blob: 787f5ab88c3d0583411e597eb2bb0b8601c5a74d [file] [log] [blame]
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/callnode.hpp"
#include "opto/chaitin.hpp"
#include "opto/live.hpp"
#include "opto/machnode.hpp"
// Compute live-in/live-out. We use a totally incremental algorithm. The LIVE
// problem is monotonic. The steady-state solution looks like this: pull a
// block from the worklist. It has a set of delta's - values which are newly
// live-in from the block. Push these to the live-out sets of all predecessor
// blocks. At each predecessor, the new live-out values are ANDed with what is
// already live-out (extra stuff is added to the live-out sets). Then the
// remaining new live-out values are ANDed with what is locally defined.
// Leftover bits become the new live-in for the predecessor block, and the pred
// block is put on the worklist.
// The locally live-in stuff is computed once and added to predecessor
// live-out sets. This separate compilation is done in the outer loop below.
PhaseLive::PhaseLive( const PhaseCFG &cfg, const LRG_List &names, Arena *arena ) : Phase(LIVE), _cfg(cfg), _names(names), _arena(arena), _live(0) {
}
void PhaseLive::compute(uint maxlrg) {
_maxlrg = maxlrg;
_worklist = new (_arena) Block_List();
// Init the sparse live arrays. This data is live on exit from here!
// The _live info is the live-out info.
_live = (IndexSet*)_arena->Amalloc(sizeof(IndexSet) * _cfg.number_of_blocks());
uint i;
for (i = 0; i < _cfg.number_of_blocks(); i++) {
_live[i].initialize(_maxlrg);
}
// Init the sparse arrays for delta-sets.
ResourceMark rm; // Nuke temp storage on exit
// Does the memory used by _defs and _deltas get reclaimed? Does it matter? TT
// Array of values defined locally in blocks
_defs = NEW_RESOURCE_ARRAY(IndexSet,_cfg.number_of_blocks());
for (i = 0; i < _cfg.number_of_blocks(); i++) {
_defs[i].initialize(_maxlrg);
}
// Array of delta-set pointers, indexed by block pre_order-1.
_deltas = NEW_RESOURCE_ARRAY(IndexSet*,_cfg.number_of_blocks());
memset( _deltas, 0, sizeof(IndexSet*)* _cfg.number_of_blocks());
_free_IndexSet = NULL;
// Blocks having done pass-1
VectorSet first_pass(Thread::current()->resource_area());
// Outer loop: must compute local live-in sets and push into predecessors.
for (uint j = _cfg.number_of_blocks(); j > 0; j--) {
Block* block = _cfg.get_block(j - 1);
// Compute the local live-in set. Start with any new live-out bits.
IndexSet* use = getset(block);
IndexSet* def = &_defs[block->_pre_order-1];
DEBUG_ONLY(IndexSet *def_outside = getfreeset();)
uint i;
for (i = block->number_of_nodes(); i > 1; i--) {
Node* n = block->get_node(i-1);
if (n->is_Phi()) {
break;
}
uint r = _names.at(n->_idx);
assert(!def_outside->member(r), "Use of external LRG overlaps the same LRG defined in this block");
def->insert( r );
use->remove( r );
uint cnt = n->req();
for (uint k = 1; k < cnt; k++) {
Node *nk = n->in(k);
uint nkidx = nk->_idx;
if (_cfg.get_block_for_node(nk) != block) {
uint u = _names.at(nkidx);
use->insert(u);
DEBUG_ONLY(def_outside->insert(u);)
}
}
}
#ifdef ASSERT
def_outside->set_next(_free_IndexSet);
_free_IndexSet = def_outside; // Drop onto free list
#endif
// Remove anything defined by Phis and the block start instruction
for (uint k = i; k > 0; k--) {
uint r = _names.at(block->get_node(k - 1)->_idx);
def->insert(r);
use->remove(r);
}
// Push these live-in things to predecessors
for (uint l = 1; l < block->num_preds(); l++) {
Block* p = _cfg.get_block_for_node(block->pred(l));
add_liveout(p, use, first_pass);
// PhiNode uses go in the live-out set of prior blocks.
