blob: 7ce1cd0f372c36bfffa43e43b5a259ea6d3ef9bb [file] [log] [blame]
/*
* Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_IDEALKIT_HPP
#define SHARE_VM_OPTO_IDEALKIT_HPP
#include "opto/addnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/connode.hpp"
#include "opto/divnode.hpp"
#include "opto/graphKit.hpp"
#include "opto/mulnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"
#include "opto/type.hpp"
//-----------------------------------------------------------------------------
//----------------------------IdealKit-----------------------------------------
// Set of utilities for creating control flow and scalar SSA data flow.
// Control:
// if_then(left, relop, right)
// else_ (optional)
// end_if
// loop(iv variable, initial, relop, limit)
// - sets iv to initial for first trip
// - exits when relation on limit is true
// - the values of initial and limit should be loop invariant
// - no increment, must be explicitly coded
// - final value of iv is available after end_loop (until dead())
// end_loop
// make_label(number of gotos)
// goto_(label)
// bind(label)
// Data:
// ConI(integer constant) - create an integer constant
// set(variable, value) - assignment
// value(variable) - reference value
// dead(variable) - variable's value is no longer live
// increment(variable, value) - increment variable by value
// simple operations: AddI, SubI, AndI, LShiftI, etc.
// Example:
// Node* limit = ??
// IdealVariable i(kit), j(kit);
// declarations_done();
// Node* exit = make_label(1); // 1 goto
// set(j, ConI(0));
// loop(i, ConI(0), BoolTest::lt, limit); {
// if_then(value(i), BoolTest::gt, ConI(5)) {
// set(j, ConI(1));
// goto_(exit); dead(i);
// } end_if();
// increment(i, ConI(1));
// } end_loop(); dead(i);
// bind(exit);
//
// See string_indexOf for a more complete example.
class IdealKit;
// Variable definition for IdealKit
class IdealVariable: public StackObj {
friend class IdealKit;
private:
int _id;
void set_id(int id) { _id = id; }
public:
IdealVariable(IdealKit &k);
int id() { assert(has_id(),"uninitialized id"); return _id; }
bool has_id() { return _id >= 0; }
};
class IdealKit: public StackObj {
friend class IdealVariable;
// The main state (called a cvstate for Control and Variables)
// contains both the current values of the variables and the
// current set of predecessor control edges. The variable values
// are managed via a Node [in(1)..in(_var_ct)], and the predecessor
// control edges managed via a RegionNode. The in(0) of the Node
// for variables points to the RegionNode for the control edges.
protected:
Compile * const C;
PhaseGVN &_gvn;
GrowableArray<Node*>* _pending_cvstates; // stack of cvstates
Node* _cvstate; // current cvstate (control, memory and variables)
uint _var_ct; // number of variables
bool _delay_all_transforms; // flag forcing all transforms to be delayed
Node* _initial_ctrl; // saves initial control until variables declared
Node* _initial_memory; // saves initial memory until variables declared
Node* _initial_i_o; // saves initial i_o until variables declared
PhaseGVN& gvn() const { return _gvn; }
// Create a new cvstate filled with nulls
Node* new_cvstate(); // Create a new cvstate
Node* cvstate() { return _cvstate; } // current cvstate
Node* copy_cvstate(); // copy current cvstate
void set_memory(Node* mem, uint alias_idx );
void do_memory_merge(Node* merging, Node* join);
void clear(Node* m); // clear a cvstate
void stop() { clear(_cvstate); } // clear current cvstate
Node* delay_transform(Node* n);
Node* transform(Node* n); // gvn.transform or skip it
Node* promote_to_phi(Node* n, Node* reg);// Promote "n" to a phi on region "reg"
bool was_promoted_to_phi(Node* n, Node* reg) {
return (n->is_Phi() && n->in(0) == reg);
}
void declare(IdealVariable* v) { v->set_id(_var_ct++); }
// This declares the position where vars are kept in the cvstate
// For some degree of consistency we use the TypeFunc enum to
// soak up spots in the inputs even though we only use early Control
// and Memory slots. (So far.)
static const uint first_var; // = TypeFunc::Parms + 1;
#ifdef ASSERT
enum State { NullS=0, BlockS=1, LoopS=2, IfThenS=4, ElseS=8, EndifS= 16 };
GrowableArray<int>* _state;
State state() { return (State)(_state->top()); }
#endif
// Users should not care about slices only MergedMem so no access for them.
