------------------------Prefetch---------------------------------------
// Non-faulting prefetch load. Prefetch for many reads.
class PrefetchReadNode : public Node {
public:
PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return NotAMachineReg; }
virtual uint match_edge(uint idx) const { return idx==2; }
virtual const Type *bottom_type() const { return Type::ABIO; }
};
// Non-faulting prefetch load. Prefetch for many reads & many writes.
class PrefetchWriteNode : public Node {
public:
PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return NotAMachineReg; }
virtual uint match_edge(uint idx) const { return idx==2; }
virtual const Type *bottom_type() const { return Type::ABIO; }
};
// Allocation prefetch which may fault, TLAB size have to be adjusted.
class PrefetchAllocationNode : public Node {
public:
PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return NotAMachineReg; }
virtual uint match_edge(uint idx) const { return idx==2; }
virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
};
#endif // SHARE_VM_OPTO_MEMNODE_HPP