for (uint k = i; k > 0; k--) {
add_liveout(p, _names.at(block->get_node(k-1)->in(l)->_idx), first_pass);
}
}
freeset(block);
first_pass.set(block->_pre_order);
// Inner loop: blocks that picked up new live-out values to be propagated
while (_worklist->size()) {
Block* block = _worklist->pop();
IndexSet *delta = getset(block);
assert( delta->count(), "missing delta set" );
// Add new-live-in to predecessors live-out sets
for (uint l = 1; l < block->num_preds(); l++) {
Block* predecessor = _cfg.get_block_for_node(block->pred(l));
add_liveout(predecessor, delta, first_pass);
}
freeset(block);
} // End of while-worklist-not-empty
} // End of for-all-blocks-outer-loop
// We explicitly clear all of the IndexSets which we are about to release.
// This allows us to recycle their internal memory into IndexSet's free list.
for (i = 0; i < _cfg.number_of_blocks(); i++) {
_defs[i].clear();
if (_deltas[i]) {
// Is this always true?
_deltas[i]->clear();
}
}
IndexSet *free = _free_IndexSet;
while (free != NULL) {
IndexSet *temp = free;
free = free->next();
temp->clear();
}
}
#ifndef PRODUCT
void PhaseLive::stats(uint iters) const {
}
#endif
// Get an IndexSet for a block. Return existing one, if any. Make a new
// empty one if a prior one does not exist.
IndexSet *PhaseLive::getset( Block *p ) {
IndexSet *delta = _deltas[p->_pre_order-1];
if( !delta ) // Not on worklist?
// Get a free set; flag as being on worklist
delta = _deltas[p->_pre_order-1] = getfreeset();
return delta; // Return set of new live-out items
}
// Pull from free list, or allocate. Internal allocation on the returned set
// is always from thread local storage.
IndexSet *PhaseLive::getfreeset( ) {
IndexSet *f = _free_IndexSet;
if( !f ) {
f = new IndexSet;
// f->set_arena(Thread::current()->resource_area());
f->initialize(_maxlrg, Thread::current()->resource_area());
} else {
// Pull from free list
_free_IndexSet = f->next();
//f->_cnt = 0; // Reset to empty
// f->set_arena(Thread::current()->resource_area());
f->initialize(_maxlrg, Thread::current()->resource_area());
}
return f;
}
// Free an IndexSet from a block.
void PhaseLive::freeset( const Block *p ) {
IndexSet *f = _deltas[p->_pre_order-1];
f->set_next(_free_IndexSet);
_free_IndexSet = f; // Drop onto free list
_deltas[p->_pre_order-1] = NULL;
}
// Add a live-out value to a given blocks live-out set. If it is new, then
// also add it to the delta set and stick the block on the worklist.
void PhaseLive::add_liveout( Block *p, uint r, VectorSet &first_pass ) {
IndexSet *live = &_live[p->_pre_order-1];
if( live->insert(r) ) { // If actually inserted...
// We extended the live-out set. See if the value is generated locally.
// If it is not, then we must extend the live-in set.
if( !_defs[p->_pre_order-1].member( r ) ) {
if( !_deltas[p->_pre_order-1] && // Not on worklist?
first_pass.test(p->_pre_order) )
_worklist->push(p); // Actually go on worklist if already 1st pass
getset(p)->insert(r);
}
}
}
// Add a vector of live-out values to a given blocks live-out set.
void PhaseLive::add_liveout( Block *p, IndexSet *lo, VectorSet &first_pass ) {
IndexSet *live = &_live[p->_pre_order-1];
IndexSet *defs = &_defs[p->_pre_order-1];
IndexSet *on_worklist = _deltas[p->_pre_order-1];
IndexSet *delta = on_worklist ? on_worklist : getfreeset();
IndexSetIterator elements(lo);
uint r;
while ((r = elements.next()) != 0) {
if( live->insert(r) && // If actually inserted...