Node* memory(uint alias_idx);
public:
IdealKit(GraphKit* gkit, bool delay_all_transforms = false, bool has_declarations = false);
~IdealKit() {
stop();
}
void sync_kit(GraphKit* gkit);
// Control
Node* ctrl() { return _cvstate->in(TypeFunc::Control); }
void set_ctrl(Node* ctrl) { _cvstate->set_req(TypeFunc::Control, ctrl); }
Node* top() { return C->top(); }
MergeMemNode* merged_memory() { return _cvstate->in(TypeFunc::Memory)->as_MergeMem(); }
void set_all_memory(Node* mem) { _cvstate->set_req(TypeFunc::Memory, mem); }
Node* i_o() { return _cvstate->in(TypeFunc::I_O); }
void set_i_o(Node* c) { _cvstate->set_req(TypeFunc::I_O, c); }
void set(IdealVariable& v, Node* rhs) { _cvstate->set_req(first_var + v.id(), rhs); }
Node* value(IdealVariable& v) { return _cvstate->in(first_var + v.id()); }
void dead(IdealVariable& v) { set(v, (Node*)NULL); }
void if_then(Node* left, BoolTest::mask relop, Node* right,
float prob = PROB_FAIR, float cnt = COUNT_UNKNOWN,
bool push_new_state = true);
void else_();
void end_if();
void loop(GraphKit* gkit, int nargs, IdealVariable& iv, Node* init, BoolTest::mask cmp, Node* limit,
float prob = PROB_LIKELY(0.9), float cnt = COUNT_UNKNOWN);
void end_loop();
Node* make_label(int goto_ct);
void bind(Node* lab);
void goto_(Node* lab, bool bind = false);
void declarations_done();
Node* IfTrue(IfNode* iff) { return transform(new (C) IfTrueNode(iff)); }
Node* IfFalse(IfNode* iff) { return transform(new (C) IfFalseNode(iff)); }
// Data
Node* ConI(jint k) { return (Node*)gvn().intcon(k); }
Node* makecon(const Type *t) const { return _gvn.makecon(t); }
Node* AddI(Node* l, Node* r) { return transform(new (C) AddINode(l, r)); }
Node* SubI(Node* l, Node* r) { return transform(new (C) SubINode(l, r)); }
Node* AndI(Node* l, Node* r) { return transform(new (C) AndINode(l, r)); }
Node* MaxI(Node* l, Node* r) { return transform(new (C) MaxINode(l, r)); }
Node* LShiftI(Node* l, Node* r) { return transform(new (C) LShiftINode(l, r)); }
Node* CmpI(Node* l, Node* r) { return transform(new (C) CmpINode(l, r)); }
Node* Bool(Node* cmp, BoolTest::mask relop) { return transform(new (C) BoolNode(cmp, relop)); }
void increment(IdealVariable& v, Node* j) { set(v, AddI(value(v), j)); }
void decrement(IdealVariable& v, Node* j) { set(v, SubI(value(v), j)); }
Node* CmpL(Node* l, Node* r) { return transform(new (C) CmpLNode(l, r)); }
// TLS
Node* thread() { return gvn().transform(new (C) ThreadLocalNode()); }
// Pointers
// Raw address should be transformed regardless 'delay_transform' flag
// to produce canonical form CastX2P(offset).
Node* AddP(Node *base, Node *ptr, Node *off) { return _gvn.transform(new (C) AddPNode(base, ptr, off)); }
Node* CmpP(Node* l, Node* r) { return transform(new (C) CmpPNode(l, r)); }
#ifdef _LP64
Node* XorX(Node* l, Node* r) { return transform(new (C) XorLNode(l, r)); }
#else // _LP64
Node* XorX(Node* l, Node* r) { return transform(new (C) XorINode(l, r)); }
#endif // _LP64
Node* URShiftX(Node* l, Node* r) { return transform(new (C) URShiftXNode(l, r)); }
Node* ConX(jint k) { return (Node*)gvn().MakeConX(k); }
Node* CastPX(Node* ctl, Node* p) { return transform(new (C) CastP2XNode(ctl, p)); }
// Memory operations
// This is the base version which is given an alias index.
Node* load(Node* ctl,
Node* adr,
const Type* t,
BasicType bt,
int adr_idx,
bool require_atomic_access = false);
// Return the new StoreXNode
Node* store(Node* ctl,
Node* adr,
Node* val,
BasicType bt,
int adr_idx,
MemNode::MemOrd mo,
bool require_atomic_access = false,
bool mismatched = false
);
// Store a card mark ordered after store_oop
Node* storeCM(Node* ctl,
Node* adr,
Node* val,
Node* oop_store,
int oop_adr_idx,
BasicType bt,
int adr_idx);
// Trivial call
void make_leaf_call(const TypeFunc *slow_call_type,
address slow_call,
const char *leaf_name,
Node* parm0,
Node* parm1 = NULL,
Node* parm2 = NULL,
Node* parm3 = NULL);
void make_leaf_call_no_fp(const TypeFunc *slow_call_type,
address slow_call,
const char *leaf_name,
const TypePtr* adr_type,
Node* parm0,
Node* parm1,
Node* parm2,
Node* parm3);
};
#endif // SHARE_VM_OPTO_IDEALKIT_HPP