!defs->member( r ) ) // and not defined locally
delta->insert(r); // Then add to live-in set
}
if( delta->count() ) { // If actually added things
_deltas[p->_pre_order-1] = delta; // Flag as on worklist now
if( !on_worklist && // Not on worklist?
first_pass.test(p->_pre_order) )
_worklist->push(p); // Actually go on worklist if already 1st pass
} else { // Nothing there; just free it
delta->set_next(_free_IndexSet);
_free_IndexSet = delta; // Drop onto free list
}
}
#ifndef PRODUCT
// Dump the live-out set for a block
void PhaseLive::dump( const Block *b ) const {
tty->print("Block %d: ",b->_pre_order);
tty->print("LiveOut: "); _live[b->_pre_order-1].dump();
uint cnt = b->number_of_nodes();
for( uint i=0; i<cnt; i++ ) {
tty->print("L%d/", _names.at(b->get_node(i)->_idx));
b->get_node(i)->dump();
}
tty->print("\n");
}
// Verify that base pointers and derived pointers are still sane.
void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const {
#ifdef ASSERT
Unique_Node_List worklist(a);
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block* block = _cfg.get_block(i);
for (uint j = block->end_idx() + 1; j > 1; j--) {
Node* n = block->get_node(j-1);
if (n->is_Phi()) {
break;
}
// Found a safepoint?
if (n->is_MachSafePoint()) {
MachSafePointNode *sfpt = n->as_MachSafePoint();
JVMState* jvms = sfpt->jvms();
if (jvms != NULL) {
// Now scan for a live derived pointer
if (jvms->oopoff() < sfpt->req()) {
// Check each derived/base pair
for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
Node *check = sfpt->in(idx);
bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
// search upwards through spills and spill phis for AddP
worklist.clear();
worklist.push(check);
uint k = 0;
while( k < worklist.size() ) {
check = worklist.at(k);
assert(check,"Bad base or derived pointer");
// See PhaseChaitin::find_base_for_derived() for all cases.
int isc = check->is_Copy();
if( isc ) {
worklist.push(check->in(isc));
} else if( check->is_Phi() ) {
for (uint m = 1; m < check->req(); m++)
worklist.push(check->in(m));
} else if( check->is_Con() ) {
if (is_derived) {
// Derived is NULL+offset
assert(!is_derived || check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad derived pointer");
} else {
assert(check->bottom_type()->is_ptr()->_offset == 0,"Bad base pointer");
// Base either ConP(NULL) or loadConP
if (check->is_Mach()) {
assert(check->as_Mach()->ideal_Opcode() == Op_ConP,"Bad base pointer");
} else {
assert(check->Opcode() == Op_ConP &&
check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad base pointer");
}
}
} else if( check->bottom_type()->is_ptr()->_offset == 0 ) {
if(check->is_Proj() || check->is_Mach() &&
(check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
#ifdef _LP64
UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP ||
UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN ||
UseCompressedClassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass ||
#endif
check->as_Mach()->ideal_Opcode() == Op_LoadP ||
check->as_Mach()->ideal_Opcode() == Op_LoadKlass)) {
// Valid nodes
} else {
check->dump();
assert(false,"Bad base or derived pointer");
}
} else {
assert(is_derived,"Bad base pointer");
assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP,"Bad derived pointer");
}
k++;
assert(k < 100000,"Derived pointer checking in infinite loop");
} // End while
}
} // End of check for derived pointers
} // End of Kcheck for debug info
} // End of if found a safepoint
} // End of forall instructions in block
} // End of forall blocks
#endif
}
// Verify that graphs and base pointers are still sane.
void PhaseChaitin::verify( ResourceArea *a, bool verify_ifg ) const {
#ifdef ASSERT
if( VerifyOpto || VerifyRegisterAllocator ) {
_cfg.verify();
verify_base_ptrs(a);
if(verify_ifg)
_ifg->verify(this);
}
#endif
}
#endif